diff --git a/.github/workflows/ci-cd.yml b/.github/workflows/ci-cd.yml index 1cad1fd..5d84d90 100644 --- a/.github/workflows/ci-cd.yml +++ b/.github/workflows/ci-cd.yml @@ -31,7 +31,6 @@ jobs: submodules: recursive # Fetch Hugo themes (true OR recursive) fetch-depth: 1 # Fetch all history for .GitInfo and .Lastmod # TODO: Need a unique key we can pass, but as we're targeting - # arcana@master, this is not trivial. # # - name: Cache dependencies # uses: actions/cache@v1 @@ -47,7 +46,7 @@ jobs: - name: Install python dependencies run: pip install -r ./requirements.txt - name: Generate pipeline docs - run: arcana deploy make-docs specs/australian-imaging-service-community docs/pipelines --flatten --default-data-space arcana.common:Clinical + run: pydra2app make-docs specs/australian-imaging-service-community docs/pipelines --flatten --default-data-space common:Clinical - uses: actions/upload-artifact@v3 with: name: built-docs @@ -174,7 +173,7 @@ jobs: pip install -e ./src/$pkg done fi - arcana deploy make-app specs/australian-imaging-service-community xnat:XnatApp \ + pydra2app make xnat specs/australian-imaging-service-community \ --registry ghcr.io --check-registry --clean-up --tag-latest --loglevel info \ --release pipelines-community-metapackage $VERSION $OPTIONS diff --git a/requirements.txt b/requirements.txt index 5e7380a..7d10e34 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,2 +1,2 @@ -pydra2app-xnat >=0.51 +pydra2app-xnat >=0.6.2 diff --git a/tutorial/ais-pipelines-tutorial.ipynb b/tutorial/ais-pipelines-tutorial.ipynb index 84a8ab7..968f9d0 100644 --- a/tutorial/ais-pipelines-tutorial.ipynb +++ b/tutorial/ais-pipelines-tutorial.ipynb @@ -16,6 +16,8 @@ "In this workshop you will learn how to design, deploy and run Australian Imaging Service pipelines\n", "\n", "##### Preparation\n", + "1. Set up your GitHub account\n", + "1. Personalise some environment variables\n", "1. Explore the community pipelines repository\n", "1. Start up a test XNAT instance to test the pipelines\n", "1. Set up your Git/GitHub\n", @@ -35,9 +37,13 @@ "1. Test the *mri_synthstrip* pipeline\n", "1. Create a test pull-request on GitHub\n", "\n", + "##### Design a pipeline to run mri_convert\n", + "\n", + "* Using methods used for `mri_synthstrip` design a pipeline to run Freesurfer's `mri_convert`\n", + "\n", "##### Design your own pipeline (if you have one in mind)\n", "\n", - " Design, build and test your own pipeline using the methods demonstrated in previous sections\n" + "* Design, build and test your own pipeline using the methods demonstrated in previous sections\n" ] }, { @@ -50,813 +56,201 @@ }, { "cell_type": "markdown", - "id": "78fdb31d", + "id": "48c963ec-b6be-46d0-8a3b-e0ce584e3df1", "metadata": {}, "source": [ - "### Explore the community pipelines repository" + "### Set up your Git/GitHub" ] }, { "cell_type": "markdown", - "id": "86d0bf23", + "id": "03e833e5-abd6-4087-b290-5fdd35b9a37c", "metadata": {}, "source": [ - "Examine the structure of the pipelines repository using the `tree` utility" + "Fork your own copy of the community pipelines repo\n", + "\n", + "1. Navigate to https://github.com\n", + "1. Create a GitHub user account (if you don't have one already)\n", + "1. Add the SSH key generated in the first step to your GitHub account under `Settings>SSH and GPG keys` (Settings are accessed by clicking your avatar in the top right hand corner)\n", + "1. Fork the https://github.com/Australian-Imaging-Service/pipelines-community into your GitHub user account" ] }, { - "cell_type": "code", - "execution_count": 3, - "id": "7de3909f", + "cell_type": "markdown", + "id": "1c2e0e21-48cc-431c-8e94-583eb9b5e7b9", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[01;34m.