-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexptest3.py
1255 lines (1171 loc) · 43.7 KB
/
exptest3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Copyright (C) 2018-2021 RISE Research Institute of Sweden AB
File: exptest3.py
Author: [email protected]
"""
import pandas as pd
from math import *
from scipy.special import hyp1f1
from hist import *
from visual import *
eps = 0.001
# Brute force summation, in logarithms to avoid overflow
def log_hyper_1f1_negintab(a, b, x):
m = -a
lr = 0.0
lhg = 0.0
for k in range(m):
lr += log(x*(a+k)/((k+1)*(b+k)))
lhg += log(1 + exp(lr - lhg))
return lhg
# r *= (x*(a+k) / ((k+1)*(b+k)))
# hg += r
def log_hyper_1f1(a, b, x):
# b ej negativt heltal -> log(hyp1f1)
# b neg heltal -> interpolera b+-eps
eps = 0.0001
if b<0 and b==int(b):
ret = (hyp1f1(a, b-eps, x) + hyp1f1(a, b+eps, x))/2
else:
ret = hyp1f1(a, b, x)
if isinf(ret):
print("overflow at hyp1f1(%f, %f, %f)" % (a,b,x))
return -inf
elif ret<=0:
print("negative hyp1f1(%f, %f, %f)" % (a,b,x))
return -inf
return log(ret)
def log_hyper_1f1_interpol(a, b, x):
# a ej negativt heltal -> interpolera log(hyp1f1)
if a==int(a):
return log_hyper_1f1_negintab(int(a), b, x)
else:
r1 = log_hyper_1f1_negintab(floor(a), b, x)
r2 = log_hyper_1f1_negintab(ceil(a), b, x)
prop = a - floor(a)
return r2*prop + r1*(1.0-prop)
# pa = (n, t)
def LogLambdaProb_un(pa1, ll):
(n1, t1) = pa1
if ll <= 0:
return -inf if n1 > 0 else 0.0
return n1 * log(ll) - t1*ll
def LogLambdaProb_pr_un(pa1, ll, pr):
(n1, t1) = pa1
(n0, t0) = pr
if ll <= 0:
return -inf if n1+n0 > 0 else 0.0
return (n1+n0) * log(ll) - (t1+t0)*ll
def LogDifflambdaProbOne_un(pa1, pa2, dl):
(n1, t1) = pa1
(n2, t2) = pa2
if dl == 0:
ret = 0.0
elif dl > 0.0:
ret = (-dl * t2) + log_hyper_1f1_negintab(-n2, -n1 - n2, dl*(t1 + t2))
else:
ret = (dl * t1) + log_hyper_1f1_negintab(-n1, -n1 - n2, -dl*(t1 + t2))
return ret
def LogDifflambdaProbOne_pr_un_old(pa1, pa2, dl, pr):
(n1, t1) = pa1
(n2, t2) = pa2
(n0, t0) = pr
if dl == 0:
ret = 0.0
elif dl > 0.0:
ret = (-dl*(t2+t0)) + log_hyper_1f1_interpol(-n2-n0, -n1-n2-2*n0, dl*(t1+t2+2*t0))
else:
ret = (dl*(t1+t0)) + log_hyper_1f1_interpol(-n1-n0, -n1-n2-2*n0, -dl*(t1+t2+2*t0))
return ret
def LogDifflambdaProbOne_pr_un(pa1, pa2, dl, pr):
(n1, t1) = pa1
(n2, t2) = pa2
if dl == 0 or t1+t2 == 0.0 or n1+n2 == 0:
ret = 0.0
else:
if prior_style == 'partaverage': # separate priors per condition
(n0, t0) = (pr[0], pr[0]*(t1+t2)/(n1+n2+pr[0]))
elif prior_style == 'partaveragezero': # inget extra event
(n0, t0) = (pr[0], pr[0]*(t1+t2)/(n1+n2))
else:
(n0, t0) = pr
if dl > 0.0:
ret = (-dl*(t2+t0)) + log_hyper_1f1_interpol(-n2-n0, -n1-n2-2*n0, dl*(t1+t2+2*t0))
else:
ret = (dl*(t1+t0)) + log_hyper_1f1_interpol(-n1-n0, -n1-n2-2*n0, -dl*(t1+t2+2*t0))
return ret
def LogDifflambdaProbOne_num1_old(pa1, pa2, pr):
(n1, t1) = pa1
(n2, t2) = pa2
(n0, t0) = pr
# hitta gränser för pa1 och pa2 separat
func1 = lambda ll: LogLambdaProb_pr_un(pa1, ll, pr)
func2 = lambda ll: LogLambdaProb_pr_un(pa2, ll, pr)
(rng, vals) = find_calc_hrange(func1, (n1+n0+1)/(t1+t0), (n1+n0+1)/(5*(t1+t0)), 0.1, 25)
mx1 = max(vals)
a1 = rng[0]
b1 = rng[-1]
d1 = (b1 - a1)/(len(rng)-1)
(rng, vals) = find_calc_hrange(func2, (n2+n0+1)/(t2+t0), (n2+n0+1)/(5*(t2+t0)), 0.1, 25)
