-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfisFuzzyLogi.ino
450 lines (388 loc) · 13.3 KB
/
fisFuzzyLogi.ino
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
//***********************************************************************
// Matlab .fis to arduino C converter v2.0.1.25122016
// - Karthik Nadig, USA
// Please report bugs to:
// https://github.com/karthiknadig/ArduinoFIS/issues
// If you don't have a GitHub account mail to [email protected]
//***********************************************************************
#include "fis_header.h"
#include<AFMotor.h>
AF_DCMotor motor1(1);
AF_DCMotor motor2(2);
AF_DCMotor motor3(3);
AF_DCMotor motor4(4);
#define trigPin A1
#define echoPin A0
#define trigPin2 A3
#define echoPin2 A2
#define trigPin3 A5
#define echoPin3 A4
// Number of inputs to the fuzzy inference system
const int fis_gcI = 3;
// Number of outputs to the fuzzy inference system
const int fis_gcO = 2;
// Number of rules to the fuzzy inference system
const int fis_gcR = 16;
FIS_TYPE g_fisInput[fis_gcI];
FIS_TYPE g_fisOutput[fis_gcO];
// Setup routine runs once when you press reset:
void setup()
{
Serial.begin(9600);
// initialize the Analog pins for input.
// Pin mode for Input: FrontProximity
pinMode(trigPin, OUTPUT);
pinMode(echoPin , INPUT);
// Pin mode for Input: LeftProximity
pinMode(trigPin2, OUTPUT);
pinMode(echoPin2 , INPUT);
// Pin mode for Input: RightProximity
pinMode(trigPin3, OUTPUT);
pinMode(echoPin3 , INPUT);
setMotorVelocities(200,200);
// initialize the Analog pins for output.
// Pin mode for Output: LeftVelocity
//pinMode(3 , OUTPUT);
// Pin mode for Output: RightVelocity
//pinMode(4 , OUTPUT);
}
float first(){
float duration, distance;
digitalWrite(trigPin, LOW);
delayMicroseconds(2);
digitalWrite(trigPin, HIGH);
delayMicroseconds(10);
digitalWrite(trigPin, LOW);
duration = pulseIn(echoPin, HIGH);
distance = (duration / 2) * 0.0344;
if (distance >= 400 || distance <= 2){
Serial.println("=============");
Serial.print("Distance1 = ");
Serial.println("Out of range");
}
else {
Serial.println("=============");
Serial.print("Distance1 = ");
Serial.print(distance);
Serial.println(" cm");
delay(500);
}
return distance;
}
float second(){
float duration2, distance2;
digitalWrite(trigPin2, LOW);
delayMicroseconds(2);
digitalWrite(trigPin2, HIGH);
delayMicroseconds(10);
digitalWrite(trigPin2, LOW);
duration2 = pulseIn(echoPin2, HIGH);
distance2 = (duration2 / 2) * 0.0344;
if (distance2 >= 400 || distance2 <= 2){
Serial.print("Distance2 = ");
Serial.println("Out of range");
}
else {
Serial.print("Distance2 = ");
Serial.print(distance2);
Serial.println(" cm");
delay(500);
}
return distance2;
}
float third(){
float duration3, distance3;
digitalWrite(trigPin3, LOW);
delayMicroseconds(2);
digitalWrite(trigPin3, HIGH);
delayMicroseconds(10);
digitalWrite(trigPin3, LOW);
duration3 = pulseIn(echoPin3, HIGH);
distance3 = (duration3 / 2) * 0.0344;
