-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathvalidation.py
93 lines (82 loc) · 3.87 KB
/
validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
import torch
from sklearn.metrics import accuracy_score
from tools import wer
def val_epoch(model, criterion, dataloader, device, epoch, logger, writer):
model.eval()
losses = []
all_label = []
all_pred = []
with torch.no_grad():
for batch_idx, data in enumerate(dataloader):
# get the inputs and labels
inputs, labels = data['data'].to(device), data['label'].to(device)
# forward
outputs = model(inputs)
if isinstance(outputs, list):
outputs = outputs[0]
# compute the loss
loss = criterion(outputs, labels.squeeze())
losses.append(loss.item())
# collect labels & prediction
prediction = torch.max(outputs, 1)[1]
all_label.extend(labels.squeeze())
all_pred.extend(prediction)
# Compute the average loss & accuracy
validation_loss = sum(losses)/len(losses)
all_label = torch.stack(all_label, dim=0)
all_pred = torch.stack(all_pred, dim=0)
validation_acc = accuracy_score(all_label.squeeze().cpu().data.squeeze().numpy(), all_pred.cpu().data.squeeze().numpy())
# Log
writer.add_scalars('Loss', {'validation': validation_loss}, epoch+1)
writer.add_scalars('Accuracy', {'validation': validation_acc}, epoch+1)
logger.info("Average Validation Loss of Epoch {}: {:.6f} | Acc: {:.2f}%".format(epoch+1, validation_loss, validation_acc*100))
def val_seq2seq(model, criterion, dataloader, device, epoch, logger, writer):
model.eval()
losses = []
all_trg = []
all_pred = []
all_wer = []
with torch.no_grad():
for batch_idx, (imgs, target) in enumerate(dataloader):
imgs = imgs.to(device)
target = target.to(device)
# forward(no teacher forcing)
outputs = model(imgs, target, 0)
# target: (batch_size, trg len)
# outputs: (trg_len, batch_size, output_dim)
# skip sos
output_dim = outputs.shape[-1]
outputs = outputs[1:].view(-1, output_dim)
target = target.permute(1,0)[1:].reshape(-1)
# compute the loss
loss = criterion(outputs, target)
losses.append(loss.item())
# compute the accuracy
prediction = torch.max(outputs, 1)[1]
score = accuracy_score(target.cpu().data.squeeze().numpy(), prediction.cpu().data.squeeze().numpy())
all_trg.extend(target)
all_pred.extend(prediction)
# compute wer
# prediction: ((trg_len-1)*batch_size)
# target: ((trg_len-1)*batch_size)
batch_size = imgs.shape[0]
prediction = prediction.view(-1, batch_size).permute(1,0).tolist()
target = target.view(-1, batch_size).permute(1,0).tolist()
wers = []
for i in range(batch_size):
# add mask(remove padding, eos, sos)
prediction[i] = [item for item in prediction[i] if item not in [0,1,2]]
target[i] = [item for item in target[i] if item not in [0,1,2]]
wers.append(wer(target[i], prediction[i]))
all_wer.extend(wers)
# Compute the average loss & accuracy
validation_loss = sum(losses)/len(losses)
all_trg = torch.stack(all_trg, dim=0)
all_pred = torch.stack(all_pred, dim=0)
validation_acc = accuracy_score(all_trg.cpu().data.squeeze().numpy(), all_pred.cpu().data.squeeze().numpy())
validation_wer = sum(all_wer)/len(all_wer)
# Log
writer.add_scalars('Loss', {'validation': validation_loss}, epoch+1)
writer.add_scalars('Accuracy', {'validation': validation_acc}, epoch+1)
writer.add_scalars('WER', {'validation': validation_wer}, epoch+1)
logger.info("Average Validation Loss of Epoch {}: {:.6f} | Acc: {:.2f}% | WER: {:.2f}%".format(epoch+1, validation_loss, validation_acc*100, validation_wer))