mx2 = max(vals)
a2 = rng[0]
b2 = rng[-1]
d2 = (b2 - a2)/(len(rng)-1)
return (mx1, a1, b1, d1, func1, mx2, a2, b2, d2, func2)
def LogDifflambdaProbOne_num1(pa1, pa2):
(n1, t1) = pa1
(n2, t2) = pa2
if t1+t2==0.0 or n1+n2==0:
return ()
# hitta gränser för pa1 och pa2 separat
func1 = lambda ll: LogLambdaProb_un(pa1, ll)
func2 = lambda ll: LogLambdaProb_un(pa2, ll)
(rng, vals) = find_calc_hrange(func1, (n1+1)/t1, (n1+1)/(5*t1), 0.1, 25)
mx1 = max(vals)
a1 = rng[0]
b1 = rng[-1]
d1 = (b1 - a1)/(len(rng)-1)
(rng, vals) = find_calc_hrange(func2, (n2+1)/t2, (n2+1)/(5*t2), 0.1, 25)
mx2 = max(vals)
a2 = rng[0]
b2 = rng[-1]
d2 = (b2 - a2)/(len(rng)-1)
return (mx1, a1, b1, d1, func1, mx2, a2, b2, d2, func2)
def LogDifflambdaProbOne_num2(tup, dl):
if not tup:
return 0.0
(mx1, a1, b1, d1, func1, mx2, a2, b2, d2, func2) = tup
# sen gå igenom för fixt dl och summera
dd = min(d1, d2)
aa = max(a1, a2-dl)
bb = min(b1, b2-dl)
sm = 0.0
lst = []
x = aa
while x<bb:
lst.append(func1(x) + func2(x+dl))
x += dd
if len(lst)==0:
y = func1((aa+bb)/2) + func2((aa+bb)/2 + dl)
return y - mx1 - mx2
mx = max(lst)
sm = sum(map(lambda y: exp(y-mx), lst))
return log(sm) + mx - mx1 - mx2 if sm>0.0 else -inf
#def LogDifflambdaProb_un(da1, da2, dl):
# return sum(list(map(lambda pa1,pa2: LogDifflambdaProbOne_un(pa1, pa2, dl), da1, da2)))
#def LogDifflambdaProb_pr_un(da1, da2, dl, pr):
# pr = (pr[0]/len(da1), pr[1]/len(da1))
# return sum(list(map(lambda pa1,pa2: LogDifflambdaProbOne_pr_un(pa1, pa2, dl, pr), da1, da2)))
def LogDifflambdaProb_num1(da1, da2):
return list(map(lambda pa1,pa2: LogDifflambdaProbOne_num1(pa1, pa2), da1, da2))
def LogDifflambdaProb_num2(tupl, dl):
return sum(list(map(lambda tup: LogDifflambdaProbOne_num2(tup, dl), tupl)))
prior_style = None
def set_prstyle(st):
global prior_style
prior_style = st
def DifflambdaHist(da1, da2, pa1, pa2):
(n1, t1) = pa1
(n2, t2) = pa2
if t1 == 0.0 or t2 == 0.0 or (n1 == 0 and n2 == 0):
return False
tupl = LogDifflambdaProb_num1(da1, da2)
func = lambda dl: LogDifflambdaProb_num2(tupl, dl)
(xres, yres) = find_calc_hrange(func, 0.0, (n1+n2+1)/(t1+t2), 0.1, 20)
return [xres, normalize_logprob(yres)]
def LambdaHist(pa1):
(n1, t1) = pa1
if t1 == 0.0 or n1 == 0:
return False
func = lambda dl: LogLambdaProb_un(pa1, dl)
(xres, yres) = find_calc_hrange(func, (n1+1)/t1, (n1+1)/(5*t1), 0.2, 20)
return [xres, normalize_logprob(yres)]
def normalize_logprob(vec):
mx = max(vec)
sm = 0.0
for i in range(len(vec)):
sm += exp(vec[i] - mx)
norm = log(sm) + mx
return [exp(x-norm) for x in vec]
def find_calc_hrange(func, start, step, mindiff, maxdiff):
def zpush(v):
return 0.0 if abs(v)<2e-11 else v
fa = nan
fb = nan
a = nan
b = nan
m1 = zpush(start - 0.5*step)
fm1 = func(m1)
m2 = zpush(start + 0.5*step)
fm2 = func(m2)
left = []
right = []
while True:
#print(a, fa, m1, fm1, m2, fm2, b, fb)
if fm1 > fm2:
if not isnan(b):
right = [(b, fb)] + right
(m, fm) = (m1, fm1)
(b, fb) = (m2, fm2)
else:
if not isnan(a):
left = [(a, fa)] + left
(a, fa) = (m1, fm1)
(m, fm) = (m2, fm2)
if isnan(a):
m1 = zpush(3*m - 2*b)
fm1 = func(m1)
(m2, fm2) = (m, fm)
elif isnan(b):
(m1, fm1) = (m, fm)
m2 = zpush(3*m - 2*a)
fm2 = func(m2)
else:
tmp = [fa, fm, fb]
mx = max(tmp)
mn = min(tmp)