\u001b[0m\n", - "├── \u001b[00mLICENSE\u001b[0m\n", - "├── \u001b[00mREADME.md\u001b[0m\n", - "├── \u001b[00mcodecov.yml\u001b[0m\n", - "├── \u001b[01;34mdocs\u001b[0m\n", - "├── \u001b[00mrequirements.txt\u001b[0m\n", - "├── \u001b[01;34mspecs\u001b[0m\n", - "│   └── \u001b[01;34maustralian-imaging-service-community\u001b[0m\n", - "│   ├── \u001b[01;34mau\u001b[0m\n", - "│   │   └── \u001b[01;34medu\u001b[0m\n", - "│   │   ├── \u001b[01;34mname-of-your-group-goes-here\u001b[0m\n", - "│   │   │   └── \u001b[00mmri_convert.yaml\u001b[0m\n", - "│   │   ├── \u001b[01;34msydney\u001b[0m\n", - "│   │   │   └── \u001b[01;34msydneyimaging\u001b[0m\n", - "│   │   │   └── \u001b[00mt1_preproc.yaml\u001b[0m\n", - "│   │   └── \u001b[01;34msydneyimagingtest\u001b[0m\n", - "│   │   ├── \u001b[00mmri_convert.yaml\u001b[0m\n", - "│   │   └── \u001b[00mmri_synthstrip.yaml\u001b[0m\n", - "│   └── \u001b[01;34mexamples\u001b[0m\n", - "│   ├── \u001b[00mbet.yaml\u001b[0m\n", - "│   └── \u001b[00mzip.yaml\u001b[0m\n", - "├── \u001b[01;34msrc\u001b[0m\n", - "│   └── \u001b[01;34mau.edu.sydney.sydneyimaging\u001b[0m\n", - "│   ├── \u001b[00mREADME.md\u001b[0m\n", - "│   ├── \u001b[01;34maustralianimagingservice\u001b[0m\n", - "│   │   └── \u001b[01;34mcommunity\u001b[0m\n", - "│   │   └── \u001b[01;34mau\u001b[0m\n", - "│   │   └── \u001b[01;34medu\u001b[0m\n", - "│   │   └── \u001b[01;34msydney\u001b[0m\n", - "│   │   └── \u001b[01;34msydneyimaging\u001b[0m\n", - "│   │   ├── \u001b[00m__init__.py\u001b[0m\n", - "│   │   ├── \u001b[00mt1_preproc.py\u001b[0m\n", - "│   │   └── \u001b[01;34mtests\u001b[0m\n", - "│   │   └── \u001b[00mtest_t1_preproc.py\u001b[0m\n", - "│   └── \u001b[00mpyproject.toml\u001b[0m\n", - "├── \u001b[01;34mtests\u001b[0m\n", - "│   ├── \u001b[00mtest_bet.py\u001b[0m\n", - "│   ├── \u001b[00mtest_build.py\u001b[0m\n", - "│   ├── \u001b[00mtest_docs.py\u001b[0m\n", - "│   └── \u001b[00mtest_zip.py\u001b[0m\n", - "└── \u001b[01;34mtutorial\u001b[0m\n", - " ├── \u001b[00mais-pipelines-tutorial.ipynb\u001b[0m\n", - " ├── \u001b[01;32mpreparation.sh\u001b[0m\n", - " ├── \u001b[00mrequirements.txt\u001b[0m\n", - " └── \u001b[00mxnat4tests-config.yaml\u001b[0m\n", - "\n", - "22 directories, 23 files\n" - ] - } - ], "source": [ - "cd ~/git/pipelines-community\n", - "tree . --gitignore" + "### Personalise some environment variables" ] }, { "cell_type": "markdown", - "id": "521d8ef7", + "id": "4e49908c-eb04-48a0-9448-2f544dc51449", "metadata": {}, "source": [ - "Examine the layout of the *Zip* pipelines specification" + "Change the following environment variables to appropriate values for you" ] }, { "cell_type": "code", - "execution_count": 2, - "id": "7fafd93b", + "execution_count": null, + "id": "63538fd6-de04-4117-b0d2-fc1884cf7f45", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "# The version of the specification format used for this file\n", - "schema_version: 1.0\n", - "# Short name for the pipeline referenced in the UI\n", - "title: \"Zips up a file or directory\"\n", - "version:\n", - " # The version of Ubuntu's zip we are using\n", - " package: \"3.0\"\n", - "base_image:\n", - " # Pick a generic base image, in this case Ubuntu - Jammy (22.04LTS)\n", - " name: ubuntu\n", - " tag: jammy\n", - "authors:\n", - " # Authors of the pipeline. The first email will be considered to be the maintainer of\n", - " # the generated container images\n", - " - name: Thomas G. Close\n", - " email: thomas.close@sydney.edu.au\n", - "docs:\n", - " # Link to the external documentation for the tool\n", - " info_url: https://manpages.ubuntu.com/manpages/focal/man1/zip.1.html\n", - " # Description for auto-generated docss\n", - " description: |\n", - " This is a simple pipeline that zips up the given directory\n", - "packages:\n", - " # Install the zip command in the Ubuntu