-
Notifications
You must be signed in to change notification settings - Fork 1
/
solver.py
200 lines (170 loc) · 6.99 KB
/
solver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import os
import sys
sys.path.append('..')
sys.path.append('../..')
import argparse
import utils
from graph import *
from student_utils import *
from prims import *
"""
======================================================================
Complete the following function.
======================================================================
"""
def solve(list_of_locations, list_of_homes, starting_car_location, adjacency_matrix, params=[]):
"""
Write your algorithm here.
Input:
list_of_locations: A list of locations such that node i of the graph corresponds to name at index i of the list
list_of_homes: A list of homes
starting_car_location: The name of the starting location for the car
adjacency_matrix: The adjacency matrix from the input file
Output:
A list of locations representing the car path
A dictionary mapping drop-off location to a list of homes of TAs that got off at that particular location
NOTE: both outputs should be in terms of indices not the names of the locations themselves
"""
starting_index = list_of_locations.index(starting_car_location)
graph = recover_graph(list_of_locations, list_of_homes, adjacency_matrix, starting_index)
mst = prims(graph, starting_index)
d = drop_off(mst, list_of_locations, list_of_homes)
path1 = []
pre_order(mst, starting_index, path1)
path2 = parse_path(graph, path1) # input graph or mst1 or mst 2 or doesn't matter?
return path2, d
# adj matrix is a 2d list
def recover_graph(list_of_locations, list_of_homes, adjacency_matrix, starting_index):
g = Graph()
for i in range(len(list_of_locations)):
g.addVertex(i)
if list_of_locations[i] in list_of_homes:
g.getVertex(i).makeHome()
g.getVertex(starting_index).makeSrc()
for i in range(len(list_of_locations)):
for j in range(len(list_of_locations)):
w = adjacency_matrix[i][j]
if w != 'x':
g.addEdge(i, j, w)
return g
def drop_off(min_tree, list_of_locations, list_of_homes):
"""
takes in a graph and outputs:
1. a reduced graph
2. a dictionary with key value pairs indicating drop off location
and the TAs who're dropped off
key: dropoff location
value: a list of TA homes to go to
"""
leaf_nodes = []
for l in range(len(list_of_locations)):
if min_tree.getVertex(l) and min_tree.getVertex(l).isLeaf():
leaf_nodes.append(l)
# or leaf_nodes = [i for i in range(len(list_of_homes)) if mst.getVertex(i).isLeaf]
# assuming that all leaves must be home
d = {}
for l in leaf_nodes:
drop_loc = min_tree.deleteLeaf(l)
if drop_loc is None:
continue
if drop_loc not in d.keys():
d[drop_loc] = set()
d[drop_loc].add(l)
if min_tree.getVertex(drop_loc).isHome():
# print("current dict: ", d)
d[drop_loc].add(drop_loc)
for h in list_of_homes:
h_id = list_of_locations.index(h)
if h_id in min_tree.vet_list.keys():
if h_id not in d.keys():
d[h_id] = set()
d[h_id].add(h_id)
for key in d.keys():
d[key] = list(d[key])
return d
def pre_order(tree, src, path): # src: vertex id
v = tree.getVertex(src)
path.append(src)
for n in v.getNeighbor().keys():
if n.getID() not in path:
pre_order(tree, n.getID(), path)
return
def parse_path(graph, path1):
final_path = []
starting_index = path1[0]
final_path.append(starting_index)
while len(path1) > 1:
first = path1[0]
second = path1[1]
vfirst = graph.getVertex(first)
vsecond = graph.getVertex(second)
if vsecond in vfirst.getNeighbor().keys():
final_path.append(second)
path1.pop(0)
else:
path, weight = dijsktra(graph, first, [second])
path.pop()
while len(path) > 0:
final_path.append(path.pop())
path1.pop(0)
lastpath, weight = dijsktra(graph, path1[0], [starting_index])
lastpath.pop()
while len(lastpath) > 0:
final_path.append(lastpath.pop())
return final_path
"""
======================================================================
No need to change any code below this line
======================================================================
"""
"""
Convert solution with path and dropoff_mapping in terms of indices
and write solution output in terms of names to path_to_file + file_number + '.out'
"""
def convertToFile(path, dropoff_mapping, path_to_file, list_locs):
string = ''
for node in path:
string += list_locs[node] + ' '
string = string.strip()
string += '\n'
dropoffNumber = len(dropoff_mapping.keys())
string += str(dropoffNumber) + '\n'
for dropoff in dropoff_mapping.keys():
strDrop = list_locs[dropoff] + ' '
for node in dropoff_mapping[dropoff]:
strDrop += list_locs[node] + ' '
strDrop = strDrop.strip()
strDrop += '\n'
string += strDrop
utils.write_to_file(path_to_file, string)
def solve_from_file(input_file, output_directory, params=[]):
print('Processing', input_file)
input_data = utils.read_file(input_file)
num_of_locations, num_houses, list_locations, list_houses, starting_car_location, adjacency_matrix = data_parser(
input_data)
car_path, drop_offs = solve(list_locations, list_houses, starting_car_location, adjacency_matrix, params=params)
basename, filename = os.path.split(input_file)
if not os.path.exists(output_directory):
os.makedirs(output_directory)
output_file = utils.input_to_output(input_file, output_directory)
convertToFile(car_path, drop_offs, output_file, list_locations)
def solve_all(input_directory, output_directory, params=[]):
input_files = utils.get_files_with_extension(input_directory, 'in')
for input_file in input_files:
solve_from_file(input_file, output_directory, params=params)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Parsing arguments')
parser.add_argument('--all', action='store_true',
help='If specified, the solver is run on all files in the input directory. Else, it is run on just the given input file')
parser.add_argument('input', type=str, help='The path to the input file or directory')
parser.add_argument('output_directory', type=str, nargs='?', default='.',
help='The path to the directory where the output should be written')
parser.add_argument('params', nargs=argparse.REMAINDER, help='Extra arguments passed in')
args = parser.parse_args()
output_directory = args.output_directory
if args.all:
input_directory = args.input
solve_all(input_directory, output_directory, params=args.params)
else:
input_file = args.input
solve_from_file(input_file, output_directory, params=args.params)