if mx-mn < mindiff or (b-a)<step/1024:
break
if (m-a) > (b-m)*1.5:
dir = 0
elif (m-a)*1.5 < (b-m):
dir = 1
else:
dir = 0 if fa > fb else 1
if dir == 0:
m1 = zpush(0.5*(a+m))
fm1 = func(m1)
(m2, fm2) = (m, fm)
else:
(m1, fm1) = (m, fm)
m2 = zpush(0.5*(m+b))
fm2 = func(m2)
delta = min(m-a, b-m)
left = [(a, fa)] + left
right = [(b, fb)] + right
if m-a < m-b:
right = [(m, fm)] + right
else:
left = [(m, fm)] + left
tr = mx - maxdiff
#print("^", mn, mx, tr)
resx = []
resy = []
leftind = 0
if delta < 1e-10:
delta = 1e-3
while leftind < len(left) and left[leftind][1] > tr:
resx = [left[leftind][0]] + resx
resy = [left[leftind][1]] + resy
a = zpush(left[leftind][0] - delta)
leftind += 1
while leftind >= len(left) or a > left[leftind][0] + delta/2:
fa = func(a)
#print("L", a, fa)
if isnan(fa) or isinf(fa) or fa < tr:
break
resx = [a] + resx
resy = [fa] + resy
a = zpush(a-delta)
rightind = 0
while rightind < len(right) and right[rightind][1] > tr:
resx = resx + [right[rightind][0]]
resy = resy + [right[rightind][1]]
b = zpush(right[rightind][0] + delta)
rightind += 1
while rightind >= len(right) or b < right[rightind][0] - delta/2:
fb = func(b)
#print("R", b, fb)
if isnan(fb) or isinf(fb) or fb < tr:
break
resx = resx + [b]
resy = resy + [fb]
b = zpush(b+delta)
#print(a, m, b)
return (resx, resy)
def selfunc(entry, val):
if type(entry) == list:
if len(entry)>0 and type(entry[0])==list:
entry = list(map(lambda x:x[0], entry))
if type(val) == list:
for x in val:
if x in entry:
return True
return False
else:
return val in entry
else:
if type(val) == list:
return entry in val
else:
return val == entry
def selassoc(sel, key):
if sel is False:
return []
else:
return [x[-1] for x in sel if key == x[0] or (len(x)==3 and key == x[1])]
def assoc(lst, key, defl):
for ele in lst:
if ele[0]==key:
return ele[1]
return defl
def assoc_a0(lst, key, defl):
if type(lst)==list:
for ele in lst:
if type(ele)==list:
if ele[0]==key:
return ele[1]
else:
if ele==key:
return 0
return defl
else:
return 0 if lst==key else defl
def subsets(lst, ord):
if ord==0:
return [[]]
elif ord > len(lst):
return []
else:
rest = subsets(lst[1:], ord-1)
return list(map(lambda l:[lst[0]]+l, rest)) + subsets(lst[1:],ord)
def issubset(l1, l2):
for e in l1:
if not e in l2:
return False
return True
def tupleadd(t1, t2):
return tuple((t1[i]+t2[i] for i in range(min(len(t1),len(t2)))))
#return (t1[0]+t2[0],t1[1]+t2[1])
def tuplescale(t1, scale):
return tuple((t1[i]*scale for i in range(min(len(t1),len(t2)))))
#return (t1[0]*scale,t1[1]*scale)
def listminus(l1, l2):
return [e for e in l1 if not e in l2]
def read_total_file(file):
df = pd.read_csv(file, sep='\t')
for c in df:
if type(df[c][0])==str and df[c][0][0] == '[':
df[c] = df[c].apply(eval)
return df
def valsincolumn_old(df, col):
d = df[col]
res = []
for val in d:
if type(val)==list:
for e in val:
if not e in res:
res.append(e)
else:
if not val in res:
res.append(val)
return sorted(res)
def valsincolumn(df, col):
d = df[col]
res = []
for val in d:
if type(val)==list:
for e in val:
if type(e)==list:
if not e[0] in res:
res.append(e[0])
else:
if not e in res:
res.append(e)
else:
if not val in res and not (type(val)==float and isnan(val)):
res.append(val)
return sorted(res)
