forked from t6-thu/H2Oplus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconservative_sac_main.py
235 lines (193 loc) · 9.46 KB
/
conservative_sac_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import os
import time
import ipdb
import sys
from copy import deepcopy
import uuid
from tqdm import trange
import numpy as np
import pprint
import gym
import robel
import torch
import d4rl
import h5py
import pickle
import json
import wandb
import absl.app
import absl.flags
from conservative_sac import ConservativeSAC
from replay_buffer import batch_to_torch, get_d4rl_dataset, subsample_batch
from model import TanhGaussianPolicy, FullyConnectedQFunction, SamplerPolicy
from sampler import StepSampler, TrajSampler
from utils import Timer, WandBLogger, define_flags_with_default, set_random_seed, print_flags, get_user_flags, prefix_metrics
sys.path.append("..")
from viskit.logging import logger, setup_logger
FLAGS_DEF = define_flags_with_default(
name_str='_',
env='halfcheetah-medium-replay',
max_traj_length=1000,
seed=42,
device='cuda',
save_model=False,
batch_size=256,
reward_scale=1.0,
reward_bias=0.0,
clip_action=1,
real_residual_ratio=1.,
policy_arch='256-256',
qf_arch='256-256',
orthogonal_init=False,
policy_log_std_multiplier=1.0,
policy_log_std_offset=-1.0,
n_epochs=1000,
bc_epochs=0,
n_train_step_per_epoch=1000,
eval_period=10,
eval_n_trajs=5,
cql=ConservativeSAC.get_default_config(),
logging=WandBLogger.get_default_config(),
)
def main(argv):
FLAGS = absl.flags.FLAGS
variant = get_user_flags(FLAGS, FLAGS_DEF)
wandb_logger = WandBLogger(config=FLAGS.logging, variant=variant)
wandb.run.name = f"{FLAGS.name_str}{FLAGS.real_residual_ratio}xdata_{FLAGS.env}_seed={FLAGS.seed}"
setup_logger(
variant=variant,
exp_id=wandb_logger.experiment_id,
seed=FLAGS.seed,
base_log_dir=FLAGS.logging.output_dir,
include_exp_prefix_sub_dir=False
)
set_random_seed(FLAGS.seed)
# dataset = get_d4rl_dataset(eval_sampler.env)
if FLAGS.env == "DKittyWalkRandom":
folder_paths = ["../d4rl_mujoco_dataset/DKitty_replay_buffer_169398/target_1m", "../d4rl_mujoco_dataset/DKitty_replay_buffer_169398/target_2m"]
all_json_data = []
# Load data from DKitty Json files in both folders
for folder_path in folder_paths:
for filename in os.listdir(folder_path):
if filename.endswith(".json"):
file_path = os.path.join(folder_path, filename)
with open(file_path, 'r') as json_file:
print(file_path)
json_data = json.load(json_file)
all_json_data.extend(json_data)
# Flatten the JSON data
# flat_all_json_data = [item for sublist in all_json_data for item in sublist]
# Calculate the total number of data points
total_num = len(all_json_data)
# Generate random indices and sort them
idx = np.sort(np.random.choice(range(total_num), int(total_num * FLAGS.real_residual_ratio), replace=False))
data = {}
# Load data based on the sorted indices
data['observations'] = np.array([all_json_data[i]["state"] for i in idx]).astype(np.float32)
data['actions'] = np.array([all_json_data[i]["action"] for i in idx]).astype(np.float32)
data['rewards'] = np.array([all_json_data[i]["reward"] for i in idx]).astype(np.float32).reshape(-1, 1)
data["next_observations"] = np.array([all_json_data[i]["next_state"] for i in idx]).astype(np.float32)
data['terminals'] = np.array([all_json_data[i]["done"] for i in idx]).astype(np.bool).reshape(-1, 1)
eval_sampler = TrajSampler(gym.make(FLAGS.env+'-v0').unwrapped, FLAGS.max_traj_length)
elif FLAGS.env == "Humanoid":
# with open("../d4rl_mujoco_dataset/{}-v2.pickle".format(FLAGS.env), "rb") as f:
with open("../d4rl_mujoco_dataset/dataset_1934657_r6077.33_s0.00.pickle", "rb") as f:
# dataset = pickle.load(f)
try:
# load complete file
dataset = pickle.load(f)
except pickle.UnpicklingError:
# if loading fails, go back to beginning
f.seek(0)
# load data before truncated
dataset = pickle.load(f)
total_num = len(dataset)
# ratio = 0.1 #* how much ratio of data to extract
idx = sorted(np.random.choice(range(total_num), int(total_num * FLAGS.real_residual_ratio), replace=False))
data = {}
data['observations'] = np.array([dataset[i][0] for i in idx]).astype(np.float32) # An (N, dim_observation)-dimensional numpy array of observations
