forked from trueagi-io/metta-wam
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRUN_minnars.metta
executable file
·232 lines (224 loc) · 15.5 KB
/
RUN_minnars.metta
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
;; Truth functions
(= (Truth_c2w $c) (/ $c (- 1 $c)))
(= (Truth_w2c $w) (/ $w (+ $w 1)))
(= (Truth_Deduction ($f1 $c1) ($f2 $c2)) ((* $f1 $f2) (* (* $f1 $f2) (* $c1 $c2))))
(= (Truth_Abduction ($f1 $c1) ($f2 $c2)) ($f2 (Truth_w2c (* (* $f1 $c1) $c2))))
(= (Truth_Induction $T1 $T2) (Truth_Abduction $T2 $T1))
(= (Truth_Exemplification ($f1 $c1) ($f2 $c2)) (1.0 (Truth_w2c (* (* $f1 $f2) (* $c1 $c2)))))
(= (Truth_StructuralDeduction $T) (Truth_Deduction $T (1.0 0.9)))
(= (Truth_Negation ($f $c)) ((- 1 $f) $c))
(= (Truth StructuralDeductionNegated $T) (Truth_Negation (Truth_StructuralDeduction $T)))
(= (Truth_Intersection ($f1 $c1) ($f2 $c2)) ((* $f1 $f2) (* $c1 $c2)))
(= (Truth_StructuralIntersection $T) (Truth_Intersection $T (1.0 0.9)))
(= (Truth_or $a $b) (- 1 (* (- 1 $a) (- 1 $b))))
(= (Truth_Comparison ($f1 $c1) ($f2 $c2)) (let $f0 (Truth_or $f1 $f2) ((If (== $f0 0.0) 0.0 (/ (* $f1 $f2) $f0)) (Truth_w2c (* $f0 (* $c1 $c2))))))
(= (Truth_Analogy ($f1 $c1) ($f2 $c2)) ((* $f1 $f2) (* (* $c1 $c2) $f2)))
(= (Truth_Resemblance ($f1 $c1) ($f2 $c2)) ((* $f1 $f2) (* (* $c1 $c2) (Truth_or $f1 $f2))))
(= (Truth_Union ($f1 $c1) ($f2 $c2)) ((Truth_or $f1 $f2) (* $c1 $c2)))
(= (Truth_Difference ($f1 $c1) ($f2 $c2)) ((* $f1 (- 1 $f2)) (* $c1 $c2)))
(= (Truth_DecomposePNN ($f1 $c1) ($f2 $c2)) (let $fn (* $f1 (- 1 $f2)) ((- 1 $fn) (* $fn (* $c1 $c2)))))
(= (Truth_DecomposeNPP ($f1 $c1) ($f2 $c2)) (let $f (* (- 1 $f1) $f2) ($f (* $f (* $c1 $c2)))))
(= (Truth_DecomposePNP ($f1 $c1) ($f2 $c2)) (let $f (* $f1 (- 1 $f2)) ($f (* $f (* $c1 $c2)))))
(= (Truth_DecomposePPP $v1 $v2) (Truth_DecomposeNPP (Truth_Negation $v1) $v2))
(= (Truth_DecomposeNNN ($f1 $c1) ($f2 $c2)) (let $fn (* (- 1 $f1) (- 1 $f2)) ((- 1 $fn) (* $fn (* $c1 $c2)))))
(= (Truth_Eternalize ($f $c)) ($f (Truth_w2c $c)))
(= (Truth_Revision ($f1 $c1) ($f2 $c2))
(let* (($w1 (Truth_c2w $c1)) ($w2 (Truth_c2w $c2)) ($w (+ $w1 $w2))
($f (/ (+ (* $w1 $f1) (* $w2 $f2)) $w)) ($c (Truth_w2c $w)))
((min 1.00 $f) (min 0.99 (max (max $c $c1) $c2)))))
(= (Truth_Expectation ($f $c)) (+ (* $c (- $f 0.5)) 0.5))
;;NAL-1
;;!Syllogistic rules for Inheritance:
(= (|- (($a --> $b) $T1) (($b --> $c) $T2)) (($a --> $c) (Truth_Deduction $T1 $T2)))
(= (|- (($a --> $b) $T1) (($a --> $c) $T2)) (($c --> $b) (Truth_Induction $T1 $T2)))
(= (|- (($a --> $c) $T1) (($b --> $c) $T2)) (($b --> $a) (Truth_Abduction $T1 $T2)))