#--------------------------
# Ny approach för att undvika betingad utspädning: För varje
# seneffekt, i lämplig submängd av data (patienter, kön, etc) kolla om
# en viss faktor (egenskaper, diagnos, behandling) är signifikant
# korrelerad. Sen betinga på varje annan faktor som också är
# korrelerad, och se om signifikansen försvinner helt, alt frekvensen
# förändras signifikant. Lista de som inte försvinner/ändras, i
# signifikansordning. Håll reda på om alla försvinner vid korsvis
# betingning, eller om flera finns kvar. Helst ska varje signifikant
# korrelation förklaras av en faktor, alt flera faktorer av samma typ.
def select_data(df, sel1, sel2, selg):
# sel = [(col, val)] selg = [('otherdia', 't21')] [('DIA',1)] [False, 'stralung','ANSIKTE']
# cond = [col1, col2, ]
if df.empty:
return (df,df)
if selg:
test = df[df.columns[0]].apply(lambda entry: True)
for ele in selg:
if len(ele) == 3:
test = test & df[ele[1]].apply(lambda entry: not selfunc(entry, ele[2]))
else:
test = test & df[ele[0]].apply(lambda entry: selfunc(entry, ele[1]))
df = df[test]
test = df[df.columns[0]].apply(lambda entry: True)
for ele in sel1:
if len(ele) == 3:
test = test & df[ele[1]].apply(lambda entry: not selfunc(entry, ele[2]))
else:
test = test & df[ele[0]].apply(lambda entry: selfunc(entry, ele[1]))
d1 = df[test]
if sel2 is False:
d2 = df[~test]
else:
test = df[df.columns[0]].apply(lambda entry: True)
for ele in sel2:
if len(ele) == 3:
test = test & df[ele[1]].apply(lambda entry: not selfunc(entry, ele[2]))
else:
test = test & df[ele[0]].apply(lambda entry: selfunc(entry, ele[1]))
d2 = df[test]
return (d1, d2)
def select_data_alt(df, selalt, selg):
if df.empty:
return (df,df)
if selg:
test = df[df.columns[0]].apply(lambda entry: True)
for ele in selg:
if len(ele) == 3:
test = test & df[ele[1]].apply(lambda entry: not selfunc(entry, ele[2]))
else:
test = test & df[ele[0]].apply(lambda entry: selfunc(entry, ele[1]))
df = df[test]
test = df[df.columns[0]].apply(lambda entry: False)
for ele in selalt:
if len(ele) == 3:
test = test | df[ele[1]].apply(lambda entry: not selfunc(entry, ele[2]))
else:
test = test | df[ele[0]].apply(lambda entry: selfunc(entry, ele[1]))
df = df[test]
return df
def count_effect(df, eff, ncol, ecol):
n = 0
t = 0
for i in range(len(df)):
row = df.iloc[i]
x = assoc(row[ecol], eff, False)
if x is not False:
n += 1
t += x
else:
t += row[ncol]
return (n, t)
def count_effect_mtag(df, eff, tags):
ecols = ['event_time_' + tag for tag in tags]
ncols = ['no_event_time_' + tag for tag in tags]
#ccols = ['censored_time_' + tag for tag in tags]
res = (0, 0, 0)
for i in range(len(df)):
row = df.iloc[i]
x = min([assoc(row[ecol], eff, inf) for ecol in ecols])
if x is not inf:
res = tupleadd(res, (1, x, 1))
else:
x = min([row[ncol] for ncol in ncols])
res = tupleadd(res, (0, x, 1))
return res
#def count_cond_effect(df, eff, ncol, ecol, cols, ignore):
# dic = {}
# for i in range(len(df)):
# row = df.iloc[i]
# x = assoc(row[ecol], eff, False)
# if x is not False:
# incr = (1, x)
# else:
# incr = (0, row[ncol])
# increment_tuple_value(row, dic, cols, ignore, incr)
# return dic
def get_cond_stats_daydiff(df, pair, conds, selg, tags, eff):
# Vi får kuta igenom hela data, och för varje sample sortera in värden i rätt dict och key
# Regeln är att ett villkor är sant om eff-dag är senare än ev cond-dag
(dd, dummy) = select_data(df, [], False, selg)
kl = [""]
for cond in conds:
kl = [(k+"_"+str(cond[-1]), k+"_~"+str(cond[-1])) for k in kl]
kl = [k[0] for k in kl] + [k[1] for k in kl]
dick = { k : kl.index(k) for k in kl}
dic1 = { k : (0, 0, 0) for k in kl}
dic2 = { k : (0, 0, 0) for k in kl}
invk = { kl.index(k) : k for k in kl}
bits = [2**i for i in range(len(conds))]
