forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
137 lines (114 loc) · 4.04 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os
import time
import yaml
import logging
import argparse
import numpy as np
from pprint import pprint
from attrdict import AttrDict
import paddle
from reader import get_lm_vocab, get_lm_data_loader
from mem_transformer import MemTransformerLM
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--config",
default="./configs/enwik8.yaml",
type=str,
help="Path of the config file. ")
args = parser.parse_args()
return args
def do_eval(args):
assert args.ext_len >= 0, 'Extended context length must be no less than 0'
def _evaluate(loader):
total_len, total_loss = 0, 0.
eval_mems = tuple()
for i, (src, target, seq_len) in enumerate(loader):
if args.max_eval_steps > 0 and i >= args.max_eval_steps:
break
ret = mem_transformer(src, target, *eval_mems)
loss, eval_mems = ret[0], ret[1:]
eval_cur_loss = seq_len * loss.numpy()
total_loss += eval_cur_loss
total_len += seq_len
return total_loss / total_len
def _logger(loss):
if args.dataset in ['enwik8', 'text8']:
logger_info = "loss: %f, bpc: %f" % \
(loss, loss / np.log(2))
else:
logger_info = "loss: %f, ppl: %.2f" % \
(loss, np.exp(loss))
return logger_info
if not args.use_gpu:
paddle.set_device("cpu")
vocab = get_lm_vocab(args)
eval_loader = get_lm_data_loader(args, vocab, "valid")
test_loader = get_lm_data_loader(args, vocab, "test")
cutoffs, tie_projs = [], [False]
if args.adaptive:
assert args.dataset in ['wt103', 'lm1b']
if args.dataset == 'wt103':
cutoffs = [20000, 40000, 200000]
tie_projs += [True] * len(cutoffs)
elif args.dataset == 'lm1b':
cutoffs = [60000, 100000, 640000]
tie_projs += [False] * len(cutoffs)
mem_transformer = MemTransformerLM(
args.ntokens,
args.n_layer,
args.n_head,
args.d_model,
args.d_head,
args.d_inner_hid,
args.dropout,
args.attn_dropout,
tie_weight=args.tie_weight,
d_embed=args.d_model,
div_val=args.div_val,
tie_projs=tie_projs,
normalize_before=args.normalize_before,
tgt_len=args.tgt_len,
ext_len=args.ext_len,
mem_len=args.mem_len,
cutoffs=cutoffs,
same_length=args.same_length,
attn_type=args.attn_type,
clamp_len=args.clamp_len,
sample_softmax=args.sample_softmax)
assert args.init_from_params, (
"Please set init_from_params to load the infer model.")
model_dict = paddle.load(
os.path.join(args.init_from_params, "mem_transformer.pdparams"))
mem_transformer.load_dict(model_dict)
logger.info(
"Evaluating with bsz {} tgt_len {} ext_len {} mem_len {} clamp_len {}".
format(args.eval_batch_size, args.tgt_len, args.ext_len, args.mem_len,
args.clamp_len))
mem_transformer.reset_length(args.tgt_len, args.ext_len, args.mem_len)
test_loss = None
valid_loss = None
if args.mode == 'all':
test_loss = _evaluate(test_loader)
valid_loss = _evaluate(eval_loader)
elif args.mode == 'valid':
valid_loss = _evaluate(eval_loader)
elif args.mode == 'test':
test_loss = _evaluate(test_loader)
logger_info = ''
if valid_loss is not None:
logger_info = logger_info + "validation loss: " + _logger(
valid_loss) + " | "
if test_loss is not None:
logger_info = logger_info + "test loss: " + _logger(test_loss) + " | "
logger.info(logger_info)
if __name__ == "__main__":
ARGS = parse_args()
yaml_file = ARGS.config
with open(yaml_file, 'rt') as f:
args = AttrDict(yaml.safe_load(f))
pprint(args)
do_eval(args)