-
Notifications
You must be signed in to change notification settings - Fork 0
/
findFeatures.py
77 lines (62 loc) · 2.28 KB
/
findFeatures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#!/usr/local/bin/python2.7
import argparse as ap
import cv2
import imutils
import numpy as np
import os
from sklearn.svm import LinearSVC
import joblib
from scipy.cluster.vq import *
from sklearn.preprocessing import StandardScaler
# Get the path of the training set
parser = ap.ArgumentParser()
parser.add_argument("-t", "--trainingSet", help="Path to Training Set", required="True")
args = vars(parser.parse_args())
# Get the training classes names and store them in a list
train_path = args["trainingSet"]
training_names = os.listdir(train_path)
# Get all the path to the images and save them in a list
# image_paths and the corresponding label in image_paths
image_paths = []
image_classes = []
class_id = 0
for training_name in training_names:
dir = os.path.join(train_path, training_name)
class_path = imutils.imlist(dir)
image_paths += class_path
image_classes += [class_id] * len(class_path)
class_id += 1
# Create feature extraction and keypoint detector objects
sift = cv2.SIFT_create()
des_ext = cv2.SIFT_create()
# List where all the descriptors are stored
des_list = []
for image_path in image_paths:
im = cv2.imread(image_path)
kpts = sift.detect(im)
kpts, des = des_ext.compute(im, kpts)
des_list.append((image_path, des))
# Stack all the descriptors vertically in a numpy array
descriptors = des_list[0][1]
for image_path, descriptor in des_list[1:]:
descriptors = np.vstack((descriptors, descriptor))
# Perform k-means clustering
num_clusters = 100
vocabulary, variance = kmeans(descriptors, num_clusters, 1)
# Calculate the histogram of features
img_features = np.zeros((len(image_paths), num_clusters), "float32")
for i in range(len(image_paths)):
words, distance = vq(des_list[i][1], vocabulary)
for w in words:
img_features[i][w] += 1
# Perform Tf-Idf vectorization
num_occurences = np.sum((img_features > 0) * 1, axis=0)
idf = np.array(np.log((1.0 * len(image_paths) + 1) / (1.0 * num_occurences + 1)), 'float32')
# Scaling the words
stdSlr = StandardScaler().fit(img_features)
img_features = stdSlr.transform(img_features)
# Train the Linear SVM
classifier = LinearSVC()
classifier.fit(img_features, np.array(image_classes))
# Save the SVM
joblib.dump((classifier, training_names, stdSlr, num_clusters, vocabulary), "bof.pkl", compress=3)