ecols = ['event_time_' + tag for tag in tags]
ncols = ['no_event_time_' + tag for tag in tags]
for i in range(len(dd)):
row = dd.iloc[i]
x = min([assoc(row[ecol], eff, inf) for ecol in ecols])
# here, sort it into correct key
# för varje cond och pair, hitta senaste dag före eff-dag (minus marginal)
ylst = [y if y<x-30 else -inf for y in [assoc_a0(row[col], val, -inf) for col,val in ([pair]+conds if pair else conds)]]
y = max(max(ylst), 0)
k = invk[sum([b if v==-inf else 0 for (b,v) in zip(bits,ylst if not pair else ylst[1:])])]
td = dic2 if pair and ylst[0]==-inf else dic1
if x is not inf:
td[k] = tupleadd(td[k], (1, x-y, 1))
else:
x = min([row[ncol] for ncol in ncols])
td[k] = tupleadd(td[k], (0, max(x-y, 0), 1))
return (dic1, dic2, dick)
def get_cond_stats_one(df, pair, conds, selg, tags, eff):
(d1, d2) = select_data(df, [pair], False, selg)
kl = [""]
dl1 = [d1]
dl2 = [d2]
for cond in conds:
dl1 = [select_data(d1, [cond], False, []) for d1 in dl1]
dl2 = [select_data(d2, [cond], False, []) for d2 in dl2]
kl = [(k+"_"+str(cond[-1]), k+"_~"+str(cond[-1])) for k in kl]
dl1 = [d1[0] for d1 in dl1] + [d1[1] for d1 in dl1]
dl2 = [d2[0] for d2 in dl2] + [d2[1] for d2 in dl2]
kl = [k[0] for k in kl] + [k[1] for k in kl]
dic1 = { k : count_effect_mtag(d, eff, tags) for k,d in zip(kl,dl1)}
dic2 = { k : count_effect_mtag(d, eff, tags) for k,d in zip(kl,dl2)}
dick = { k : kl.index(k) for k in kl}
return (dic1, dic2, dick)
def get_cond_stats_comb(df, conds, selg, tags, eff):
(dd, dummy) = select_data(df, [], False, selg)
kl = [""]
dl = [dd]
for cond in conds:
dl = [select_data(d, [cond], False, []) for d in dl]
kl = [(k+"_"+str(cond[-1]), k+"_~"+str(cond[-1])) for k in kl]
dl = [d[0] for d in dl] + [d[1] for d in dl]
kl = [k[0] for k in kl] + [k[1] for k in kl]
dic = { k : count_effect_mtag(d, eff, tags) for k,d in zip(kl,dl)}
datadic = { k : d for k,d in zip(kl,dl)}
#dick = { k : kl.index(k) for k in kl}
return (dic, datadic)
def estimatefactor(dlst1, dlst2):
lf = 0.0
sn = 0.0
for ((n1,t1),(n2,t2)) in zip(dlst1,dlst2):
if n1 > 0 and n2 > 0:
lf += min(n1,n2)*(log(n2/t2) - log(n1/t1))
sn += min(n1,n2)
return exp(lf/sn) if sn>0 else 1.0
def dictolistwithprior(cdic1, cdic2, cdic0, tscale = 1.0):
n1,t1,s1 = (0,0,0)
n2,t2,s2 = (0,0,0)
for k in cdic0:
(tmp1, tmp2) = (cdic1[k], cdic2[k])
n1 += tmp1[0]
t1 += tmp1[1]*tscale
s1 += tmp1[2]
n2 += tmp2[0]
t2 += tmp2[1]*tscale
s2 += tmp2[2]
if prior_style == 'noninfo': # Noninformative prior
prn = 1.0/len(cdic0)
lst1 = [ (cdic1[k][0] - prn, cdic1[k][1]*tscale) for k in cdic0 ]
lst2 = [ (cdic2[k][0] - prn, cdic2[k][1]*tscale) for k in cdic0 ]
elif prior_style == 'average': # Average prior
prn = 1.0/len(cdic0)
prt = prn*(t1+t2)/(n1+n2+1)
lst1 = [ (cdic1[k][0] + prn, cdic1[k][1]*tscale + prt) for k in cdic0 ]
lst2 = [ (cdic2[k][0] + prn, cdic2[k][1]*tscale + prt) for k in cdic0 ]
elif prior_style == 'partaverage': # separate priors per condition
prn = 1.0/len(cdic0)
lst1 = []
lst2 = []
for k in cdic0:
(nn1, tt1, ss1) = cdic1[k]
(nn2, tt2, ss2) = cdic2[k]
prt = prn*(tt1+tt2)/(nn1+nn2+prn)
lst1.append((nn1+prn, (tt1+prt)*tscale))
lst2.append((nn2+prn, (tt2+prt)*tscale))
elif prior_style == 'partaveragezero': # inget extra event
prn = 1.0/len(cdic0)
lst1 = []
lst2 = []
for k in cdic0:
(nn1, tt1, ss1) = cdic1[k]
(nn2, tt2, ss2) = cdic2[k]
if nn1+nn2 > 0:
prt = prn*(tt1+tt2)/(nn1+nn2)
lst1.append((nn1+prn, (tt1+prt)*tscale))
lst2.append((nn2+prn, (tt2+prt)*tscale))
else:
lst1.append((nn1, tt1*tscale))
lst2.append((nn2, tt2*tscale))
else: # No prior
lst1 = [ (cdic1[k][0], cdic1[k][1]*tscale) for k in cdic0 ]
lst2 = [ (cdic2[k][0], cdic2[k][1]*tscale) for k in cdic0 ]
return (lst1, lst2, (n1,t1,s1), (n2,t2,s2))
def analysediff(cdic1, cdic2, cdic0):
