Skip to content

Commit 8dce210

Browse files
committed
Margin.
1 parent 220046b commit 8dce210

File tree

1 file changed

+41
-35
lines changed

1 file changed

+41
-35
lines changed

index.md

+41-35
Original file line numberDiff line numberDiff line change
@@ -30,8 +30,14 @@ layout: default
3030
p {
3131
margin-top: 40px; /* 设置段落顶部的间距 */
3232
margin-bottom: 20px; /* 设置段落底部的间距 */
33-
text-align: center;
33+
text-align: left;
3434
}
35+
/* 居中对齐的段落 */
36+
.center {
37+
margin-top: 40px; /* 设置段落顶部的间距 */
38+
margin-bottom: 20px; /* 设置段落底部的间距 */
39+
text-align: center;
40+
}
3541

3642
.custom-button i {
3743
margin-right: 8px; /* 可选:给图标和文本之间添加间距 */
@@ -87,13 +93,13 @@ The recent advances in information technology and artificial intelligence have f
8793

8894
<br><br>
8995

90-
<center>
96+
<p class="center">
9197
<span class="m-text">
9298
<b>Method</b>
9399
</span>
94-
</center>
100+
</p>
95101
<!-- <br><br> -->
96-
<p>
102+
<p class="center">
97103
<span class="s-text">
98104
The physics-informed offline RL framework for energy-efficient DC cooling control
99105
</span>
@@ -107,16 +113,16 @@ The physics-informed offline RL framework for energy-efficient DC cooling contro
107113

108114
<br><br>
109115

110-
<center>
116+
<p class="center">
111117
<span class="m-text">
112118
<b>
113119
Experimental Results
114120
</b>
115121
</span>
116-
</center>
122+
</p>
117123
<!-- <br><br> -->
118124

119-
<p>
125+
<p class="center">
120126
<span class="s-text">
121127
Significant energy efficiency improvement
122128
</span>
@@ -127,7 +133,7 @@ Comparison of conventional PID control and our approach under comparable server
127133

128134
<!-- <br><br> -->
129135

130-
<p>
136+
<p class="center">
131137
<span class="s-text">
132138
Control quality
133139
</span>
@@ -150,7 +156,7 @@ We conducted two 24-hour experiments in the production DC environment to compare
150156
</div>
151157
</div>
152158

153-
<br><br>
159+
<!-- <br><br> -->
154160

155161
We conducted consecutive 48-hour experiments to compare the control behaviors of our method and the PID controllers in Server Room B with fluctuating server loads.
156162

@@ -160,7 +166,7 @@ We conducted consecutive 48-hour experiments to compare the control behaviors of
160166

161167
![detailed_comp](./doc/detailed_comp.png)
162168
<!-- <center> -->
163-
<p>
169+
<p class="center">
164170
Comparisons of key system metrics and the controllable actions of our method and the PID controller over 2-day testing periods in Server Room B. Figures on the left show results from the PID-controlled period (May 13-15, 2024), and figures on the right are the results controlled by our method (June 29- July 1, 2024).
165171
</p>
166172
<!-- </center> -->
@@ -181,13 +187,13 @@ To verify the long-term robustness and energy-saving effectiveness of our method
181187

182188
![long_term](./doc/long_term_exp.png)
183189

184-
<center>
190+
<p class="center">
185191
Results of the 14-day long-term experiments in Server Room B. <b>a</b>, ACLF values under different total server loads. <b>b, c,</b> Temperature distribution of the directly influenced hot and cold aisles.
186-
</center>
192+
</p>
187193

188194
<!-- <br><br> -->
189195

190-
<p>
196+
<p class="center">
191197
<span class="s-text">
192198
Impact of the number of controlled ACUs
193199
</span>
@@ -197,13 +203,13 @@ We also conducted additional experiments with our model controlling 1 to all ACU
197203

198204
![acu_num](./doc/acu_num_vary.png)
199205

200-
<center>
206+
<p class="center">
201207
The energy-saving impact of controlling different numbers of ACUs through our approach.
202-
</center>
208+
</p>
203209