if (distance3 >= 400 || distance3 <= 2){
Serial.print("Distance3 = ");
Serial.println("Out of range");
}
else {
Serial.print("Distance3 = ");
Serial.print(distance3);
Serial.println(" cm");
delay(500);
}
return distance3;
}
// Loop routine runs over and over again forever:
void loop()
{
// Read Input: FrontProximity
g_fisInput[0] = first();
// Read Input: LeftProximity
g_fisInput[1] = second();
// Read Input: RightProximity
g_fisInput[2] = third();
g_fisOutput[0] = 0;
g_fisOutput[1] = 0;
fis_evaluate();
Serial.print("Velocity left: ");
Serial.println(g_fisOutput[0]);
Serial.print("Velocity right: ");
Serial.println(g_fisOutput[1]);
Serial.println("=============");
motor1.run(FORWARD);
motor2.run(FORWARD);
motor3.run(FORWARD);
motor4.run(FORWARD);
setMotorVelocities(g_fisOutput[0],g_fisOutput[1]);
// Set output vlaue: LeftVelocity
//analogWrite(3 , g_fisOutput[0]);
// Set output vlaue: RightVelocity
//analogWrite(4 , g_fisOutput[1]);
}
void setMotorVelocities(float left,float right){
//Serial.print("LeftVel = ");
//Serial.print(left);
//Serial.println(" ");
//Serial.print("RightVel = ");
//Serial.print(right);
//Serial.println(" ");
motor1.setSpeed(right);
motor2.setSpeed(right);
motor3.setSpeed(left);
motor4.setSpeed(left);
if(right <0){
motor1.run(BACKWARD);
motor2.run(BACKWARD);
}
if(left < 0){
motor3.run(BACKWARD);
motor4.run(BACKWARD);
}
if(left < 0 && right < 0){
motor1.run(BACKWARD);
motor2.run(BACKWARD);
motor3.run(BACKWARD);
motor4.run(BACKWARD);
}
}
//***********************************************************************
// Support functions for Fuzzy Inference System
//***********************************************************************
// Trapezoidal Member Function
FIS_TYPE fis_trapmf(FIS_TYPE x, FIS_TYPE* p)
{
FIS_TYPE a = p[0], b = p[1], c = p[2], d = p[3];
FIS_TYPE t1 = ((x <= c) ? 1 : ((d < x) ? 0 : ((c != d) ? ((d - x) / (d - c)) : 0)));
FIS_TYPE t2 = ((b <= x) ? 1 : ((x < a) ? 0 : ((a != b) ? ((x - a) / (b - a)) : 0)));
return (FIS_TYPE) min(t1, t2);
}
FIS_TYPE fis_prod(FIS_TYPE a, FIS_TYPE b)
{
return (a * b);
}
FIS_TYPE fis_probor(FIS_TYPE a, FIS_TYPE b)
{
return (a + b - (a * b));
}
FIS_TYPE fis_sum(FIS_TYPE a, FIS_TYPE b)
{
return (a + b);
}
FIS_TYPE fis_array_operation(FIS_TYPE *array, int size, _FIS_ARR_OP pfnOp)
{
int i;
FIS_TYPE ret = 0;
if (size == 0) return ret;
if (size == 1) return array[0];
ret = array[0];
for (i = 1; i < size; i++)
{
ret = (*pfnOp)(ret, array[i]);
}
return ret;
}
//***********************************************************************
// Data for Fuzzy Inference System
//***********************************************************************
// Pointers to the implementations of member functions
_FIS_MF fis_gMF[] =
{
fis_trapmf
};
// Count of member function for each Input
int fis_gIMFCount[] = { 3, 3, 3 };
// Count of member function for each Output
int fis_gOMFCount[] = { 4, 4 };
// Coefficients for the Input Member Functions
