forked from arthurcerveira/Custom-Simulator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_formatter.py
277 lines (207 loc) · 8.83 KB
/
data_formatter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import numpy as np
import seaborn as sn
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.font_manager as fm
from matplotlib.backends.backend_pdf import PdfPages
from video_data import MODULES, MODULES_PREDICTION, BLOCK_SIZES
MODULES_LIST = MODULES # MODULES_PREDICTION
font = fm.FontProperties(size=7)
FILE_PATH = "automate_trace_output.txt"
MATRIX_INDEX = {
'128': 0,
'64': 1,
'32': 2,
'24': 3,
'16': 4,
'12': 5,
'8': 6,
'4': 7
}
class DataFormatter(object):
def __init__(self, file_path):
self.file_path = file_path
self.volume = {}
self.loads_stores = {}
self.block_size_info = {}
self.total_blocks = {}
def get_trace_data(self):
with open(self.file_path) as file:
# Pula o header
next(file)
for line in file:
# encoder,encoder cfg,title,resolution,search range,candidate blocks,accessed data,accessed data (GB)
encoder, encoder_cfg, title, _, _, _, _, volume, * \
_ = line.split(',')
self.volume.setdefault(title, {})
self.volume[title].setdefault(encoder_cfg, {})
self.volume[title][encoder_cfg].setdefault(encoder, [])
self.volume[title][encoder_cfg][encoder].append(float(volume))
@staticmethod
def get_title(config, title):
return title + " - " + config
def generate_trace_graph(self, volume, title, sr):
x = np.arange(len(sr)) # localização dos rotulos
width = 0.35 # largura das barras
fig, ax = plt.subplots()
rects1 = ax.bar(x - width / 2, volume["HEVC"], width, label='HEVC')
rects2 = ax.bar(x + width / 2, volume["VVC"], width, label='VVC')
ax.set_xlabel('Search Range')
ax.set_title(title)
ax.set_xticks(x)
ax.set_xticklabels(sr)
ax.legend(loc=2, fontsize=9)
ax.set_ylabel("Volume in GB")
self.auto_label(rects1, ax)
self.auto_label(rects2, ax)
fig.tight_layout()
# plt.show()
return fig
def get_vtune_data(self, modules_list):
with open(self.file_path) as file:
# Pula o header
next(file)
for line in file:
_, encoder_cfg, title, _, _, qp, metric, * \
modules = line.split(',')
self.loads_stores.setdefault(title, {})
self.loads_stores[title].setdefault(encoder_cfg, {})
self.loads_stores[title][encoder_cfg].setdefault(qp, {})
video_modules = self.loads_stores[title][encoder_cfg][qp]
for index in range(modules_list.__len__()):
video_modules.setdefault(modules_list[index], {"Loads": 0,
"Stores": 0})
video_modules[modules_list[index]][metric] = modules[index]
@staticmethod
def generate_vtune_graph(video_dict, video, encoder_cfg, qp, modules_list):
number_bars = modules_list.__len__()
loads = []
stores = []
for module in video_dict:
module = video_dict[module]
loads.append(int(module["Loads"]))
stores.append(int(module["Stores"]))
memory_access_total = sum(loads) + sum(stores)
loads = tuple(
map(lambda x: (x / memory_access_total) * 100, tuple(loads)))
stores = tuple(
map(lambda x: (x / memory_access_total) * 100, tuple(stores)))
ind = np.arange(number_bars)
width = 0.8
plt.xticks(rotation=27)
fig, ax = plt.subplots()
load_plot = ax.bar(ind, loads, width)
store_plot = ax.bar(ind, stores, width, bottom=loads)
ax.set_xlabel('Modules')
ax.set_ylabel('Percentages')
ax.set_title(
f"Memory Accesses - { video } - { encoder_cfg } - QP {qp}")
ax.set_xticks(ind)
ax.set_xticklabels(modules_list, fontproperties=font,
multialignment='center')
ax.legend((load_plot[0], store_plot[0]), ('Loads', 'Stores'))
fig.tight_layout()
return fig
def generate_matrix(self):
block_size_dict = {}
