forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_du.py
222 lines (186 loc) · 7.93 KB
/
run_du.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
import os
import random
import time
import math
from functools import partial
import numpy as np
import paddle
from paddle.io import DataLoader
from args import parse_args
import json
from paddlenlp.datasets import load_dataset
from paddlenlp.data import Pad, Stack, Dict
from paddlenlp.transformers import BertForSequenceClassification, BertTokenizer
from paddlenlp.transformers import ErnieForSequenceClassification, ErnieTokenizer
from paddlenlp.transformers import ErnieGramForSequenceClassification, ErnieGramTokenizer
from paddlenlp.transformers import RobertaForSequenceClassification, RobertaTokenizer
from paddlenlp.transformers import LinearDecayWithWarmup
MODEL_CLASSES = {
"bert": (BertForSequenceClassification, BertTokenizer),
"ernie": (ErnieForSequenceClassification, ErnieTokenizer),
"ernie_gram": (ErnieGramForSequenceClassification, ErnieGramTokenizer),
"roberta": (RobertaForSequenceClassification, RobertaTokenizer),
}
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
paddle.seed(args.seed)
def convert_example(example, tokenizer):
"""convert a Dureader-yesno example into necessary features"""
feature = tokenizer(
text=example['question'],
text_pair=example['answer'],
max_seq_len=args.max_seq_length)
feature['labels'] = example['labels']
feature['id'] = example['id']
return feature
@paddle.no_grad()
def evaluate(model, metric, data_loader):
model.eval()
metric.reset()
for batch in data_loader:
input_ids, segment_ids, labels = batch
logits = model(input_ids, segment_ids)
correct = metric.compute(logits, labels)
metric.update(correct)
accu = metric.accumulate()
print("accu: %f" % (accu))
model.train() # Switch the model to training mode after evaluation
@paddle.no_grad()
def predict(model, data_loader):
model.eval()
res = {}
for batch in data_loader:
input_ids, segment_ids, qas_id = batch
logits = model(input_ids, segment_ids)
qas_id = qas_id.numpy()
preds = paddle.argmax(logits, axis=1).numpy()
for i in range(len(preds)):
res[str(qas_id[i])] = data_loader.dataset.label_list[preds[i]]
model.train()
return res
def do_train(args):
paddle.set_device(args.device)
if paddle.distributed.get_world_size() > 1:
paddle.distributed.init_parallel_env()
rank = paddle.distributed.get_rank()
args.model_type = args.model_type.lower()
model_class, tokenizer_class = MODEL_CLASSES[args.model_type]
tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)
set_seed(args)
train_ds, dev_ds, test_ds = load_dataset(
'dureader_yesno', splits=['train', 'dev', 'test'])
trans_func = partial(convert_example, tokenizer=tokenizer)
train_batchify_fn = lambda samples, fn=Dict({
'input_ids': Pad(axis=0, pad_val=tokenizer.pad_token_id),
'token_type_ids': Pad(axis=0, pad_val=tokenizer.pad_token_type_id),
'labels': Stack(dtype="int64")
}): fn(samples)
test_batchify_fn = lambda samples, fn=Dict({
'input_ids': Pad(axis=0, pad_val=tokenizer.pad_token_id),
'token_type_ids': Pad(axis=0, pad_val=tokenizer.pad_token_type_id),
'id': Stack()
}): fn(samples)
train_ds = train_ds.map(trans_func, lazy=True)
train_batch_sampler = paddle.io.DistributedBatchSampler(
train_ds, batch_size=args.batch_size, shuffle=True)
train_data_loader = DataLoader(
dataset=train_ds,
batch_sampler=train_batch_sampler,
collate_fn=train_batchify_fn,
return_list=True)
dev_ds = dev_ds.map(trans_func, lazy=True)
dev_batch_sampler = paddle.io.BatchSampler(
dev_ds, batch_size=args.batch_size, shuffle=False)
dev_data_loader = DataLoader(
dataset=dev_ds,
batch_sampler=dev_batch_sampler,
collate_fn=train_batchify_fn,
return_list=True)
test_ds = test_ds.map(trans_func, lazy=True)
test_batch_sampler = paddle.io.BatchSampler(
test_ds, batch_size=args.batch_size, shuffle=False)
test_data_loader = DataLoader(
dataset=test_ds,
batch_sampler=test_batch_sampler,
collate_fn=test_batchify_fn,
return_list=True)
model = model_class.from_pretrained(
args.model_name_or_path, num_classes=len(train_ds.label_list))
if paddle.distributed.get_world_size() > 1:
model = paddle.DataParallel(model)
num_training_steps = args.max_steps if args.max_steps > 0 else len(
train_data_loader) * args.num_train_epochs
num_train_epochs = math.ceil(num_training_steps / len(train_data_loader))
lr_scheduler = LinearDecayWithWarmup(args.learning_rate, num_training_steps,
args.warmup_proportion)
# Generate parameter names needed to perform weight decay.
# All bias and LayerNorm parameters are excluded.
decay_params = [
p.name for n, p in model.named_parameters()
if not any(nd in n for nd in ["bias", "norm"])
]
optimizer = paddle.optimizer.AdamW(
learning_rate=lr_scheduler,
epsilon=args.adam_epsilon,
parameters=model.parameters(),
weight_decay=args.weight_decay,
apply_decay_param_fun=lambda x: x in decay_params)
criterion = paddle.nn.loss.CrossEntropyLoss()
metric = paddle.metric.Accuracy()
global_step = 0
tic_train = time.time()
for epoch in range(num_train_epochs):
for step, batch in enumerate(train_data_loader):
global_step += 1
input_ids, segment_ids, label = batch
logits = model(input_ids=input_ids, token_type_ids=segment_ids)
loss = criterion(logits, label)
if global_step % args.logging_steps == 0:
print(
"global step %d, epoch: %d, batch: %d, loss: %f, speed: %.2f step/s"
% (global_step, epoch + 1, step + 1, loss,
args.logging_steps / (time.time() - tic_train)))
tic_train = time.time()
loss.backward()
optimizer.step()
lr_scheduler.step()
optimizer.clear_grad()
if global_step % args.save_steps == 0 or global_step == num_training_steps:
if rank == 0:
evaluate(model, metric, dev_data_loader)
output_dir = os.path.join(args.output_dir,
"model_%d" % global_step)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# need better way to get inner model of DataParallel
model_to_save = model._layers if isinstance(
model, paddle.DataParallel) else model
model_to_save.save_pretrained(output_dir)
tokenizer.save_pretrained(output_dir)
print('Saving checkpoint to:', output_dir)
if global_step == num_training_steps:
break
if rank == 0:
predictions = predict(model, test_data_loader)
with open('prediction.json', "w") as writer:
writer.write(
json.dumps(
predictions, ensure_ascii=False, indent=4) + "\n")
if __name__ == "__main__":
args = parse_args()
do_train(args)