image\n", - " system:\n", - " - zip\n", - " pip:\n", - " - frametree\n", - " - frametree-xnat\n", - " - pydra2app-xnat\n", - " - pydra2app\n", - "command:\n", - " # Use the generic \"shell-command\" task\n", - " task: common:shell\n", - " # the pipeline is desgined to run on imaging \"sessions\" as opposed to \"subjects\" or \"projects\"\n", - " row_frequency: session\n", - " # List the inputs that are presented to end-user in UI\n", - " inputs:\n", - " to_zip:\n", - " # MIME-type or \"MIME-like\" format, generic/fs-object corresponds a file or directory\n", - " datatype: generic/fs-object\n", - " # description of field presented in UI\n", - " help: \"Input file-system object to zip\"\n", - " # Additional config args that are passed to the shell task as part of the \"inputs\" dict\n", - " configuration:\n", - " # Position of field on command line call. Negative numbers are indexed backwards from the end\n", - " argstr: \"\"\n", - " # prefix for field when printed to command line\n", - " position: -1\n", - " # List the outputs generated by the pipeline\n", - " outputs:\n", - " zipped:\n", - " # MIME-type or \"MIME-like\" format\n", - " datatype: application/zip\n", - " # description of field presented in UI\n", - " help: Zipped file-system Object\n", - " # Additional config args that are passed to the shell task as part of the \"outputs\" dict\n", - " configuration:\n", - " # Position of field on command line call. Negative numbers are indexed backwards from the end\n", - " argstr: \"\"\n", - " # prefix for field when printed to command line\n", - " position: -2\n", - " # Parameters exposed to user to UI\n", - " parameters:\n", - " compression:\n", - " # Format of the field\n", - " datatype: field/integer\n", - " # description of field presented in UI\n", - " help: the level of compression applied\n", - " # Default value, filled in on the UI\n", - " default: 5\n", - " # Additional config args that are passed to the shell task in the \"parameters\" dict\n", - " configuration:\n", - " # string template for field when printed to command line. \"{field-name}\" are\n", - " # replaced by the value provided to the field name\n", - " argstr: -{compression}\n", - " # Additional args passed to shell\n", - " configuration:\n", - " # the command to run\n", - " executable: zip\n" - ] - } - ], + "outputs": [], "source": [ - "cat specs/australian-imaging-service-community/examples/zip.yaml" + "export INSTITUTION_NAME=\"name-of-your-institution-goes-here\" # e.g. \"sydney\" for The University of Sydney (assumes domain is *.edu.au)\n", + "export GROUP_NAME=\"name-of-your-group-goes-here\" # e.g. \"sydneyimaging\" for Sydney Imaging\n", + "export AUTHORS_NAME=\"Your name goes here\"\n", + "export AUTHORS_EMAIL=\"your.email@goes.here\"\n", + "export GITHUB_USER=\"your-github-username\"\n", + "export PATH_TO_LOCAL_REPO=\"$HOME/git/pipelines-community\" # whereever you have installed the repository containing this notebook" ] }, { "cell_type": "markdown", - "id": "9f943cc5", + "id": "e4042467-5d45-4180-9b15-1c6348424d29", "metadata": {}, "source": [ - "### Start up a test XNAT instance to test the pipelines" + "Configure your local Git user" ] }, { - "cell_type": "markdown", - "id": "155ad9ba", + "cell_type": "code", + "execution_count": null, + "id": "6c891a9d-d20d-4d75-9a71-addd70adc7d1", "metadata": {}, + "outputs": [], "source": [ - "Start a test XNAT on your machine/VM using the `xnat4tests` package" + "git config --global user.name \"${AUTHORS_NAME}\"\n", + "git config --global user.email \"${AUTHORS_EMAIL}\"" ] }, { - "cell_type": "code", - "execution_count": 1, - "id": "fefe84fb", + "cell_type": "markdown", + "id": "1b8a8279-67d4-43db-8440-f16ae35403a4", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2024-08-09 08:18:46,903 - xnat4tests - INFO - Building xnat4tests in '/Users/tclose/.xnat4tests/build' directory\n", - "2024-08-09 08:18:47,194 - xnat4tests - INFO - Built xnat4tests successfully\n", - "2024-08-09 08:18:47,198 - xnat4tests - INFO - Did not find xnat4tests container, relaunching\n", - "2024-08-09 08:18:48,049 - xnat4tests - INFO - xnat4tests launched successfully\n", - "2024-08-09 08:18:48,049 - xnat4tests - INFO - Attempting to connect to http://localhost:8080\n", - "2024-08-09 08:18:48,049 - xnat4tests - INFO - Connecting to http://localhost:8080 as 'admin'\n", - "2024-08-09 08:18:53,061 - xnat4tests - INFO - Connecting to http://localhost:8080 as 'admin'\n", - "2024-08-09 08:18:58,069 - xnat4tests - INFO - Connecting to http://localhost:8080 as 'admin'\n", - "2024-08-09 08:19:13,072 - xnat4tests - INFO - Connecting to http://localhost:8080 as 'admin'\n", - "2024-08-09 08:19:28,085 - xnat4tests - INFO - Connecting to http://localhost:8080 as 'admin'\n", - "2024-08-09 08:19:43,095 - xnat4tests - INFO - Connecting to http://localhost:8080 as 'admin'\n", - "2024-08-09 08:19:58,107 - xnat4tests - INFO - Connecting to http://localhost:8080 as 'admin'\n", - "2024-08-09 08:20:13,125 - xnat4tests - INFO - Connecting to http://localhost:8080 as 'admin'\n", - "2024-08-09 08:20:28,135 - xnat4tests - INFO - Connecting to http://localhost:8080 as 'admin'\n", - "2024-08-09 08:20:43,146 - xnat4tests - INFO - Connecting to http://localhost:8080 as 'admin'\n", - "2024-08-09 08:20:58,156 - xnat4tests - INFO - Connecting to http://localhost:8080 as 'admin'\n", - "2024-08-09 08:21:04,583 - xnat4tests - INFO - Connected to http://localhost:8080 successfully\n", - "2024-08-09 08:21:04,607 - xnat4tests - INFO - Configuing docker server for container service\n" - ] - } - ], "source": [ - "xnat4tests start" + "Change to the repository directory containing this tutorial" ] }, { - "cell_type": "markdown", - "id": "500f569d", + "cell_type": "code", + "execution_count": null, + "id": "2de8c75b-16e1-42c2-bb25-833f47328a71", "metadata": {}, + "outputs": [], "source": [ - "It will take XNAT a couple of minutes to boot up. Once the frame above completes successfully you will be able to navigate to http://localhost:8080 and login with username=`admin`, password=`admin`.\n", - "\n", - "Now we will add some open-source data from OpenNeuro to our XNAT in order to test the pipelines we will build" + "cd ${PATH_TO_LOCAL_REPO}" ] }, { - "cell_type": "code", - "execution_count": 2, - "id": "56a8b6fb", + "cell_type": "markdown", + "id": "526c4c67-2d47-494e-ba26-6bd632c95896", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "2024-08-09 08:21:06,441 - xnat4tests - INFO - Connecting to http://localhost:8080 as 'admin'\n", - "2024-08-09 08:21:07,392 - xnat4tests - INFO - Connecting to http://localhost:8080 as 'admin'\n", - "2024-08-09 08:21:13,031 - xnat4tests - INFO - Connecting to http://localhost:8080 as 'admin'\n", - "2024-08-09 08:21:17,149 - xnat4tests - INFO - Connecting to http://localhost:8080 as 'admin'\n", - "2024-08-09 08:21:17,996 - xnat4tests - INFO - Connecting to http://localhost:8080 as 'admin'\n", - "2024-08-09 08:21:20,921 - xnat4tests - INFO - Connecting to http://localhost:8080 as 'admin'\n" - ] - } - ], "source": [ - "xnat4tests add-data simple-dir\n", - "xnat4tests add-data openneuro-t1w" + "Set the `origin` remote of the repository to your fork and the `upstream` remote to the base fork" ] }, { - "cell_type": "markdown", - "id": "48c963ec-b6be-46d0-8a3b-e0ce584e3df1", + "cell_type": "code", + "execution_count": null, + "id": "2f910886-c303-4bb8-8efb-55c8d39ea126", "metadata": {}, + "outputs": [], "source": [ - "### Set up your Git/GitHub" + "git remote rename origin upstream\n", + "git remote add origin git@github.com:${GITHUB_USER}/pipelines-community.git" ] }, { "cell_type": "markdown", - "id": "03e833e5-abd6-4087-b290-5fdd35b9a37c", + "id": "78fdb31d", "metadata": {}, "source": [ - "Fork your own copy of the community pipelines repo\n", - "\n", - "1. Navigate to https://github.com\n", - "1. Create a GitHub user account (if you don't have one already)\n", - "1. Add the SSH key generated in the first step to your GitHub account under `Settings>SSH and GPG keys` (Settings are accessed by clicking your avatar in the top right hand corner)\n", - "1. Fork the https://github.com/Australian-Imaging-Service/pipelines-community into your GitHub user account" + "### Explore the community pipelines repository" ] }, { "cell_type": "markdown", - "id": "526c4c67-2d47-494e-ba26-6bd632c95896", + "id": "86d0bf23", "metadata": {}, "source": [ - "Set the origin of the repository to your fork" + "Examine the structure of the pipelines repository using the `tree` utility" ] }, { "cell_type": "code", - "execution_count": 5, - "id": "2f910886-c303-4bb8-8efb-55c8d39ea126", + "execution_count": null, + "id": "7de3909f", "metadata": {}, "outputs": [], "source": [ - "#git remote rename origin upstream\n", - "#git remote add origin git@github.com:\"\"/pipelines-community.git" + "tree . --gitignore" ] }, { "cell_type": "markdown", - "id": "d20e62f0-b04c-42fa-841a-5a3ea2554ee0", + "id": "521d8ef7", "metadata": {}, "source": [ - "Update the repository with the latest changes" + "Examine the layout of the *Zip* pipelines specification" ] }, { "cell_type": "code", - "execution_count": 6, - "id": "9ea96efe-5e97-4189-812e-2db76f1301fe", + "execution_count": null, + "id": "7fafd93b", "metadata": {}, "outputs": [], "source": [ - "#git pull upstream" + "cat specs/australian-imaging-service-community/examples/zip.yaml" ] }, { "cell_type": "markdown", - "id": "e4042467-5d45-4180-9b15-1c6348424d29", + "id": "9f943cc5", "metadata": {}, "source": [ - "Configure your local Git user" + "### Start up a test XNAT instance to test the pipelines" + ] + }, + { + "cell_type": "markdown", + "id": "155ad9ba", + "metadata": {}, + "source": [ + "Start a test XNAT on your machine/VM using the `xnat4tests` package" ] }, { "cell_type": "code", - "execution_count": 7, - "id": "6c891a9d-d20d-4d75-9a71-addd70adc7d1", + "execution_count": null, + "id": "fefe84fb", "metadata": {}, "outputs": [], "source": [ - "#git config --global user.name \"Your Name\"\n", - "#git config --global user.email \"youremail@example.com\"" + "xnat4tests start" ] }, { "cell_type": "markdown", - "id": "19535ef1", + "id": "500f569d", "metadata": {}, "source": [ - "Update any dependencies" + "It will take XNAT a couple of minutes to boot up. Once the frame above completes successfully you will be able to navigate to http://localhost:8080 and login with username=`admin`, password=`admin`.\n", + "\n", + "Now we will add some open-source data from OpenNeuro to our XNAT in order to test the pipelines we will build" ] }, { "cell_type": "code", - "execution_count": 8, - "id": "d57730a5", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Collecting pydra2app-xnat>=0.5 (from -r tutorial/requirements.txt (line 1))\n", - " Using cached pydra2app_xnat-0.6.1-py3-none-any.whl.metadata (21 kB)\n", - "Collecting xnat4tests (from -r tutorial/requirements.txt (line 2))\n", - " Using cached xnat4tests-0.3.11-py3-none-any.whl.metadata (6.8 kB)\n", - "Collecting jupyter (from -r tutorial/requirements.txt (line 3))\n", - " Using cached jupyter-1.0.0-py2.py3-none-any.whl.metadata (995 bytes)\n", - "Collecting bash_kernel (from -r tutorial/requirements.txt (line 4))\n", - " Using cached bash_kernel-0.9.3-py2.py3-none-any.whl.metadata (3.4 kB)\n", - "Collecting fileformats-medimage-extras>=0.1.3 (from pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached fileformats_medimage_extras-0.8.2-py3-none-any.whl.metadata (18 