FIS_TYPE fis_gMFI0Coeff1[] = { 0, 15, 40, 60 };
FIS_TYPE fis_gMFI0Coeff2[] = { 50, 72.6, 106.2, 128 };
FIS_TYPE fis_gMFI0Coeff3[] = { 120.2, 157, 300, 399 };
FIS_TYPE* fis_gMFI0Coeff[] = { fis_gMFI0Coeff1, fis_gMFI0Coeff2, fis_gMFI0Coeff3 };
FIS_TYPE fis_gMFI1Coeff1[] = { 0, 15, 30, 50 };
FIS_TYPE fis_gMFI1Coeff2[] = { 40, 54.09, 83.39, 114.4 };
FIS_TYPE fis_gMFI1Coeff3[] = { 101.8, 126, 300, 399 };
FIS_TYPE* fis_gMFI1Coeff[] = { fis_gMFI1Coeff1, fis_gMFI1Coeff2, fis_gMFI1Coeff3 };
FIS_TYPE fis_gMFI2Coeff1[] = { 0, 15, 30, 50 };
FIS_TYPE fis_gMFI2Coeff2[] = { 40, 54.09, 83.39, 114.4 };
FIS_TYPE fis_gMFI2Coeff3[] = { 101.8, 126, 300, 399 };
FIS_TYPE* fis_gMFI2Coeff[] = { fis_gMFI2Coeff1, fis_gMFI2Coeff2, fis_gMFI2Coeff3 };
FIS_TYPE** fis_gMFICoeff[] = { fis_gMFI0Coeff, fis_gMFI1Coeff, fis_gMFI2Coeff };
// Coefficients for the Output Member Functions
FIS_TYPE fis_gMFO0Coeff1[] = { 0, 0, 0, 100 };
FIS_TYPE fis_gMFO0Coeff2[] = { 0, 0, 0, 160 };
FIS_TYPE fis_gMFO0Coeff3[] = { 0, 0, 0, 200 };
FIS_TYPE fis_gMFO0Coeff4[] = { 0, 0, 0, -240 };
FIS_TYPE* fis_gMFO0Coeff[] = { fis_gMFO0Coeff1, fis_gMFO0Coeff2, fis_gMFO0Coeff3, fis_gMFO0Coeff4 };
FIS_TYPE fis_gMFO1Coeff1[] = { 0, 0, 0, -240 };
FIS_TYPE fis_gMFO1Coeff2[] = { 0, 0, 0, 100 };
FIS_TYPE fis_gMFO1Coeff3[] = { 0, 0, 0, 160 };
FIS_TYPE fis_gMFO1Coeff4[] = { 0, 0, 0, 200 };
FIS_TYPE* fis_gMFO1Coeff[] = { fis_gMFO1Coeff1, fis_gMFO1Coeff2, fis_gMFO1Coeff3, fis_gMFO1Coeff4 };
FIS_TYPE** fis_gMFOCoeff[] = { fis_gMFO0Coeff, fis_gMFO1Coeff };
// Input membership function set
int fis_gMFI0[] = { 0, 0, 0 };
int fis_gMFI1[] = { 0, 0, 0 };
int fis_gMFI2[] = { 0, 0, 0 };
int* fis_gMFI[] = { fis_gMFI0, fis_gMFI1, fis_gMFI2};
// Output membership function set
int* fis_gMFO[] = {};
// Rule Weights
FIS_TYPE fis_gRWeight[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
// Rule Type
int fis_gRType[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 };
// Rule Inputs
int fis_gRI0[] = { 1, 1, 1 };
int fis_gRI1[] = { 1, 1, 3 };
int fis_gRI2[] = { 2, 2, 3 };
int fis_gRI3[] = { 2, 1, 3 };
int fis_gRI4[] = { 2, 2, 2 };
int fis_gRI5[] = { 2, 1, 2 };
int fis_gRI6[] = { 3, 3, 3 };
int fis_gRI7[] = { 1, 2, 3 };
int fis_gRI8[] = { 1, 1, 0 };
int fis_gRI9[] = { 0, 1, 0 };
int fis_gRI10[] = { 2, 2, 1 };
int fis_gRI11[] = { 2, 3, 1 };
int fis_gRI12[] = { 1, 2, 1 };
int fis_gRI13[] = { 1, 0, 1 };
int fis_gRI14[] = { 0, 0, 1 };
int fis_gRI15[] = { 1, 0, 0 };
int* fis_gRI[] = { fis_gRI0, fis_gRI1, fis_gRI2, fis_gRI3, fis_gRI4, fis_gRI5, fis_gRI6, fis_gRI7, fis_gRI8, fis_gRI9, fis_gRI10, fis_gRI11, fis_gRI12, fis_gRI13, fis_gRI14, fis_gRI15 };
// Rule Outputs
int fis_gRO0[] = { 4, 3 };
int fis_gRO1[] = { 3, 2 };
int fis_gRO2[] = { 2, 2 };
int fis_gRO3[] = { 3, 2 };
int fis_gRO4[] = { 1, 2 };
int fis_gRO5[] = { 3, 2 };
int fis_gRO6[] = { 3, 4 };
int fis_gRO7[] = { 1, 4 };
int fis_gRO8[] = { 1, 4 };
int fis_gRO9[] = { 3, 2 };
int fis_gRO10[] = { 2, 1 };
