-
Notifications
You must be signed in to change notification settings - Fork 21
DPIR
AkarinVS edited this page Dec 3, 2021
·
29 revisions
DPIR, or Plug-and-Play Image Restoration with Deep Denoiser Prior, is a denoise and deblocking neural network. See also https://github.com/HolyWu/vs-dpir.
DPIR requires a strength parameter.
Link: https://github.com/AmusementClub/vs-mlrt/releases/download/model-20211203/dpir_v2.7z Includes these models:
- Denoise models, default sigma is 5.0
- drunet_gray: GRAY denoise
- drunet_color: RGB denoise
- Deblocking models, default sigma is 50.0
- drunet_deblocking_grayscale: GRAY deblocking
- drunet_deblocking_color: RGB deblocking
-
block_w
andblock_h
(tile size) must be multiples of 8. - All DPIR models require a strength parameter, or
sigma
, and you need to pass that in the form of a GRAYS clip (with normalization factor1.0/255
), see examples below for details.
src = core.std.BlankClip(width=640, height=360, format=vs.GRAYS)
sigma = 2.0
flt = core.ov.Model([src, core.std.BlankClip(src, color=sigma/255.0)], "drunet_gray.onnx")
DPIR is a huge network and it is extremely slow when running on CPU (e.g. for 360p input, you might see 0.05fps/cpu).
- Runtimes
- Models
- Device-specific benchmarks
- NVIDIA GeForce RTX 4090
- NVIDIA GeForce RTX 3090
- NVIDIA GeForce RTX 2080 Ti
- NVIDIA Quadro P6000
- AMD Radeon RX 7900 XTX
- AMD Radeon Pro V620
- AMD Radeon Pro V520
- AMD Radeon VII
- AMD EPYC Zen4
- Intel Core Ultra 7 155H
- Intel Arc A380
- Intel Arc A770
- Intel Data Center GPU Flex 170
- Intel Data Center GPU Max 1100
- Intel Xeon Sapphire Rapids