-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathslurm_deepspeed_train.py
233 lines (192 loc) · 8.62 KB
/
slurm_deepspeed_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import warnings
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
import tensorflow as tf
tf.config.set_visible_devices(devices=[], device_type='GPU')
import numpy as np
import torch
import models.UniAct_V1
from utils import MultiDataIterMetricLogger
from data.OXE.dataset import create_OXE_datasets
from data.AIRData.multi_view_dataset import create_air_datasets
from pathlib import Path
from tensorboardX import SummaryWriter
import datetime
import argparse
import utils
import subprocess
import logging
import random
import deepspeed
import time
from timm.models import create_model
def get_args_parser():
parser = argparse.ArgumentParser('training script', add_help=False)
# Base Settings
parser.add_argument('--recipe', default='UniAct-1.0', type=str)
parser.add_argument('--model', default="UniAct_05B_CodeBook_256_V1", type=str)
parser.add_argument('--batch-size', default=2, type=int)
parser.add_argument('--grad_accumulation_steps', default=1, type=int)
parser.add_argument('--iters', default=1e6, type=int)
parser.add_argument('--initial_t', default=2.0, type=float)
parser.add_argument('--final_t', default=0.1, type=float)
# Optimizer parameters
parser.add_argument('--precision', default="bf16")
parser.add_argument("--weight_decay", default=0., type=float)
parser.add_argument("--beta1", default=0.9, type=float)
parser.add_argument("--beta2", default=0.95, type=float)
# Learning rate schedule parameters
parser.add_argument('--lr', type=float, default=1e-5, metavar='LR',
help='learning rate (default: 5e-4)')
# Resume & Checkpoint Save & evaluation parameters
parser.add_argument('--save_interval', default=10000, type=int,
help='(default: 10000iter)')
parser.add_argument('--output_dir', default='runnings/',
help='path where to save, empty for no saving')
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_iters', default=0, type=int, metavar='N',
help='start epoch')
# DataLoader parameters
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--port', default=29529, type=int, help='port')
return parser
def main(args):
output_dir = Path(args.output_dir)
tb_logger = None
if args.rank == 0:
tensorboard_path = os.path.join(output_dir, 'events')
tb_logger = SummaryWriter(tensorboard_path)
utils.init_log(__name__, log_file=os.path.join(output_dir, 'full_log.txt'), rank=args.rank)
logger = logging.getLogger(__name__)
print = logger.info
print(args)
print('| distributed init (rank {}): {}, gpu {}'.format(
args.rank, args.dist_url, args.gpu))
seed = args.seed + args.rank
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
tf.random.set_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
print('========== init model and dataset ==========')
model = create_model(args.model,
max_steps = args.iters,
start_iters = args.start_iters,
initial_t = args.initial_t,
final_t = args.final_t).cuda()
if args.resume:
ckpt = torch.load(args.resume, map_location="cpu")
if 'module' in ckpt.keys():
ckpt = ckpt['module']
new_state_dict = {}
model_state_dict = model.state_dict()
for key, value in ckpt.items():
if key not in model_state_dict: continue
if model_state_dict[key].shape != value.shape: continue
new_state_dict[key] = value
print(model.load_state_dict(new_state_dict, strict=False))
print("==========resume training from {}==========".format(args.resume))
### init OXE dataset
oxe_sample_weight_dict, oxe_dataloader_dict = create_OXE_datasets(
batch_size=args.batch_size,
action_chunk_length=4,
use_recipe=args.recipe)
print(oxe_sample_weight_dict.keys())
print("==========OXE dataset initialized==========")
### init AIR dataset
air_sample_weight_dict, air_dataloader_dict = create_air_datasets(
num_tasks = args.world_size,
global_rank = args.rank,
batch_size=args.batch_size,
action_chunk_length=4,
use_recipe=args.recipe)
print(air_sample_weight_dict.keys())
print("==========AIR dataset initialized==========")
sample_weight_dict = {**air_sample_weight_dict, **oxe_sample_weight_dict}
dataloader_dict = {**air_dataloader_dict, **oxe_dataloader_dict}
ds_config = {
"train_micro_batch_size_per_gpu": args.batch_size,
"gradient_accumulation_steps": args.grad_accumulation_steps,
"optimizer": {
"type": "Adam",
"params": {
"lr": args.lr,
"weight_decay": args.weight_decay,
"betas": (args.beta1, args.beta2),
},
},
"fp16": {
"enabled": args.precision == "fp16",
},
"bf16": {
"enabled": args.precision == "bf16",
},
"gradient_clipping": 1.0,
"zero_optimization": {
"stage": 0
},
}
print('========== init deepspeed ==========')
model_engine, _, _, _ = deepspeed.initialize(
model=model,
model_parameters=model.parameters(),
config=ds_config
)
print(f"========== iters start from {args.start_iters} ==========")
start_time = time.time()
global_idx = args.start_iters
metric_logger = MultiDataIterMetricLogger(delimiter=" ")
model_engine.train()
for batch, domain_name in metric_logger.log_every(args.iters, sample_weight_dict, dataloader_dict, 10):
inputs = {'inputs': batch['inputs'].to('cuda', torch.bfloat16, non_blocking=True),
'images': batch['images'].to('cuda', torch.bfloat16, non_blocking=True),
'action': batch['action'].to('cuda', torch.bfloat16, non_blocking=True),
'action_mask': batch['action_mask'].to('cuda', torch.bfloat16, non_blocking=True)}
if 'proprios' in batch.keys():
inputs['proprios'] = batch['proprios'].to('cuda', torch.bfloat16, non_blocking=True)
loss, outputs = model_engine(domain_name=domain_name,
log_file = os.path.join(output_dir, 'code.log'),
**inputs)
model_engine.backward(loss)
model_engine.step()
metric_logger.update(**outputs)
if tb_logger is not None and deepspeed.dist.get_rank() == 0 and global_idx % 50 == 0:
for k, meter in metric_logger.meters.items():
tb_logger.add_scalar('train/{}_val'.format(k), meter.value, global_idx)
if global_idx % args.save_interval == 0 and global_idx != 0:
deepspeed.dist.barrier()
model_engine.save_checkpoint(os.path.join(output_dir, f"ckpt"))
global_idx += 1
deepspeed.dist.barrier()
model_engine.save_checkpoint(os.path.join(output_dir, f"ckpt"))
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
def slurm_env_init(args):
args.rank = int(os.environ['SLURM_PROCID'])
args.gpu = args.rank % torch.cuda.device_count()
args.world_size = int(os.environ['SLURM_NTASKS'])
node_list = os.environ['SLURM_NODELIST']
num_gpus = torch.cuda.device_count()
addr = subprocess.getoutput(
f'scontrol show hostname {node_list} | head -n1')
os.environ['MASTER_PORT'] = str(getattr(args, 'port', '29529'))
os.environ['MASTER_ADDR'] = addr
os.environ['WORLD_SIZE'] = str(args.world_size)
os.environ['LOCAL_RANK'] = str(args.rank % num_gpus)
os.environ['RANK'] = str(args.rank)
torch.cuda.set_device(args.gpu)
return args
if __name__ == '__main__':
parser = argparse.ArgumentParser('training script', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(slurm_env_init(args))