-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrossing.py
142 lines (112 loc) · 4.83 KB
/
crossing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
"""Implementation of crossing functions.
A crossing function maps two (or more) brainfuck sources (the parents)
to a source (the child).
Input of these functions are the following:
parents -- an iterable of Unit instances.
As output, crossing functions return a single string of brainfuck source code.
"""
import utils
import random
import itertools
import collections
from unit import Unit
from utils import grouper, named_functions_interface_decorator
@named_functions_interface_decorator
def named_functions() -> dict:
"""Return selection functions"""
return {
'CM': crossby_chromosomes,
'CP': crossby_pivot,
'CT': crossby_token,
'CD': crossby_difference,
'CR': crossby_random_draw,
'CC': crossby_consensus,
# 'CU': crossby_output_unit,
}
def default_functions() -> tuple:
"""Return default selection functions"""
return named_functions.as_tuple()
def crossby_chromosomes(parents: [Unit]) -> str:
"""Use parent chromosome size. Takes chromosom_size tokens from the first parent,
then the next, and loop until first parent is exhausted.
"""
parent_chroms = tuple(
tuple(grouper(parent.source, n=parent.chrom_size, fillvalue=' '))
for parent in parents
)
childparts = []
for idx, chroms in zip(itertools.count(0), itertools.cycle(parent_chroms)):
if idx < len(chroms):
childparts.append(''.join(chroms[idx]))
else:
break
return ''.join(childparts)
def crossby_pivot(parents: [Unit]) -> str:
"""Choose a random index in the smallest source code of parents.
then the next, and loop until first parent is exhausted.
"""
nb_pivot = len(parents) - 1
smallest_source = min(len(p.source) for p in parents)
if smallest_source < len(parents):
ok_parents = tuple(p for p in parents if len(p.source) > smallest_source)
if len(ok_parents) <= 1: # if there is zero or one parent with a not-too-short source code, let's merge everything.
return ''.join(p.source for p in parents)
else: # many parents are long
return crossby_pivot(ok_parents)
pivots = sorted(random.sample(range(0, smallest_source), k=nb_pivot)) + [-1]
childparts = []
prev_pivot = 0
for parent, pivot in zip(parents, pivots):
childparts.append(parent.source[prev_pivot:pivot])
prev_pivot = pivot
return ''.join(childparts)
def crossby_token(parents: [Unit]) -> str:
"""Take the first repeated tokens from first parent, then second, and loop until a parent is exhausted.
This is like intertweaning parent's sources, but repeated tokens are taken together.
So, with parents '++++>++' and '+--+--+', we got child '++++ -- ++ --'
"""
def token_groups(source: str) -> [(str, int)]:
prev = source[0]
count = 0
for char in source:
if char == prev:
count += 1
else:
yield prev, count
prev = char
count = 1
if count:
yield char, count
parent_groups = tuple(tuple(token_groups(parent.source)) for parent in parents)
childparts = []
for idx, groups in zip(itertools.count(0), itertools.cycle(parent_groups)):
if idx < len(groups):
childparts.append(''.join(groups[idx][0]*groups[idx][1]))
else:
break
return ''.join(childparts)
def crossby_output_unit(parents: [Unit]) -> str:
...
def crossby_consensus(parents: [Unit]) -> str:
"""For each index, takes randomly one of the most represented tokens in the parent.
It's like crossby_random_draw, but where, if there is more than 2 parents,
only tokens appearing the most are used.
In other word, it's a consensus, with random draw to break ties.
Example: for parents ++++, +-+- and ++--, only child is +++-.
"""
acc = []
for tokens in itertools.zip_longest(*(p.source for p in parents), fillvalue=''):
c = collections.Counter(tokens)
maxcount = max(c.values())
acc.append(random.choice([t for t in tokens if c[t] == maxcount]))
return ''.join(acc)
def crossby_random_draw(parents: [Unit]) -> str:
"""For each index, takes randomly one of the available tokens in the parent.
Hence, parents +++- and +-++ may yield +++-, ++++, +-+- or +-++.
"""
per_index_tokens = itertools.zip_longest(*(p.source for p in parents), fillvalue='')
# inner join is needed so that empty string is not available for random.choice.
return ''.join(random.choice(''.join(tokens)) for tokens in per_index_tokens)
def crossby_difference(parents: [Unit]) -> str:
"""Keep tokens common between parents, randomly choose when different among parents."""
return ''.join(random.choice([t for t in tokens if t]) for tokens in itertools.zip_longest(*(p.source for p in parents)))