(= (|- (($a --> $b) $T1) (($b --> $c) $T2)) (($c --> $a) (Truth_Exemplification $T1 $T2)))
;;NAL-2
;;!Rules for Similarity:
(= (|- (($S <-> $P) $T)) (($P <-> $S) (Truth_StructuralIntersection $T)))
(= (|- (($M <-> $P) $T1) (($S <-> $M) $T2)) (($S <-> $P) (Truth_Resemblance $T1 $T2)))
(= (|- (($P --> $M) $T1) (($S --> $M) $T2)) (($S <-> $P) (Truth_Comparison $T1 $T2)))
(= (|- (($M --> $P) $T1) (($M --> $S) $T2)) (($S <-> $P) (Truth_Comparison $T1 $T2)))
(= (|- (($M --> $P) $T1) (($S <-> $M) $T2)) (($S --> $P) (Truth_Analogy $T1 $T2)))
(= (|- (($P --> $M) $T1) (($S <-> $M) $T2)) (($P --> $S) (Truth_Analogy $T1 $T2)))
;;!Dealing with properties and instances:
(= (|- (($S --> ({ $P })) $T)) (($S <-> ({ $P })) (Truth_StructuralIntersection $T)))
(= (|- ((([ $S ]) --> $P) $T)) ((([ $S ]) <-> $P) (Truth_StructuralIntersection $T)))
(= (|- ((({ $M }) --> $P) $T1) (($S <-> $M) $T2)) ((({ $S }) --> $P) (Truth_Analogy $T1 $T2)))
(= (|- (($P --> ([ $M ])) $T1) (($S <-> $M) $T2)) (($P --> ([ $S ])) (Truth_Analogy $T1 $T2)))
(= (|- ((({ $A }) <-> ({ $B }))) ($A <-> $B) (Truth_StructuralIntersection $T)))
(= (|- ((([ $A ]) <-> ([ $B ]))) ($A <-> $B) (Truth_StructuralIntersection $T)))
;;NAL-3
;;!Set decomposition:
(= (|- ((({ $A $B }) --> $M) $T)) ((({ $A }) --> $M) (Truth_StructuralDeduction $T)))
(= (|- ((({ $A $B }) --> $M) $T)) ((({ $B }) --> $M) (Truth_StructuralDeduction $T)))
(= (|- ((M --> ([ $A $B ])) $T)) ((M --> ([ $A ])) (Truth_StructuralDeduction $T)))
(= (|- ((M --> ([ $A $B ])) $T)) ((M --> ([ $B ])) (Truth_StructuralDeduction $T)))
;;!Extensional and intensional intersection decomposition:
(= (|- ((($S | $P) --> $M) $T)) (($S --> $M) (Truth_StructuralDeduction $T)))
(= (|- (($M --> ($S & $P)) $T)) (($M --> $S) (Truth_StructuralDeduction $T)))
(= (|- ((($S | $P) --> $M) $T)) (($P --> $M) (Truth_StructuralDeduction $T)))
(= (|- (($M --> ($S & $P)) $T)) (($M --> $P) (Truth_StructuralDeduction $T)))
(= (|- ((($A ~ $S) --> $M) $T)) (($A --> $M) (Truth_StructuralDeduction $T)))
(= (|- (($M --> ($B - $S)) $T)) (($M --> $B) (Truth_StructuralDeduction $T)))
(= (|- ((($A ~ $S) --> $M) $T)) (($S --> $M) (Truth_StructuralDeductionNegated $T)))
(= (|- (($M --> ($B - $S)) $T)) (($M --> $S) (Truth_StructuralDeductionNegated $T)))
;;!Extensional and intensional intersection composition: (sets via reductions)
(= (|- (($P --> $M) $T1) (($S --> $M) $T2)) ((($P | $S) --> $M) (Truth_Intersection $T1 $T2)))
(= (|- (($P --> $M) $T1) (($S --> $M) $T2)) ((($P & $S) --> $M) (Truth_Union $T1 $T2)))
(= (|- (($P --> $M) $T1) (($S --> $M) $T2)) ((($P ~ $S) --> $M) (Truth_Difference $T1 $T2)))
