-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHologram-LLM-DEMO1.py
133 lines (106 loc) · 4.66 KB
/
Hologram-LLM-DEMO1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
"""
Hologram-LLM-DEMO1.py:
Francisco Angulo de Lafuente
10 September 2024
https://github.com/Agnuxo1
https://huggingface.co/Agnuxo
https://www.researchgate.net/profile/Francisco-Angulo-Lafuente-3
This script provides a basic demonstration of simulating a holographic LLM
with raytracing using CuPy and Numba for GPU acceleration.
It showcases the core concepts of hologram propagation and raytracing
through a simplified model.
"""
import numpy as np
import cupy as cp
from cupyx.scipy.fft import fft2, ifft2
from numba import cuda
import math
# Configuración del dispositivo CUDA
cuda.select_device(0)
# Parámetros de simulación
GRID_SIZE = 1024
WAVELENGTH = 532e-9 # Longitud de onda verde (532 nm)
PROPAGATION_DISTANCE = 0.1 # 10 cm
# Funciones de utilidad
def angular_spectrum_propagation(field, distance, wavelength):
kx, ky = cp.meshgrid(cp.fft.fftfreq(GRID_SIZE), cp.fft.fftfreq(GRID_SIZE))
kz = cp.sqrt(1 - (wavelength * kx)**2 - (wavelength * ky)**2)
return ifft2(fft2(field) * cp.exp(1j * 2 * cp.pi * distance * kz / wavelength))
@cuda.jit
def raytrace_kernel(hologram, neurons, output):
i, j = cuda.grid(2)
if i < output.shape[0] and j < output.shape[1]:
ray_origin = cuda.local.array(3, dtype=cp.float32)
ray_direction = cuda.local.array(3, dtype=cp.float32)
ray_origin[0] = i / output.shape[0] - 0.5
ray_origin[1] = j / output.shape[1] - 0.5
ray_origin[2] = -1.0
ray_direction[0] = 0
ray_direction[1] = 0
ray_direction[2] = 1
accumulated_intensity = 0.0
for k in range(neurons.shape[0]):
sphere_center = neurons[k]
sphere_radius = 0.01
a = (ray_direction[0]**2 + ray_direction[1]**2 + ray_direction[2]**2)
b = 2 * (ray_direction[0] * (ray_origin[0] - sphere_center[0]) +
ray_direction[1] * (ray_origin[1] - sphere_center[1]) +
ray_direction[2] * (ray_origin[2] - sphere_center[2]))
c = ((ray_origin[0] - sphere_center[0])**2 +
(ray_origin[1] - sphere_center[1])**2 +
(ray_origin[2] - sphere_center[2])**2 - sphere_radius**2)
discriminant = b**2 - 4*a*c
if discriminant >= 0:
t = (-b - math.sqrt(discriminant)) / (2*a)
if t > 0:
intersection_point = (
ray_origin[0] + t * ray_direction[0],
ray_origin[1] + t * ray_direction[1],
ray_origin[2] + t * ray_direction[2]
)
hologram_value = hologram[
int((intersection_point[0] + 0.5) * hologram.shape[0]),
int((intersection_point[1] + 0.5) * hologram.shape[1])
]
accumulated_intensity += abs(hologram_value)
output[i, j] = accumulated_intensity
class HolographicLLM:
def __init__(self, num_neurons):
self.num_neurons = num_neurons
real_part = cp.random.random((GRID_SIZE, GRID_SIZE), dtype=cp.float32)
imag_part = cp.random.random((GRID_SIZE, GRID_SIZE), dtype=cp.float32)
self.hologram = real_part + 1j * imag_part
self.neurons = cp.random.uniform(-0.5, 0.5, (num_neurons, 3))
def propagate_hologram(self):
self.hologram = angular_spectrum_propagation(
self.hologram,
PROPAGATION_DISTANCE,
WAVELENGTH
)
def raytrace(self):
output = cp.zeros((GRID_SIZE, GRID_SIZE), dtype=cp.float32)
threadsperblock = (16, 16)
blockspergrid_x = math.ceil(output.shape[0] / threadsperblock[0])
blockspergrid_y = math.ceil(output.shape[1] / threadsperblock[1])
blockspergrid = (blockspergrid_x, blockspergrid_y)
raytrace_kernel[blockspergrid, threadsperblock](
self.hologram, self.neurons, output
)
return output
def inference(self, input_data):
# Simular la codificación de entrada
self.hologram *= cp.array(input_data).reshape(GRID_SIZE, GRID_SIZE)
# Propagar el holograma
self.propagate_hologram()
# Realizar raytracing
output = self.raytrace()
# Decodificar la salida (simplificado)
return cp.mean(output)
# Demostración
if __name__ == "__main__":
model = HolographicLLM(num_neurons=1000)
# Simular una entrada
input_data = cp.random.random(GRID_SIZE * GRID_SIZE)
# Realizar inferencia
result = model.inference(input_data)
print(f"Resultado de la inferencia: {result}")