You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardexpand all lines: index.md
+41-35
Original file line number
Diff line number
Diff line change
@@ -30,8 +30,14 @@ layout: default
30
30
p {
31
31
margin-top: 40px; /* 设置段落顶部的间距 */
32
32
margin-bottom: 20px; /* 设置段落底部的间距 */
33
-
text-align: center;
33
+
text-align: left;
34
34
}
35
+
/* 居中对齐的段落 */
36
+
.center {
37
+
margin-top: 40px; /* 设置段落顶部的间距 */
38
+
margin-bottom: 20px; /* 设置段落底部的间距 */
39
+
text-align: center;
40
+
}
35
41
36
42
.custom-buttoni {
37
43
margin-right: 8px; /* 可选:给图标和文本之间添加间距 */
@@ -87,13 +93,13 @@ The recent advances in information technology and artificial intelligence have f
87
93
88
94
<br><br>
89
95
90
-
<center>
96
+
<pclass="center">
91
97
<spanclass="m-text">
92
98
<b>Method</b>
93
99
</span>
94
-
</center>
100
+
</p>
95
101
<!-- <br><br> -->
96
-
<p>
102
+
<pclass="center">
97
103
<spanclass="s-text">
98
104
The physics-informed offline RL framework for energy-efficient DC cooling control
99
105
</span>
@@ -107,16 +113,16 @@ The physics-informed offline RL framework for energy-efficient DC cooling contro
107
113
108
114
<br><br>
109
115
110
-
<center>
116
+
<pclass="center">
111
117
<spanclass="m-text">
112
118
<b>
113
119
Experimental Results
114
120
</b>
115
121
</span>
116
-
</center>
122
+
</p>
117
123
<!-- <br><br> -->
118
124
119
-
<p>
125
+
<pclass="center">
120
126
<spanclass="s-text">
121
127
Significant energy efficiency improvement
122
128
</span>
@@ -127,7 +133,7 @@ Comparison of conventional PID control and our approach under comparable server
127
133
128
134
<!-- <br><br> -->
129
135
130
-
<p>
136
+
<pclass="center">
131
137
<spanclass="s-text">
132
138
Control quality
133
139
</span>
@@ -150,7 +156,7 @@ We conducted two 24-hour experiments in the production DC environment to compare
150
156
</div>
151
157
</div>
152
158
153
-
<br><br>
159
+
<!-- <br><br> -->
154
160
155
161
We conducted consecutive 48-hour experiments to compare the control behaviors of our method and the PID controllers in Server Room B with fluctuating server loads.
156
162
@@ -160,7 +166,7 @@ We conducted consecutive 48-hour experiments to compare the control behaviors of
160
166
161
167

162
168
<!-- <center> -->
163
-
<p>
169
+
<pclass="center">
164
170
Comparisons of key system metrics and the controllable actions of our method and the PID controller over 2-day testing periods in Server Room B. Figures on the left show results from the PID-controlled period (May 13-15, 2024), and figures on the right are the results controlled by our method (June 29- July 1, 2024).
165
171
</p>
166
172
<!-- </center> -->
@@ -181,13 +187,13 @@ To verify the long-term robustness and energy-saving effectiveness of our method
181
187
182
188

183
189
184
-
<center>
190
+
<pclass="center">
185
191
Results of the 14-day long-term experiments in Server Room B. <b>a</b>, ACLF values under different total server loads. <b>b, c,</b> Temperature distribution of the directly influenced hot and cold aisles.
186
-
</center>
192
+
</p>
187
193
188
194
<!-- <br><br> -->
189
195
190
-
<p>
196
+
<pclass="center">
191
197
<spanclass="s-text">
192
198
Impact of the number of controlled ACUs
193
199
</span>
@@ -197,13 +203,13 @@ We also conducted additional experiments with our model controlling 1 to all ACU
197
203
198
204

199
205
200
-
<center>
206
+
<pclass="center">
201
207
The energy-saving impact of controlling different numbers of ACUs through our approach.
202
-
</center>
208
+
</p>
203
209
204
210
<!-- <br><br> -->
205
211
206
-
<p>
212
+
<pclass="center">
207
213
<spanclass="s-text">
208
214
Good adaptability under drastic server load fluctuation
209
215
</span>
@@ -213,13 +219,13 @@ To further evaluate the adaptability and load-awareness of our method, we tested
213
219
214
220

215
221
216
-
<center>
222
+
<pclass="center">
217
223
ACU control behaviors of our method and the PID controller under drastic server load fluctuation. <b>a,</b> Load variation pattern of three server racks (Rack C, D, E) during the selected time period, with one server rack having a drastic load drop and increase. <b>b,</b> Temperature readings from the three most relevant cold aisle sensors.<b>c, d,</b> The variations in fan speed and valve opening for two ACUs during the time period, with one controlled by the PID controller (ACU 1-1) and the other by our method (ACU 1-2).
218
-
</center>
224
+
</p>
219
225
220
226
<!-- <br><br> -->
221
227
222
-
<p>
228
+
<pclass="center">
223
229
<spanclass="s-text">
224
230
Comparative evaluation against baseline methods
225
231
</span>
@@ -231,23 +237,23 @@ We compare our method with competing baseline methods including conventional ind
231
237
232
238

233
239
234
-
<center>
240
+
<pclass="center">
235
241
Comparative evaluation of our method against baseline methods on our real-world testbed.
236
-
</center>
242
+
</p>
237
243
238
244
<br><br>
239
245
240
-
<center>
246
+
<pclass="center">
241
247
<spanclass="m-text">
242
248
<b>
243
249
System deployment in real-world
244
250
</b>
245
251
</span>
246
-
</center>
252
+
</p>
247
253
248
254
<!-- <br><br> -->
249
255
250
-
<p>
256
+
<pclass="center">
251
257
<spanclass="s-text">
252
258
Overall architecture of the deployment system
253
259
</span>
@@ -265,7 +271,7 @@ We have developed a full-function software system to facilitate the deployment a
<b>a,</b> Photographs of the interior of a server room, showcasing the hot aisle, cold aisle, and server racks from left to right. <b>b,</b> Overhead panoramic view of a server room, illustrating the spatial arrangement of all pertinent equipment.
0 commit comments