(= (|- (($M --> $P) $T1) (($M --> $S) $T2)) (($M --> ($P & $S)) (Truth_Intersection $T1 $T2)))
(= (|- (($M --> $P) $T1) (($M --> $S) $T2)) (($M --> ($P | $S)) (Truth_Union $T1 $T2)))
(= (|- (($M --> $P) $T1) (($M --> $S) $T2)) (($M --> ($P - $S)) (Truth_Difference $T1 $T2)))
;;!Extensional and intensional intersection decomposition:
(= (|- (($S --> $M) $T1) ((($S | $P) --> $M) $T2)) (($P --> $M) (Truth_DecomposePNN $T1 $T2)))
(= (|- (($P --> $M) $T1) ((($S | $P) --> $M) $T2)) (($S --> $M) (Truth_DecomposePNN $T1 $T2)))
(= (|- (($S --> $M) $T1) ((($S & $P) --> $M) $T2)) (($P --> $M) (Truth_DecomposeNPP $T1 $T2)))
(= (|- (($P --> $M) $T1) ((($S & $P) --> $M) $T2)) (($S --> $M) (Truth_DecomposeNPP $T1 $T2)))
(= (|- (($S --> $M) $T1) ((($S ~ $P) --> $M) $T2)) (($P --> $M) (Truth_DecomposePNP $T1 $T2)))
(= (|- (($S --> $M) $T1) ((($P ~ $S) --> $M) $T2)) (($P --> $M) (Truth_DecomposeNNN $T1 $T2)))
(= (|- (($M --> $S) $T1) (($M --> ($S & $P)) $T2)) (($M --> $P) (Truth_DecomposePNN $T1 $T2)))
(= (|- (($M --> $P) $T1) (($M --> ($S & $P)) $T2)) (($M --> $S) (Truth_DecomposePNN $T1 $T2)))
(= (|- (($M --> $S) $T1) (($M --> ($S | $P)) $T2)) (($M --> $P) (Truth_DecomposeNPP $T1 $T2)))
(= (|- (($M --> $P) $T1) (($M --> ($S | $P)) $T2)) (($M --> $S) (Truth_DecomposeNPP $T1 $T2)))
(= (|- (($M --> $S) $T1) (($M --> ($S - $P)) $T2)) (($M --> $P) (Truth_DecomposePNP $T1 $T2)))
(= (|- (($M --> $S) $T1) (($M --> ($P - $S)) $T2)) (($M --> $P) (Truth_DecomposeNNN $T1 $T2)))
;; NAL-4
;;!Transformation rules between product and image:
(= (|- ((($A * $B) --> $R) $T)) (($A --> ($R /1 $B)) (Truth_StructuralIntersection $T)))
(= (|- ((($A * $B) --> $R) $T)) (($B --> ($R /2 $A)) (Truth_StructuralIntersection $T)))
(= (|- (($R --> ($A * $B)) $T)) ((($R \1 $B) --> $A) (Truth_StructuralIntersection $T)))
(= (|- (($R --> ($A * $B)) $T)) ((($R \2 $A) --> $B) (Truth_StructuralIntersection $T)))
;;other direction of same rules (as these are bi-directional)
(= (|- (($A --> ($R /1 $B)) $T)) ((($A * $B) --> $R) (Truth_StructuralIntersection $T)))
(= (|- (($B --> ($R /2 $A)) $T)) ((($A * $B) --> $R) (Truth_StructuralIntersection $T)))
(= (|- ((($R \1 $B) --> $A) $T)) (($R --> ($A * $B)) (Truth_StructuralIntersection $T)))
(= (|- ((($R \2 $A) --> $B) $T)) (($R --> ($A * $B)) (Truth_StructuralIntersection $T)))
;;!Comparative relations
(= (|- ((({ $R }) |-> ([ $P ])) $T1) ((({ $S }) |-> ([ $P ])) $T2)) (((({ $R }) * ({ $S })) --> (>>> $P )) (Truth_FrequencyGreater $T1 $T2)))
(= (|- ((($A * $B) --> (>>> $P)) $T1) ((($B * $C) --> (>>> $P)) $T2)) ((($A * $C) --> (>>> $P)) (Truth_Deduction $T1 $T2)))
