-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtake_three.lean
27 lines (21 loc) · 983 Bytes
/
take_three.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import analysis.normed_space.basic
import topology.instances.ennreal
import analysis.normed_space.basic
import topology.instances.ennreal
import algebra.archimedean algebra.geom_sum
import data.nat.choose data.complex.basic
import tactic.linarith
import analysis.calculus.deriv
import data.complex.exponential
open finset
open cau_seq
namespace complex
noncomputable theory
def sin' (z : ℂ) : cau_seq ℂ complex.abs := ⟨λ n, (range n).sum (λ m, ((-1) ^ m) * z ^ (2 * m + 1) / nat.fact (2 * m + 1), is_cau_exp z⟩
def sin_series (z : ℂ) : ℂ := lim (sin' z)
def cos' (z : ℂ) : cau_seq ℂ complex.abs := ⟨λ n, (range n).sum (λ m, (-1) ^ m * z ^ (2 * m) / nat.fact 2 * m), is_cau_exp z⟩
def cos_series (z : ℂ) : ℂ := lim (cos' z)
lemma series_arith : --maybe take the first few terms and conjecture that the rest of the series follows?
(λ n)(λ m)
theorem euler : exp (x * I) = cos x + sin x * I := rw → linarith
end complex