int fis_gRO11[] = { 1, 4 };
int fis_gRO12[] = { 3, 2 };
int fis_gRO13[] = { 1, 3 };
int fis_gRO14[] = { 4, 3 };
int fis_gRO15[] = { 4, 3 };
int* fis_gRO[] = { fis_gRO0, fis_gRO1, fis_gRO2, fis_gRO3, fis_gRO4, fis_gRO5, fis_gRO6, fis_gRO7, fis_gRO8, fis_gRO9, fis_gRO10, fis_gRO11, fis_gRO12, fis_gRO13, fis_gRO14, fis_gRO15 };
// Input range Min
FIS_TYPE fis_gIMin[] = { 0, 0, 0 };
// Input range Max
FIS_TYPE fis_gIMax[] = { 300, 300, 300 };
// Output range Min
FIS_TYPE fis_gOMin[] = { 0, 0 };
// Output range Max
FIS_TYPE fis_gOMax[] = { 200, 200 };
//***********************************************************************
// Data dependent support functions for Fuzzy Inference System
//***********************************************************************
// None for Sugeno
//***********************************************************************
// Fuzzy Inference System
//***********************************************************************
void fis_evaluate()
{
FIS_TYPE fuzzyInput0[] = { 0, 0, 0 };
FIS_TYPE fuzzyInput1[] = { 0, 0, 0 };
FIS_TYPE fuzzyInput2[] = { 0, 0, 0 };
FIS_TYPE* fuzzyInput[fis_gcI] = { fuzzyInput0, fuzzyInput1, fuzzyInput2, };
FIS_TYPE fuzzyOutput0[] = { 0, 0, 0, 0 };
FIS_TYPE fuzzyOutput1[] = { 0, 0, 0, 0 };
FIS_TYPE* fuzzyOutput[fis_gcO] = { fuzzyOutput0, fuzzyOutput1, };
FIS_TYPE fuzzyRules[fis_gcR] = { 0 };
FIS_TYPE fuzzyFires[fis_gcR] = { 0 };
FIS_TYPE* fuzzyRuleSet[] = { fuzzyRules, fuzzyFires };
FIS_TYPE sW = 0;
// Transforming input to fuzzy Input
int i, j, r, o;
for (i = 0; i < fis_gcI; ++i)
{
for (j = 0; j < fis_gIMFCount[i]; ++j)
{
fuzzyInput[i][j] =
(fis_gMF[fis_gMFI[i][j]])(g_fisInput[i], fis_gMFICoeff[i][j]);
}
}
int index = 0;
for (r = 0; r < fis_gcR; ++r)
{
if (fis_gRType[r] == 1)
{
fuzzyFires[r] = 1;
for (i = 0; i < fis_gcI; ++i)
{
index = fis_gRI[r][i];
if (index > 0)
fuzzyFires[r] = fis_prod(fuzzyFires[r], fuzzyInput[i][index - 1]);
else if (index < 0)
fuzzyFires[r] = fis_prod(fuzzyFires[r], 1 - fuzzyInput[i][-index - 1]);
else
fuzzyFires[r] = fis_prod(fuzzyFires[r], 1);
}
}
else
{
fuzzyFires[r] = 0;
for (i = 0; i < fis_gcI; ++i)
{
index = fis_gRI[r][i];
if (index > 0)
fuzzyFires[r] = fis_probor(fuzzyFires[r], fuzzyInput[i][index - 1]);
else if (index < 0)
fuzzyFires[r] = fis_probor(fuzzyFires[r], 1 - fuzzyInput[i][-index - 1]);
else
fuzzyFires[r] = fis_probor(fuzzyFires[r], 0);
}
}
fuzzyFires[r] = fis_gRWeight[r] * fuzzyFires[r];
sW += fuzzyFires[r];
}
if (sW == 0)
{
for (o = 0; o < fis_gcO; ++o)
{
g_fisOutput[o] = ((fis_gOMax[o] + fis_gOMin[o]) / 2);
}
}
else
{
for (o = 0; o < fis_gcO; ++o)
{
FIS_TYPE sWI = 0.0;
for (j = 0; j < fis_gOMFCount[o]; ++j)
{
fuzzyOutput[o][j] = fis_gMFOCoeff[o][j][fis_gcI];
for (i = 0; i < fis_gcI; ++i)
{
fuzzyOutput[o][j] += g_fisInput[i] * fis_gMFOCoeff[o][j][i];
}
}
for (r = 0; r < fis_gcR; ++r)
{
index = fis_gRO[r][o] - 1;
sWI += fuzzyFires[r] * fuzzyOutput[o][index];
}
g_fisOutput[o] = sWI / sW;
}
}
}