forked from Sana-Rasheed/Scripts_of_Python_Programming_Book
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChapter_19th.py
88 lines (70 loc) · 3.24 KB
/
Chapter_19th.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# Example 1
import numpy as np
mat = np.array([[1,2,3], [4,5,6], [7,8,9]])
print('The shape of mat is:', mat.shape)
# Output: The shape of mat is: (3, 3)
# Example 2
# It can be reshaped to any shape that is consistent with the data size
new_mat = mat.reshape(1,9)
print('The shape of new_mat is:', new_mat.shape)
# Output: The shape of new_mat is: (1, 9)
# Example 3
# you can try transposing it as well.
trans_new_mat = new_mat.T
print('The transposed shape of new_mat is:', trans_new_mat.shape)
# Output: The transposed shape of new_mat is: (9, 1)
# Example 4
# you can create diagonal matrices, identity matrices
diag = np.diag([1,2,3,4])
identity = np.identity(10) # creates a 10 x 10 matrix with ones at diagonals and rest zeros
# Example 5
# you can create arrays of random numbers or sequences
seq = np.arange(start=0, stop=100, step=5) # creates an array starting from 0, with a step size of 5 till 100. [0,5,10,....,90,95]
# Example 6
# If you only pass np.random.rand(10), it creates a 1D vector of length 10
rands_1d = np.random.rand(10)
rands_2d = np.random.rand(10, 10) # creates 10x10 matrix with random numbers.
# Example 7
my_array = np.array([1,3,5,7,23,6,2,31,5])
# you can find min and max and min as well as the index of max number or min number
print('The max is {} at index {}'.format(my_array.max(), my_array.argmax()))
# Output:The max is 31 at index 7
print('The min is {} at index {}'.format(my_array.min(), my_array.argmin()))
# Output: The min is 1 at index 0
# Example 8
import time
# you can perform dot products of matrices in a matter of seconds
my_mat = np.random.rand(1000, 1000)
another_mat = np.random.rand(1000, 1000)
start = time.time()
# make sure the dimensions agree!
dot_mul = my_mat.dot(another_mat)
end = time.time()
print('It took {} seconds to calculate dot product!'.format(round(end-start, 4)))
# Output: It took 11.0579 seconds to calculate dot product!
start = time.time()
prod = my_mat * another_mat
end = time.time()
print('It took {} seconds to manully calculate dot product!'.format(round(end-start, 4)))
# Output: It took 0.026 seconds to calculate dot product!
# Example 9
import numpy as np # linear algebra
import numpy.linalg as la
my_mat = np.array([[1,2], [3,4]])
# calculate determinant
det = la.det(my_mat)
print('Det: ', det)
inverse_mat = la.inv(my_mat)
# calculate inverse of a matrix. Inv = adj(matrix)/det(matrix). NOTE: Make sure its not SINGULAR!
print('Inverse_mat: ', inverse_mat)
# calculate eigen values. NOTE: make sure the matrix is SQUARE [eigen values do not exit
# for matrix whose dimensions are mxn where m!=n]
eig_values, eig_vectors = la.eig(my_mat)
print('Eigen values: ', eig_values, eig_vectors)
# calculate cholesky factorization. NOTE: make sure matrix is Positive Definite!
cholesky = la.cholesky(np.array([[7,2], [2,1]]))
print('Cholesky: ', cholesky)
# calculate rank of a matrix. Rank of a matrix is the number of linearly
# independent columns/rows in a matrix.#
rank = la.matrix_rank(my_mat)
print('Rank: ', rank)