(= (|- ((({ $R }) |-> ([ $P ])) $T1) ((({ $S }) |-> ([ $P ])) $T2)) (((({ $R }) * ({ $S })) --> (=== $P)) (Truth_FrequencyEqual $T1 $T2)))
(= (|- ((($A * $B) --> (=== $P)) $T1) ((($B * $C) --> (=== $P)) $T2)) ((($A * $C) --> (=== $P)) (Truth_Deduction $T1 $T2)))
(= (|- ((($A * $B) --> (=== $P)) $T)) ((($B * $A) --> (=== $P)) (Truth_StructuralIntersection $T)))
;;!Optional rules for more efficient reasoning about relation components:
(= (|- ((($A * $B) --> $R) $T1) ((($C * $B) --> $R) $T2)) (($C --> $A) (Truth_Abduction $T1 $T2)))
(= (|- ((($A * $B) --> $R) $T1) ((($A * $C) --> $R) $T2)) (($C --> $B) (Truth_Abduction $T1 $T2)))
(= (|- (($R --> ($A * $B)) $T1) (($R --> ($C * $B)) $T2)) (($C --> $A) (Truth_Induction $T1 $T2)))
(= (|- (($R --> ($A * $B)) $T1) (($R --> ($A * $C)) $T2)) (($C --> $B) (Truth_Induction $T1 $T2)))
(= (|- ((($A * $B) --> $R) $T1) (($C --> $A) $T2)) ((($C * $B) --> $R) (Truth_Deduction $T1 $T2)))
(= (|- ((($A * $B) --> $R) $T1) (($A --> $C) $T2)) ((($C * $B) --> $R) (Truth_Induction $T1 $T2)))
(= (|- ((($A * $B) --> $R) $T1) (($C <-> $A) $T2)) ((($C * $B) --> $R) (Truth_Analogy $T1 $T2)))
(= (|- ((($A * $B) --> $R) $T1) (($C --> $B) $T2)) ((($A * $C) --> $R) (Truth_Deduction $T1 $T2)))
(= (|- ((($A * $B) --> $R) $T1) (($B --> $C) $T2)) ((($A * $C) --> $R) (Truth_Induction $T1 $T2)))
(= (|- ((($A * $B) --> $R) $T1) (($C <-> $B) $T2)) ((($A * $C) --> $R) (Truth_Analogy $T1 $T2)))
(= (|- (($R --> ($A * $B)) $T1) (($A --> $C) $T2)) (($R --> ($C * $B)) (Truth_Deduction $T1 $T2)))
(= (|- (($R --> ($A * $B)) $T1) (($C --> $A) $T2)) (($R --> ($C * $B)) (Truth_Abduction $T1 $T2)))
(= (|- (($R --> ($A * $B)) $T1) (($C <-> $A) $T2)) (($R --> ($C * $B)) (Truth_Analogy $T1 $T2)))
(= (|- (($R --> ($A * $B)) $T1) (($B --> $C) $T2)) (($R --> ($A * $C)) (Truth_Deduction $T1 $T2)))
(= (|- (($R --> ($A * $B)) $T1) (($C --> $B) $T2)) (($R --> ($A * $C)) (Truth_Abduction $T1 $T2)))
(= (|- (($R --> ($A * $B)) $T1) (($C <-> $B) $T2)) (($R --> ($A * $C)) (Truth_Analogy $T1 $T2)))
(= (|- ((($A * $B) --> $R) $T1) ((($C * $B) --> $R) $T2)) (($A <-> $C) (Truth_Comparison $T1 $T2)))
(= (|- ((($A * $B) --> $R) $T1) ((($A * $C) --> $R) $T2)) (($B <-> $C) (Truth_Comparison $T1 $T2)))
(= (|- (($R --> ($A * $B)) $T1) (($R --> ($C * $B)) $T2)) (($A <-> $C) (Truth_Comparison $T1 $T2)))
(= (|- (($R --> ($A * $B)) $T1) (($R --> ($A * $C)) $T2)) (($B <-> $C) (Truth_Comparison $T1 $T2)))
;;NAL-5
;;!Negation conjunction and disjunction decomposition:
(= (|- ((! $A) $T)) ($A (Truth_Negation $T)))