data['actions'] = np.array([dataset[i][1] for i in idx]).astype(np.float32) # An (N, dim_action)-dimensional numpy array of actions
data['rewards'] = np.expand_dims(np.array([dataset[i][2] for i in idx]).astype(np.float32), axis=1) # An (N,)-dimensional numpy array of rewards
data["next_observations"] = np.array([dataset[i][3] for i in idx]).astype(np.float32) # An (N, dim_observation)-dimensional numpy array of next observations
data['terminals'] = np.expand_dims(np.array([dataset[i][4] for i in idx]), axis=1) # An (N,)-dimensional numpy array of terminal flags
# data['observations'] = dataset['observations'][idx, :]
# data['actions'] = dataset['actions'][idx, :]
# data['next_observations'] = dataset['next_observations'][idx, :]
# data['rewards'] = dataset['rewards'][idx]
# data['terminals'] = dataset['terminals'][idx]
data['rewards'] = data['rewards'] * FLAGS.reward_scale + FLAGS.reward_bias
data['actions'] = np.clip(data['actions'], -FLAGS.clip_action, FLAGS.clip_action)
eval_sampler = TrajSampler(gym.make(FLAGS.env+'-v2').unwrapped, FLAGS.max_traj_length)
else:
dataset = h5py.File("../d4rl_mujoco_dataset/{}-v2.hdf5".format(FLAGS.env.replace('-',"_")),"r")
total_num = dataset['observations'].shape[0]
idx = sorted(np.random.choice(range(total_num), int(total_num * FLAGS.real_residual_ratio), replace=False))
data = {}
data['observations'] = dataset['observations'][idx, :]
data['actions'] = dataset['actions'][idx, :]
data['next_observations'] = dataset['next_observations'][idx, :]
data['rewards'] = dataset['rewards'][idx]
data['terminals'] = dataset['terminals'][idx]
data['rewards'] = data['rewards'] * FLAGS.reward_scale + FLAGS.reward_bias
data['actions'] = np.clip(data['actions'], -FLAGS.clip_action, FLAGS.clip_action)
eval_sampler = TrajSampler(gym.make(FLAGS.env+'-v2').unwrapped, FLAGS.max_traj_length)
policy = TanhGaussianPolicy(
eval_sampler.env.observation_space.shape[0],
eval_sampler.env.action_space.shape[0],
arch=FLAGS.policy_arch,
log_std_multiplier=FLAGS.policy_log_std_multiplier,
log_std_offset=FLAGS.policy_log_std_offset,
orthogonal_init=FLAGS.orthogonal_init,
)
qf1 = FullyConnectedQFunction(
eval_sampler.env.observation_space.shape[0],
eval_sampler.env.action_space.shape[0],
arch=FLAGS.qf_arch,
orthogonal_init=FLAGS.orthogonal_init,
)
target_qf1 = deepcopy(qf1)
qf2 = FullyConnectedQFunction(
eval_sampler.env.observation_space.shape[0],
eval_sampler.env.action_space.shape[0],
arch=FLAGS.qf_arch,
orthogonal_init=FLAGS.orthogonal_init,
)
target_qf2 = deepcopy(qf2)
if FLAGS.cql.target_entropy >= 0.0:
FLAGS.cql.target_entropy = -np.prod(eval_sampler.env.action_space.shape).item()
sac = ConservativeSAC(FLAGS.cql, policy, qf1, qf2, target_qf1, target_qf2)
sac.torch_to_device(FLAGS.device)
sampler_policy = SamplerPolicy(policy, FLAGS.device)
viskit_metrics = {}
for epoch in trange(FLAGS.n_epochs):
metrics = {'epoch': epoch}
with Timer() as train_timer:
for batch_idx in trange(FLAGS.n_train_step_per_epoch):
batch = subsample_batch(data, FLAGS.batch_size)
batch = batch_to_torch(batch, FLAGS.device)
metrics.update(prefix_metrics(sac.train(batch, bc=epoch < FLAGS.bc_epochs), 'sac'))
with Timer() as eval_timer:
if epoch == 0 or (epoch + 1) % FLAGS.eval_period == 0:
trajs = eval_sampler.sample(
sampler_policy, FLAGS.eval_n_trajs, deterministic=True
)
metrics['average_return'] = np.mean([np.sum(t['rewards']) for t in trajs])
metrics['average_traj_length'] = np.mean([len(t['rewards']) for t in trajs])
# metrics['average_normalizd_return'] = np.mean(
# [eval_sampler.env.get_normalized_score(np.sum(t['rewards'])) for t in trajs]
# )
if FLAGS.save_model:
save_data = {'sac': sac, 'variant': variant, 'epoch': epoch}
wandb_logger.save_pickle(save_data, 'model.pkl')
metrics['train_time'] = train_timer()
metrics['eval_time'] = eval_timer()
metrics['epoch_time'] = train_timer() + eval_timer()
wandb_logger.log(metrics)
viskit_metrics.update(metrics)
logger.record_dict(viskit_metrics)
logger.dump_tabular(with_prefix=False, with_timestamp=False)
if FLAGS.save_model:
save_data = {'sac': sac, 'variant': variant, 'epoch': epoch}
wandb_logger.save_pickle(save_data, 'model.pkl')
if __name__ == '__main__':
absl.app.run(main)