204210
<!-- <br><br> -->
205211

206-
<p>
212+
<p class="center">
207213
<span class="s-text">
208214
Good adaptability under drastic server load fluctuation
209215
</span>
@@ -213,13 +219,13 @@ To further evaluate the adaptability and load-awareness of our method, we tested
213219

214220
![load_fluctuate](./doc/load_fluctuate.png)
215221

216-
<center>
222+
<p class="center">
217223
ACU control behaviors of our method and the PID controller under drastic server load fluctuation. <b>a,</b> Load variation pattern of three server racks (Rack C, D, E) during the selected time period, with one server rack having a drastic load drop and increase. <b>b,</b> Temperature readings from the three most relevant cold aisle sensors.<b>c, d,</b> The variations in fan speed and valve opening for two ACUs during the time period, with one controlled by the PID controller (ACU 1-1) and the other by our method (ACU 1-2).
218-
</center>
224+
</p>
219225

220226
<!-- <br><br> -->
221227

222-
<p>
228+
<p class="center">
223229
<span class="s-text">
224230
Comparative evaluation against baseline methods
225231
</span>
@@ -231,23 +237,23 @@ We compare our method with competing baseline methods including conventional ind
231237

232238
![baseline](./doc/testbed_baseline_exp.png)
233239

234-
<center>
240+
<p class="center">
235241
Comparative evaluation of our method against baseline methods on our real-world testbed.
236-
</center>
242+
</p>
237243

238244
<br><br>
239245

240-
<center>
246+
<p class="center">
241247
<span class="m-text">
242248
<b>
243249
System deployment in real-world
244250
</b>
245251
</span>
246-
</center>
252+
</p>
247253

248254
<!-- <br><br> -->
249255

250-
<p>
256+
<p class="center">
251257
<span class="s-text">
252258
Overall architecture of the deployment system
253259
</span>
@@ -265,7 +271,7 @@ We have developed a full-function software system to facilitate the deployment a
265271

266272
<!-- <br><br> -->
267273

268-
<p>
274+
<p class="center">
269275
<span class="s-text">
270276
Real-world testing environments
271277
</span>
@@ -278,11 +284,11 @@ Real-world testing environments
278284
<img src="./doc/dc_structure.png" alt="system" style="width: 80%;">
279285
</div>
280286

281-
<center>
287+
<p class="center">
282288
<b>a,</b> Photographs of the interior of a server room, showcasing the hot aisle, cold aisle, and server racks from left to right. <b>b,</b> Overhead panoramic view of a server room, illustrating the spatial arrangement of all pertinent equipment.
283-
</center>
289+
</p>
284290

285-
<br><br>
291+
<!-- <br><br> -->
286292

287293
- **Real-world testbed**
288294

@@ -293,13 +299,13 @@ Real-world testing environments
293299
<img src="./doc/testbed_scene_structure.png" alt="system" style="width: 80%;">
294300
</div>
295301

296-
<center>
302+
<p class="center">
297303
<b>a</b>, Illustration of the installed temperature and humidity sensors in our testbed. <b>b,</b> Layout illustration of the testbed.
298-
</center>
304+
</p>
299305

300306
<!-- <br><br> -->
301307

302-
<p>
308+
<p class="center">
303309
<span class="s-text">
304310
Historical dataset distributions
305311
</span>
@@ -309,19 +315,19 @@ Below shows the historical dataset distributions collected from our real-world t
309315

310316
![testbed_data](./doc/testbed_state.jpg)
311317

312-
<center>
318+
<p class="center">
313319
Distributions of the state and action features in our historical dataset collected from the real-world DC testbed.
314-
</center>
320+
</p>
315321

316322
<br><br>
317323

318-
<center>
324+
<p class="center">
319325
<span class="m-text">
320326
<b>
321327
Citation (BibTeX)
322328
</b>
323329
</span>
324-
</center>
330+
</p>
325331

326332
```
327333
@inproceedings{

0 commit comments

Comments
 (0)