(= (|- (($A && $B) $T)) ($A (Truth_StructuralDeduction $T)))
(= (|- (($A && $B) $T)) ($B (Truth_StructuralDeduction $T)))
(= (|- (($A && $B) $T)) (($B && $A) (Truth_StructuralIntersection $T)))
(= (|- ($S $T1) (($S && $A) $T2)) ($A (Truth_DecomposePNN $T1 $T2)))
(= (|- ($S $T1) (($S || $A) $T2)) ($A (Truth_DecomposeNPP $T1 $T2)))
(= (|- ($S $T1) (((! $S) && $A) $T2)) ($A (Truth_DecomposeNNN $T1 $T2)))
(= (|- ($S $T1) (((! $S) || $A) $T2)) ($A (Truth_DecomposePPP $T1 $T2)))
;;!Syllogistic rules for Implication:
(= (|- (($A ==> $B) $T1) (($B ==> $C) $T2)) (($A ==> $C) (Truth_Deduction $T1 $T2)))
(= (|- (($A ==> $B) $T1) (($A ==> $C) $T2)) (($C ==> $B) (Truth_Induction $T1 $T2)))
(= (|- (($A ==> $C) $T1) (($B ==> $C) $T2)) (($B ==> $A) (Truth_Abduction $T1 $T2)))
(= (|- (($A ==> $B) $T1) (($B ==> $C) $T2)) (($C ==> $A) (Truth_Exemplification $T1 $T2)))
;;!Conditional composition for conjunction and disjunction:
(= (|- (($A ==> $C) $T1) (($B ==> $C) $T2)) ((($A && $B) ==> $C) (Truth_Union $T1 $T2)))
(= (|- (($A ==> $C) $T1) (($B ==> $C) $T2)) ((($A || $B) ==> $C) (Truth_Intersection $T1 $T2)))
(= (|- (($C ==> $A) $T1) (($C ==> $B) $T2)) (($C ==> ($A && $B)) (Truth_Intersection $T1 $T2)))
(= (|- (($C ==> $A) $T1) (($C ==> $B) $T2)) (($C ==> ($A || $B)) (Truth_Union $T1 $T2)))
;;!Multi-conditional inference:
(= (|- ((($S && $P) ==> $M) $T1) (($S ==> $M) $T2)) ($P (Truth_Abduction $T1 $T2)))
(= (|- ((($C && $M) ==> $P) $T1) (($S ==> $M) $T2)) ((($C && $S) ==> $P) (Truth_Deduction $T1 $T2)))
(= (|- ((($C && $P) ==> $M) $T1) ((($C && $S) ==> $M) $T2)) (($S ==> $P) (Truth_Abduction $T1 $T2)))
(= (|- ((($C && $M) ==> $P) $T1) (($M ==> $S) $T2)) ((($C && $S) ==> $P) (Truth_Induction $T1 $T2)))
;;!Rules for equivalence:
(= (|- (($S <=> $P) $T)) (($P <=> $S) (Truth_StructuralIntersection $T)))
(= (|- (($S ==> $P) $T1) (($P ==> $S) $T2)) (($S <=> $P) (Truth_Intersection $T1 $T2)))
(= (|- (($P ==> $M) $T1) (($S ==> $M) $T2)) (($S <=> $P) (Truth_Comparison $T1 $T2)))
(= (|- (($M ==> $P) $T1) (($M ==> $S) $T2)) (($S <=> $P) (Truth_Comparison $T1 $T2)))
(= (|- (($M ==> $P) $T1) (($S <=> $M) $T2)) (($S ==> $P) (Truth_Analogy $T1 $T2)))
(= (|- (($P ==> $M) $T1) (($S <=> $M) $T2)) (($P ==> $S) (Truth_Analogy $T1 $T2)))
(= (|- (($M <=> $P) $T1) (($S <=> $M) $T2)) (($S <=> $P) (Truth_Resemblance $T1 $T2)))
;;!Higher-order decomposition
(= (|- ($A $T1) (($A ==> $B) $T2)) ($B (Truth_Deduction $T1 $T2)))
(= (|- ($A $T1) ((($A && $B) ==> $C) $T2)) (($B ==> $C) (Truth_Deduction $T1 $T2)))
(= (|- ($B $T1) (($A ==> $B) $T2)) ($A (Truth_Abduction $T1 $T2)))
(= (|- ($A $T1) (($A <=> $B) $T2)) ($B (Truth_Analogy $T1 $T2)))
