-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstatistics.py
155 lines (114 loc) · 5.31 KB
/
statistics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
"""Module working on saving and printing data about a simulation
"""
import time
import glob
import csv
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
import pandas as pd
import utils
import commons
def plotter(df, config_change_steps: list[int]):
ax = df.plot(x='step', y=['max_score', 'min_score'])
ax = df.plot(x='step', y='diversity',secondary_y=True, ax=ax)
for step in config_change_steps:
ax.axvline(x=step, color='red', linestyle='--', label='Config change')
class Saver:
"""Save data about a simulation.
>>> s = Saver(('a', 'b', 'c'), defaults=[0])
>>> s.save(3, 4, 5) # a = 3, b = 4 and c = 5 for the first row
>>> s.save(1, 5) # a = 1, b = 5 and c = 0 (default value) for the second row
"""
FILE_TEMPLATE = 'data_{}.csv'
def __init__(self, fields:iter=commons.DEFAULT_DATASAVE_FIELDS, defaults:iter=None,
fileid:str='', datadir:str=commons.DATA_DIR, index: str = 'step',
plotter:callable=plotter):
"""
fields -- column name, in order expected by later save() calls.
defaults -- default values for columns, if not provided in call params.
fileid -- string added to filename in order to facilitate its
identification when humans looks for it.
plotter -- dataframe to plot function used by plot() method
"""
assert callable(plotter)
self.plotter = plotter
self.fileid = str(fileid)
self.fields = (index,) + tuple(str(_) for _ in fields)
self.datadir = str(datadir)
self.defaults = tuple(defaults) if defaults else ()
self.commit(first_time=True)
self.writer.writerow(self.fields)
self.nb_row = 0
self.last_config = None # to detect configuration changes
self.config_change_steps = [] # steps at which config was changed
def __enter__(self):
return self
def __exit__(self, *args):
self.commit()
def save(self, **fieldvalues):
"""Save given values for registered fields in output file.
If necessary, complete given values with defaults
"""
self.nb_row += 1
current_config = fieldvalues['config']
if current_config != self.last_config:
self.last_config = current_config
self.config_change_steps.append(self.nb_row)
fieldvalues = [self.nb_row] + list(fieldvalues[f] for f in self.fields)
if len(fieldvalues) < len(self.fields):
fieldvalues += list(self.defaults)[len(self.fields) - len(fieldvalues):]
self.writer.writerow(fieldvalues)
def commit(self, *, first_time=False):
if not first_time:
self.filedesc.close()
self.filedesc = open(self.datadir + Saver.FILE_TEMPLATE.format(self.fileid), 'w' if first_time else 'a')
self.writer = csv.writer(self.filedesc)
@staticmethod
def data_files() -> iter:
"""Return files available to plotting"""
return glob.glob(commons.DATA_DIR_TEMPLATE.format('*') + 'data_*.csv')
def plot(self, filename:str=None):
"""Plot data in given file.
filename -- data is there. If not valid, seek for latest file, based on name.
"""
if not filename:
filename = max(Saver.data_files())
df = pd.read_csv(filename)
print('DATAFRAME:')
print(df)
plot = self.plotter(df, self.config_change_steps)
plt.show()
def discretize(self, csv_filename: str = None, profile_filename: str = None, table: bool = True):
if not csv_filename:
csv_filename = max(Saver.data_files())
df = pd.read_csv(csv_filename)
# self.config_change_steps.append(len(df)+1) # don't ignore the last fragment
print(df)
print(self.config_change_steps)
print(utils.get_series_profile_header())
if table:
print(' '.rjust(11) + '_' * 20)
for start, stop in utils.window(self.config_change_steps, size=2):
# print(start, stop)
fragment = df[start-1:stop-1]
# print(fragment)
# print(list(df[start:stop]['diversity']))
profile = {} # signal name -> series profile
for signal in 'diversity,max_score,min_score'.split(','):
profile[signal] = utils.get_series_profile(list(fragment[signal]), human_readable=not table)
if table:
print(f'{start}:{stop}:{signal[:3]} |'.rjust(11), ''.join('X'if v else '.' for v in profile[signal]), '|', ' ' + utils.profile_name_from(profile[signal]))
else:
print(f'{start}:{stop}:{signal[:3]} |'.rjust(11), ', '.join(profile[signal]), ' ' + utils.profile_name_from(profile[signal]))
# print(profile)
if table:
print(' '.rjust(10) + '| ' + '—'*len(profile[signal]) + ' |')
class ScoreSaver(Saver):
"""Override specific methods of Saver in order to manage data
as a 3-uplet (scores:tuple, min:int, max:int).
"""
def __init__(self, fields:iter=['scores', 'min_score', 'max_score'], defaults:iter=None,
fileid:str='', datadir:str=commons.DATA_DIR,
plotter:callable=lambda df: df.boxplot('max_score', by=['step'])):
super().__init__(fields, defaults, fileid, datadir, plotter)