(dlst1, dlst2, (n1, t1, s1), (n2, t2, s2)) = dictolistwithprior(cdic1, cdic2, cdic0, 1.0/36525)
hist = DifflambdaHist(dlst1, dlst2, (n1, t1), (n2, t2))
fact = estimatefactor(dlst1, dlst2)
if hist is not False:
mean, var = hist_mean_var(hist)
sig = hist_significance(hist, 0.0, mean)
else:
mean = 0.0
var= 0.0
sig = 1.0
nn1 = sum(list(map(lambda p:p[0], dlst1)))
tt1 = sum(list(map(lambda p:p[1], dlst1)))
nn2 = sum(list(map(lambda p:p[0], dlst2)))
tt2 = sum(list(map(lambda p:p[1], dlst2)))
hist1 = LambdaHist((nn1, tt1))
if hist1 is not False:
mean1, var1 = hist_mean_var(hist1)
else:
mean1 = 0.0
hist2 = LambdaHist((nn2, tt2))
if hist2 is not False:
mean2, var2 = hist_mean_var(hist2)
else:
mean2 = 0.0
return {'mean':mean, 'std':sqrt(var), 'sig':sig, 'fact': fact, 'mean1':mean1, 'n1':n1, 't1':t1, 's1':s1, 'mean2':mean2, 'n2':n2, 't2':t2, 's2':s2, 'hist':hist, 'hist1':hist1, 'hist2':hist2}
def analysediff01(cdic1, cdic2, cdic0):
(dlst1, dlst2, (n1, t1, s1), (n2, t2, s2)) = dictolistwithprior(cdic1, cdic2, cdic0, 1.0/36525)
hist = DifflambdaHist(dlst1, dlst2, (n1, t1), (n2, t2))
fact = estimatefactor(dlst1, dlst2)
if hist is not False:
mean, var = hist_mean_var(hist)
sig = hist_significance(hist, 0.0, mean)
else:
mean = 0.0
var= 0.0
sig = 1.0
nn1 = sum(list(map(lambda p:p[0], dlst1)))
tt1 = sum(list(map(lambda p:p[1], dlst1)))
nn2 = sum(list(map(lambda p:p[0], dlst2)))
tt2 = sum(list(map(lambda p:p[1], dlst2)))
mean1 = nn1/tt1 if tt1 > 0 else 0.0
mean2 = nn2/tt2 if tt2 > 0 else 0.0
return {'mean':mean, 'std':sqrt(var), 'sig':sig, 'fact': fact, 'mean1':mean1, 'n1':n1, 't1':t1, 's1':s1, 'mean2':mean2, 'n2':n2, 't2':t2, 's2':s2, 'hist':hist, 'hist1':False, 'hist2':False}
def analysediff0(cdic1, cdic2, cdic0):
#dlst1 = cdictolist(cdic1, cdic0, 1.0/36525)
#dlst2 = cdictolist(cdic2, cdic0, 1.0/36525)
#if prior_style == 'noninfo':
# pr = (-1, 0) # Noninformative prior
#elif prior_style in ['average','partaverage','partaveragezero']:
# n1 = sum(list(map(lambda p:p[0], dlst1)))
# t1 = sum(list(map(lambda p:p[1], dlst1)))
# n2 = sum(list(map(lambda p:p[0], dlst2)))
# t2 = sum(list(map(lambda p:p[1], dlst2)))
# pr = (1, 1*(t1+t2)/(n1+n2+1)) # Average prior
#else:
# pr = (0, 0) # No prior
#hist = DifflambdaHist(dlst1, dlst2, pr)
(dlst1, dlst2, (n1, t1, s1), (n2, t2, s2)) = dictolistwithprior(cdic1, cdic2, cdic0, 1.0/36525)
hist = DifflambdaHist(dlst1, dlst2, (n1, t1), (n2, t2))
if hist is not False:
mean, var = hist_mean_var(hist)
sig = hist_significance(hist, 0.0, mean)
else:
mean = 0.0
var= 0.0
sig = 1.0
return {'mean':mean, 'std':sqrt(var), 'sig':sig}
def analyseeffects1(df, selg, coldic, tags, eff):
resdic = {}
for col in coldic:
for val in coldic[col]:
#print((col,val))
#(dic1, dic2, kdic) = get_cond_stats_one(df, (col, val), [], selg, tags, eff)
(dic1, dic2, kdic) = get_cond_stats_daydiff(df, (col, val), [], selg, tags, eff)
resdic[(col,val)] = analysediff(dic2, dic1, kdic)
return resdic
def analyseeffects_back(df, selg, pair, tags, efflst):
resdic = {}
for eff in efflst:
col,val = pair
(dic1, dic2, kdic) = get_cond_stats_one(df, pair, [], selg, tags, eff)
resdic[eff] = analysediff(dic2, dic1, kdic)
return resdic
def analyseeffects2(df, selg, resdic1, sig, tags, eff):
resdic2 = {}
lst = []
for pair in resdic1:
if resdic1[pair]['sig'] <= sig:
lst.append(pair)
lst.sort(key=lambda x: resdic1[x]['sig'])
for (ind,pair1) in reversed(list(enumerate(lst))):
mnsig = 0.0
mntmp = resdic1[pair1]
for pair2 in lst:
if pair1 != pair2:
#print(pair1,pair2)
#(dic1, dic2, kdic) = get_cond_stats_one(df, pair1, [pair2], selg, tags, eff)
(dic1, dic2, kdic) = get_cond_stats_daydiff(df, pair1, [pair2], selg, tags, eff)
tmp = analysediff(dic2, dic1, kdic)
if tmp['sig'] > mnsig:
mnsig = tmp['sig']