;;NAL term reductions
;;!Extensional intersection, union, conjunction reductions:
(= ($A & $A) $A)
(= ($A | $A) $A)
(= ($A && $A) $A)
(= ($A || $A) $A)
;;!Extensional set reductions:
(= (({ $A }) | ({ $B })) ({ $A $B }))
(= (({ $A $B }) | ({ $C })) ({ ($A . $B) $C }))
(= (({ $C }) | ({ $A $B }) ) ({ $C ($A . $B) }))
;;!Intensional set reductions:
(= (([ $A ]) & ([ $B ])) ([ $A $B ]) )
(= (([ $A $B ]) & ([ $C ])) ([ ($A . $B) $C ]))
(= (([ $A ]) & ([ $B $C ])) ([ $A ($B . $C) ]))
;;!Reduction for set element copula:
(= ({ ( $A . $B ) }) ({ $A $B }))
(= ([ ( $A . $B ) ]) ([ $A $B ]))
;; Stdlib extension
(= (TupleConcat $Ev1 $Ev2) (collapse (superpose ((superpose $Ev1) (superpose $Ev2)))))
;; Whether evidence was just counted once
(= (StampDisjoint $Ev1 $Ev2)
(== () (collapse (let* (($x (superpose $Ev1))
($y (superpose $Ev2)))
(case (== $x $y) ((True overlap)))))))
;; Exhaustive-until-depth deriver
(= (Derive $beliefs $depth $maxdepth)
(if (> $depth $maxdepth)
$beliefs
(let $derivations
(collapse (let* (((Sentence $x $Ev1) (superpose $beliefs))
((Sentence $y $Ev2) (superpose $beliefs))
($stamp (TupleConcat $Ev1 $Ev2)))
(if (StampDisjoint $Ev1 $Ev2)
(case (|- $x $y) ((($T $TV) (Sentence ($T $TV) $stamp)))) ())))
(Derive (TupleConcat $beliefs $derivations) (+ $depth 1) $maxdepth))))
;retrieve the best candidate
(= (BestCandidate $evaluateCandidateFunction $bestCandidate $tuple)
(if (== $tuple ())
$bestCandidate
(let* (($head (car-atom $tuple))
($tail (cdr-atom $tuple)))
(if (> ($evaluateCandidateFunction $head)
($evaluateCandidateFunction $bestCandidate))
(BestCandidate $evaluateCandidateFunction $head $tail)
(BestCandidate $evaluateCandidateFunction $bestCandidate $tail)))))
;candidate evaluation based on confidence
(= (ConfidenceRank (($f $c) $Ev)) $c)
(= (ConfidenceRank Nil) 0)
;pose a question of a certain term to the system on some knowledge base
(= (Question $kb $term $steps)
(BestCandidate ConfidenceRank Nil (collapse (let $x (Derive $kb 1 $steps)
(case (superpose $x)
(((Sentence ($T $TV) $Ev) (case (== $T $term)
((True ($TV $Ev)))))))))))
(= (debug-me)
(Question
((Sentence ((({ garfield }) --> cat) (1.0 0.9)) (1))
(Sentence (((cat * sky) --> like) (1.0 0.9)) (2))
(Sentence ((sky --> ([ blue ])) (1.0 0.9)) (3))
(Sentence ((((({ garfield }) * ([ blue ])) --> like) ==> (({ garfield }) --> artist)) (1.0 0.9)) (4)))
(({ garfield }) --> artist) 3))
;; How much evidence is there that garfield is an artist given the following input using up to 3 inference steps?
!(assertEqual (debug-me) ((1.0 0.37946790052053214) (2 1 3 4)))