forked from t6-thu/H2Oplus
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSample_from_dataset.py
76 lines (62 loc) · 2.99 KB
/
Sample_from_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import numpy as np
import torch
class ReplayBuffer(object):
def __init__(self, state_dim, action_dim, max_size=int(1e6), device='cuda'):
self.max_size = max_size
self.ptr = 0
self.size = 0
self.state = np.zeros((max_size, state_dim))
self.action = np.zeros((max_size, action_dim))
self.next_state = np.zeros((max_size, state_dim))
self.next_action = np.zeros((max_size, action_dim))
self.reward = np.zeros((max_size, 1))
self.not_done = np.zeros((max_size, 1))
self.device = torch.device(device)
def add(self, state, action, next_state, reward, done):
self.state[self.ptr] = state
self.action[self.ptr] = action
self.next_state[self.ptr] = next_state
self.reward[self.ptr] = reward
self.not_done[self.ptr] = 1. - done
self.ptr = (self.ptr + 1) % self.max_size
self.size = min(self.size + 1, self.max_size)
def sample(self, batch_size):
ind = np.random.randint(0, self.size, size=batch_size)
return (
torch.FloatTensor(self.state[ind]).to(self.device),
torch.FloatTensor(self.action[ind]).to(self.device),
torch.FloatTensor(self.next_state[ind]).to(self.device),
torch.FloatTensor(self.next_action[ind]).to(self.device),
torch.FloatTensor(self.reward[ind]).to(self.device),
torch.FloatTensor(self.not_done[ind]).to(self.device)
)
def convert_D4RL(self, dataset, scale_rewards=True, scale_state=True):
dataset_size = len(dataset['observations'])
dataset['terminals'] = np.squeeze(dataset['terminals'])
dataset['rewards'] = np.squeeze(dataset['rewards'])
nonterminal_steps, = np.where(
np.logical_and(
np.logical_not(dataset['terminals']),
np.arange(dataset_size) < dataset_size - 1))
print('Found %d non-terminal steps out of a total of %d steps.' % (
len(nonterminal_steps), dataset_size))
self.state = dataset['observations'][nonterminal_steps]
self.action = dataset['actions'][nonterminal_steps]
self.next_state = dataset['next_observations'][nonterminal_steps + 1]
self.next_action = dataset['actions'][nonterminal_steps + 1]
self.reward = dataset['rewards'][nonterminal_steps].reshape(-1, 1)
self.not_done = 1. - dataset['terminals'][nonterminal_steps + 1].reshape(-1, 1)
self.size = self.state.shape[0]
if scale_rewards:
r_max = np.max(self.reward)
r_min = np.min(self.reward)
self.reward = (self.reward - r_min) / (r_max - r_min)
s_mean = self.state.mean()
s_std = self.state.std()
return s_mean, s_std
def normalize_states(self, eps=1e-3):
mean = self.state.mean(0, keepdims=True)
std = self.state.std(0, keepdims=True) + eps
self.state = (self.state - mean) / std
self.next_state = (self.next_state - mean) / std
return mean, std