tmp['cond'] = pair2
mntmp = tmp
resdic2[pair1] = mntmp
if mnsig > sig:
del lst[ind]
return resdic2
def movetosaved(remaining, saved, removed, dic):
# alla som inte tas bort av andra än removed flyttas till saved
changed = False
for (ind,pair) in reversed(list(enumerate(remaining))):
lst = dic[pair]
ok = True
for conds,sig in lst:
ok = False
for cond in conds:
if cond in removed:
ok = True
if not ok:
break
if ok:
changed = True
saved.append(pair)
del remaining[ind]
return changed
def movetoremoved(remaining, saved, removed, dic):
# alla som tas bort av någon i saved flyttas till removed
changed = False
for (ind,pair) in reversed(list(enumerate(remaining))):
lst = dic[pair]
ok = False
for conds,sig in lst:
ok = True
for cond in conds:
if cond not in saved:
ok = False
if ok:
break
if ok:
changed = True
removed.append(pair)
del remaining[ind]
return changed
def allexcept(lst, ele):
return [e for e in lst if e != ele]
def analyseeffects2new(df, selg, resdic1, sig, tags, eff):
ciidic = {}
lst = []
# välj ut dem med signifiant indirekt effekt
for pair in resdic1:
if resdic1[pair]['sig'] <= sig:
lst.append(pair)
ciidic[pair] = []
# i första passet, betinga var och en på var och en av de andra,
# spara lista på vilka som gör den insignifikant
# ta bort dem som
# 1) blir insignifikant av någon (som den själv inte gör insignifikant)
# 2) och inte behövs för att göra någon annan insignifikant
# I loop: spara dem som inte tas bort av nåt, släng dem som tas bort av dem,
# iterera med resten dvs spara av resten dem som inte tas bort av kvarvarande
# i nästa pass betinga på par (och senare trippler) av kvarvarande
# ta bort enligt analog princip
remaining = lst
saved = []
totsaved = []
for order in [1,2,3]:
remaining = saved + remaining
conds = subsets(remaining, order)
for pair in lst:
for cond in conds:
if not pair in cond:
#(dic1, dic2, kdic) = get_cond_stats_one(df, pair, cond, selg, tags, eff)
(dic1, dic2, kdic) = get_cond_stats_daydiff(df, pair, cond, selg, tags, eff)
tmp = analysediff0(dic2, dic1, kdic)
if tmp['sig'] > sig:
ciidic[pair].append((cond,tmp['sig']))
remaining = lst.copy()
saved = []
removed = []
changed = True
while changed:
# alla som inte tas bort av andra än removed flyttas till saved
# alla som tas bort av någon i saved flyttas till removed
changed = False
if movetosaved(remaining, saved, removed, ciidic):
changed = True
if movetoremoved(remaining, saved, removed, ciidic):
changed = True
if remaining:
alternatives = []
origsaved = saved.copy()
origremaining = remaining.copy()
akeys = []
for pair in remaining:
for sp in ciidic[pair]:
sp2 = listminus(sp[0], saved)
if sp2 and sp2 not in akeys:
akeys.append(sp2)
for sp in akeys:
# kolla också för var och en i listan sp om de nollas av de andra i sp plus saved
if len(sp) > 1:
ok = True
for p in sp:
ll = ciidic[p]
tset = listminus(sp,p) + saved
for ele,sig in ll:
if issubset(ele, tset):
ok = False
break
if not ok:
continue
saved = origsaved + sp
remaining = listminus(origremaining, sp)
removed = []
changed = movetoremoved(remaining, saved, removed, ciidic)
while changed:
changed = False
if movetosaved(remaining, saved, removed, ciidic):
changed = True
if movetoremoved(remaining, saved, removed, ciidic):
changed = True
if not remaining:
s = set(saved)
if s not in alternatives:
alternatives.append(s)
if not alternatives:
alternatives = [set(saved)]
print("Failed to find clean condition alternatives")
print("Saved: ", saved)
print("Remaining: ", remaining)
print("Dict: ", ciidic)
else:
alternatives = [set(saved)]
resdic2lst = []
for saved in alternatives:
# preparera resdic2 från saved, dvs betinga var och en på övriga
saved = list(saved)
resdic2 = {}
for pair in lst:
if pair in saved:
cond = allexcept(saved, pair)