total_dict = {}
with open(self.file_path) as file:
# Pula o header
next(file)
for line in file:
# encoder,encoder cfg,title,resolution,search range,candidate blocks,accessed data,data (GB),blocks
encoder, cfg, title, _, _, _, _, _, *blocks = line.split(',')
block_size_dict.setdefault(title, {})
block_size_dict[title].setdefault(encoder, {})
block_size_dict[title][encoder].setdefault(
cfg, np.zeros((8, 8)))
matrix = block_size_dict[title][encoder][cfg]
total_dict.setdefault(title, {})
total_dict[title].setdefault(encoder, {})
total_dict[title][encoder].setdefault(cfg, 0)
block_index = 0
for block in BLOCK_SIZES:
hor_size, ver_size = block.split('x')
block_value = int(float(blocks[block_index]))
block_counter = block_value * int(hor_size) * int(ver_size)
index = MATRIX_INDEX[hor_size]
column = MATRIX_INDEX[ver_size]
matrix[index][column] += block_counter
total_dict[title][encoder][cfg] += block_counter
block_index += 1
block_size_dict[title][encoder][cfg] = matrix
self.total_blocks = total_dict
self.block_size_info = block_size_dict
@staticmethod
def generate_block_graph(title, encoder, cfg, matrix):
df_cm = pd.DataFrame(matrix, index=[i for i in MATRIX_INDEX],
columns=[i for i in MATRIX_INDEX])
fig, ax = plt.subplots()
heat_map = sn.heatmap(df_cm, annot=True, fmt='.2f',
linewidths=0.01, linecolor='white')
for text in ax.texts:
if text.get_text() == "0.00":
text.set_text(None)
bottom, top = heat_map.get_ylim()
heat_map.set_ylim(bottom + 0.5, top - 0.5)
ax.set_title(
f'Inter access per CU Size - { title } - { encoder } - { cfg }')
ax.set_ylabel('Vertical Dimension')
ax.set_xlabel('Horizontal Dimension')
fig.tight_layout()
return fig
@staticmethod
def auto_label(rects, ax):
for rect in rects:
height = rect.get_height()
ax.annotate('{}'.format(height),
xy=(rect.get_x() + rect.get_width() / 2, height),
xytext=(0, 0),
textcoords="offset points",
ha='center', va='bottom')
def generate_trace_graph(path):
from custom_simulator import SEARCH_RANGE
data_formatter = DataFormatter(path)
data_formatter.get_trace_data()
figs = list()
for title, video_data in data_formatter.volume.items():
for cfg, volume in video_data.items():
graph_title = data_formatter.get_title(title, cfg)
figs.append(data_formatter.generate_trace_graph(
volume, graph_title, SEARCH_RANGE))
with PdfPages('trace_graphs.pdf') as pdf:
for fig in figs:
pdf.savefig(fig)
def generate_vtune_graph(path):
data_formatter = DataFormatter(path)
data_formatter.get_vtune_data(MODULES_LIST)
figs = list()
for title, video_dict in data_formatter.loads_stores.items():
for encoder_cfg, qp_dict in video_dict.items():
for qp, data in qp_dict.items():
figs.append(data_formatter.generate_vtune_graph(
data, title, encoder_cfg, qp, MODULES_LIST))
with PdfPages('vtune_graphs.pdf') as pdf:
for fig in figs:
pdf.savefig(fig)
def generate_block_graph(path):
data_formatter = DataFormatter(path)
data_formatter.generate_matrix()
figs = list()
for title, encoder_dict in data_formatter.block_size_info.items():
for encoder, cfg_dict in encoder_dict.items():
for cfg, matrix in cfg_dict.items():
total = data_formatter.total_blocks[title][encoder][cfg]
# Convert to percentage
for i in range(8):
matrix[i] = list(
map(lambda x: (x / total) * 100, matrix[i]))
figs.append(data_formatter.generate_block_graph(
title, encoder, cfg, matrix))
with PdfPages('block_mem_graphs.pdf') as pdf:
for fig in figs:
pdf.savefig(fig)
if __name__ == "__main__":
# generate_trace_graph(FILE_PATH)
generate_vtune_graph("Vtune-Predictions.csv")
# generate_block_graph(FILE_PATH)