kB)\n", - "Collecting fileformats-medimage>=0.2.1 (from pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached fileformats_medimage-0.8.2-py3-none-any.whl.metadata (19 kB)\n", - "Collecting fileformats>=0.3.3 (from pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached fileformats-0.11.4-py3-none-any.whl.metadata (23 kB)\n", - "Collecting frametree-xnat (from pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached frametree_xnat-0.6.0-py3-none-any.whl.metadata (21 kB)\n", - "Collecting pydra2app (from pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached pydra2app-0.12.3-py3-none-any.whl.metadata (21 kB)\n", - "Collecting xnat (from pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached xnat-0.6.2-py3-none-any.whl.metadata (4.0 kB)\n", - "Collecting docker>=5.0.2 (from xnat4tests->-r tutorial/requirements.txt (line 2))\n", - " Using cached docker-7.1.0-py3-none-any.whl.metadata (3.8 kB)\n", - "Collecting click>=7.1.2 (from xnat4tests->-r tutorial/requirements.txt (line 2))\n", - " Using cached click-8.1.7-py3-none-any.whl.metadata (3.0 kB)\n", - "Collecting requests>=2.10.0 (from xnat4tests->-r tutorial/requirements.txt (line 2))\n", - " Using cached requests-2.32.3-py3-none-any.whl.metadata (4.6 kB)\n", - "Collecting medimages4tests>=0.3 (from xnat4tests->-r tutorial/requirements.txt (line 2))\n", - " Using cached medimages4tests-0.4.2-py3-none-any.whl.metadata (3.6 kB)\n", - "Requirement already satisfied: PyYAML>=6.0 in /usr/local/lib/python3.10/site-packages (from xnat4tests->-r tutorial/requirements.txt (line 2)) (6.0)\n", - "Collecting notebook (from jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached notebook-7.2.1-py3-none-any.whl.metadata (10 kB)\n", - "Collecting qtconsole (from jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached qtconsole-5.5.2-py3-none-any.whl.metadata (5.1 kB)\n", - "Collecting jupyter-console (from jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached jupyter_console-6.6.3-py3-none-any.whl.metadata (5.8 kB)\n", - "Collecting nbconvert (from jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached nbconvert-7.16.4-py3-none-any.whl.metadata (8.5 kB)\n", - "Collecting ipykernel (from jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached ipykernel-6.29.5-py3-none-any.whl.metadata (6.3 kB)\n", - "Collecting ipywidgets (from jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached ipywidgets-8.1.3-py3-none-any.whl.metadata (2.4 kB)\n", - "Requirement already satisfied: pexpect>=4.0 in /usr/local/lib/python3.10/site-packages (from bash_kernel->-r tutorial/requirements.txt (line 4)) (4.8.0)\n", - "Collecting urllib3>=1.26.0 (from docker>=5.0.2->xnat4tests->-r tutorial/requirements.txt (line 2))\n", - " Using cached urllib3-2.2.2-py3-none-any.whl.metadata (6.4 kB)\n", - "Collecting typing-extensions>=4.6.3 (from fileformats>=0.3.3->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached typing_extensions-4.12.2-py3-none-any.whl.metadata (3.0 kB)\n", - "Collecting fileformats-extras>=0.2.1 (from fileformats-medimage-extras>=0.1.3->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached fileformats_extras-0.11.4-py3-none-any.whl.metadata (18 kB)\n", - "Collecting nibabel>=5.0.0 (from fileformats-medimage-extras>=0.1.3->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached nibabel-5.2.1-py3-none-any.whl.metadata (8.8 kB)\n", - "Requirement already satisfied: numpy>=1.20 in /usr/local/lib/python3.10/site-packages (from fileformats-medimage-extras>=0.1.3->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1)) (1.26.4)\n", - "Collecting pydicom>=2.3.1 (from fileformats-medimage-extras>=0.1.3->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached pydicom-2.4.4-py3-none-any.whl.metadata (7.8 kB)\n", - "Collecting pydra-dcm2niix (from