else:
mx = ((),0.0)
for sp in ciidic[pair]:
if issubset(sp[0], saved) and sp[1]>mx[1]:
mx = sp
if mx[1] > 0.0:
cond = mx[0]
else:
cond = allexcept(saved, pair)
#(dic1, dic2, kdic) = get_cond_stats_one(df, pair, cond, selg, tags, eff)
(dic1, dic2, kdic) = get_cond_stats_daydiff(df, pair, cond, selg, tags, eff)
#tmp = analysediff(dic2, dic1, kdic)
tmp = analysediff01(dic2, dic1, kdic)
tmp['cond'] = cond
resdic2[pair] = tmp
for s in saved:
if not s in totsaved:
totsaved.append(s)
resdic2lst.append(resdic2)
return resdic2lst, totsaved
def analyse_one_effect(df, selg, pair, cond, eff):
tags = []
for tag in ["death", "inc", "nic"]:
if eff in valsincolumn(df, 'event_time_' + tag):
tags.append(tag)
#(dic1, dic2, kdic) = get_cond_stats_one(df, pair, [], selg, tags, eff)
(dic1, dic2, kdic) = get_cond_stats_daydiff(df, pair, [], selg, tags, eff)
res0 = analysediff(dic2, dic1, kdic)
#(dic1, dic2, kdic) = get_cond_stats_one(df, pair, cond, selg, tags, eff)
(dic1, dic2, kdic) = get_cond_stats_daydiff(df, pair, cond, selg, tags, eff)
res1 = analysediff(dic2, dic1, kdic)
print("Correlates to " + eff)
display_analysis_one_row(pair, res1, res0)
print()
#return { 'mean0': res0['mean'], 'sig0':res0['sig'], 'mean1': res1['mean'], 'sig1': res1['sig']}
def showeffects1(win, df, selg, coldic, tags, eff):
name = "Correlates of " + str(list(coldic.keys())) + " to " + eff
resdic = analyseeffects1(df, selg, coldic, tags, eff)
show_analysis_rows_dict(win, name, resdic, False)
def show_all_effects(win, df, selg, sig, eff):
coldic = {}
selcols = [s[0] for s in selg if s[0] is not False]
if 'sex' not in selcols:
coldic['sex'] = ['flicka'] # special since using both are redundant
for col in ['other_dia','diagnosis_class','surgery_diff','radio_diff','cytoclass_diff','stemcell_diff']:
if col not in selcols:
coldic[col] = valsincolumn(df, col)
tags = []
for tag in ["death", "inc", "nic"]:
if eff in valsincolumn(df, 'event_time_' + tag):
tags.append(tag)
name = "Direct correlates to " + eff
resdic1 = analyseeffects1(df, selg, coldic, tags, eff)
resdic2lst,remaining = analyseeffects2new(df, selg, resdic1, sig, tags, eff)
if len(resdic2lst) == 1:
show_analysis_rows_dict(win, name, resdic2lst[0], resdic1)
else:
print("There are %d alternatives. Press return to switch." % len(resdic2lst))
for i,resdic2 in enumerate(resdic2lst):
show_analysis_rows_dict(win, name, resdic2lst[i], resdic1)
if (i<len(resdic2lst)-1):
input()
def display_all_effects(df, selg, sig, efflst = False, extratext=""):
coldic = {}
selcols = [s[0] for s in selg if s[0] is not False]
if 'sex' not in selcols:
coldic['sex'] = ['flicka'] # special since using both are redundant
for col in ['other_dia','diagnosis_class','surgery_diff','radio_diff','cytoclass_diff','stemcell_diff']:
if col not in selcols:
coldic[col] = valsincolumn(df, col)
effdic = {tag : valsincolumn(df, 'event_time_' + tag) for tag in ["death", "inc", "nic"]}
if efflst is False:
efflst = []
for tag in effdic:
for eff in effdic[tag]:
if eff not in efflst:
efflst.append(eff)
efflst.sort()
for eff in efflst:
tags = []
for tag in effdic:
if eff in effdic[tag]:
tags.append(tag)
name = "Direct correlates to " + eff + extratext
resdic1 = analyseeffects1(df, selg, coldic, tags, eff)
resdic2lst,remaining = analyseeffects2new(df, selg, resdic1, sig, tags, eff)
if len(resdic2lst) == 1:
display_analysis_rows_dict(name, resdic2lst[0], resdic1)
print()
else:
print("There are %d alternatives:" % len(resdic2lst))
for i,resdic2 in enumerate(resdic2lst):
display_analysis_rows_dict(name, resdic2lst[i], resdic1)
print("--------------------")
display_effect_all_comb(df, selg, remaining, eff)
def get_list_stats2(df, efftag, eff):
# return min, max, first tsum, first nsum
mn = 0
mx = 0