fileformats-medimage-extras>=0.1.3->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached pydra_dcm2niix-1.2.1-py3-none-any.whl.metadata (4.3 kB)\n", - "Collecting pydra-mrtrix3>=3.0.3a0 (from fileformats-medimage-extras>=0.1.3->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached pydra_mrtrix3-3.0.4a5-py3-none-any.whl.metadata (4.0 kB)\n", - "Collecting pydra>=0.22.0 (from fileformats-medimage-extras>=0.1.3->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached pydra-0.23-py3-none-any.whl.metadata (5.7 kB)\n", - "Collecting openneuro-py>=2022.2.0 (from medimages4tests>=0.3->xnat4tests->-r tutorial/requirements.txt (line 2))\n", - " Using cached openneuro_py-2024.2.0-py3-none-any.whl.metadata (43 kB)\n", - "Requirement already satisfied: attrs>=21.4.0 in /usr/local/lib/python3.10/site-packages (from medimages4tests>=0.3->xnat4tests->-r tutorial/requirements.txt (line 2)) (22.1.0)\n", - "Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.10/site-packages (from pexpect>=4.0->bash_kernel->-r tutorial/requirements.txt (line 4)) (0.7.0)\n", - "Collecting charset-normalizer<4,>=2 (from requests>=2.10.0->xnat4tests->-r tutorial/requirements.txt (line 2))\n", - " Using cached charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl.metadata (33 kB)\n", - "Collecting idna<4,>=2.5 (from requests>=2.10.0->xnat4tests->-r tutorial/requirements.txt (line 2))\n", - " Using cached idna-3.7-py3-none-any.whl.metadata (9.9 kB)\n", - "Collecting certifi>=2017.4.17 (from requests>=2.10.0->xnat4tests->-r tutorial/requirements.txt (line 2))\n", - " Using cached certifi-2024.7.4-py3-none-any.whl.metadata (2.2 kB)\n", - "Collecting frametree (from frametree-xnat->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached frametree-0.12.1-py3-none-any.whl.metadata (22 kB)\n", - "Requirement already satisfied: appnope in /usr/local/lib/python3.10/site-packages (from ipykernel->jupyter->-r tutorial/requirements.txt (line 3)) (0.1.3)\n", - "Collecting comm>=0.1.1 (from ipykernel->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached comm-0.2.2-py3-none-any.whl.metadata (3.7 kB)\n", - "Collecting debugpy>=1.6.5 (from ipykernel->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Downloading debugpy-1.8.5-cp310-cp310-macosx_12_0_x86_64.whl.metadata (1.1 kB)\n", - "Requirement already satisfied: ipython>=7.23.1 in /usr/local/lib/python3.10/site-packages (from ipykernel->jupyter->-r tutorial/requirements.txt (line 3)) (8.11.0)\n", - "Collecting jupyter-client>=6.1.12 (from ipykernel->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached jupyter_client-8.6.2-py3-none-any.whl.metadata (8.3 kB)\n", - "Collecting jupyter-core!=5.0.*,>=4.12 (from ipykernel->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached jupyter_core-5.7.2-py3-none-any.whl.metadata (3.4 kB)\n", - "Requirement already satisfied: matplotlib-inline>=0.1 in /usr/local/lib/python3.10/site-packages (from ipykernel->jupyter->-r tutorial/requirements.txt (line 3)) (0.1.6)\n", - "Collecting nest-asyncio (from ipykernel->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached nest_asyncio-1.6.0-py3-none-any.whl.metadata (2.8 kB)\n", - "Requirement already satisfied: packaging in /usr/local/lib/python3.10/site-packages (from ipykernel->jupyter->-r tutorial/requirements.txt (line 3)) (22.0)\n", - "Collecting psutil (from ipykernel->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached psutil-6.0.0-cp36-abi3-macosx_10_9_x86_64.whl.metadata (21 kB)\n", - "Collecting pyzmq>=24 (from ipykernel->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Downloading pyzmq-26.1.0-cp310-cp310-macosx_10_15_universal2.whl.metadata (6.2 kB)\n", - "Collecting tornado>=6.1 (from ipykernel->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached tornado-6.4.1-cp38-abi3-macosx_10_9_x86_64.whl.metadata (2.5 kB)\n", - "Requirement already satisfied: traitlets>=5.4.0 in /usr/local/lib/python3.10/site-packages (from ipykernel->jupyter->-r tutorial/requirements.txt (line 3)) (5.6.0)\n", - "Collecting widgetsnbextension~=4.0.11 (from ipywidgets->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached widgetsnbextension-4.0.11-py3-none-any.whl.metadata (1.6 kB)\n", - "Collecting jupyterlab-widgets~=3.0.11 (from ipywidgets->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached jupyterlab_widgets-3.0.11-py3-none-any.whl.metadata (4.1 kB)\n", - "Requirement already satisfied: prompt-toolkit>=3.0.30 in /usr/local/lib/python3.10/site-packages (from jupyter-console->jupyter->-r tutorial/requirements.txt (line 3)) (3.0.33)\n", - "Requirement already satisfied: pygments in /usr/local/lib/python3.10/site-packages (from jupyter-console->jupyter->-r tutorial/requirements.txt (line 3)) (2.13.0)\n", - "Collecting beautifulsoup4 (from nbconvert->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached beautifulsoup4-4.12.3-py3-none-any.whl.metadata (3.8 kB)\n", - "Requirement already satisfied: bleach!=5.0.0 in /usr/local/lib/python3.10/site-packages (from nbconvert->jupyter->-r tutorial/requirements.txt (line 3)) (5.0.1)\n", - "Collecting defusedxml (from nbconvert->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached defusedxml-0.7.1-py2.py3-none-any.whl.metadata (32 kB)\n", - "Collecting jinja2>=3.0 (from nbconvert->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached jinja2-3.1.4-py3-none-any.whl.metadata (2.6 kB)\n", - "Collecting jupyterlab-pygments (from nbconvert->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached jupyterlab_pygments-0.3.0-py3-none-any.whl.metadata (4.4 kB)\n", - "Collecting markupsafe>=2.0 (from nbconvert->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Downloading MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_x86_64.whl.metadata (3.0 kB)\n", - "Collecting mistune<4,>=2.0.3 (from nbconvert->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached mistune-3.0.2-py3-none-any.whl.metadata (1.7 kB)\n", - "Collecting nbclient>=0.5.0 (from nbconvert->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached nbclient-0.10.0-py3-none-any.whl.metadata (7.8 kB)\n", - "Collecting nbformat>=5.7 (from nbconvert->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached nbformat-5.10.4-py3-none-any.whl.metadata (3.6 kB)\n", - "Collecting pandocfilters>=1.4.1 (from nbconvert->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached pandocfilters-1.5.1-py2.py3-none-any.whl.metadata (9.0 kB)\n", - "Collecting tinycss2 (from nbconvert->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached tinycss2-1.3.0-py3-none-any.whl.metadata (3.0 kB)\n", - "Collecting jupyter-server<3,>=2.4.0 (from notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached jupyter_server-2.14.2-py3-none-any.whl.metadata (8.4 kB)\n", - "Collecting jupyterlab-server<3,>=2.27.1 (from notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached jupyterlab_server-2.27.3-py3-none-any.whl.metadata (5.9 kB)\n", - "Collecting jupyterlab<4.3,>=4.2.0 (from notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached jupyterlab-4.2.4-py3-none-any.whl.metadata (16 kB)\n", - "Collecting notebook-shim<0.3,>=0.2 (from notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached notebook_shim-0.2.4-py3-none-any.whl.metadata (4.0 kB)\n", - "Requirement already satisfied: build>=0.9 in /usr/local/lib/python3.10/site-packages (from pydra2app->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1)) (0.9.0)\n", - "Collecting click-option-group>=0.5.5 (from pydra2app->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached click_option_group-0.5.6-py3-none-any.whl.metadata (8.3 kB)\n", - "Collecting deepdiff>=3.3 (from pydra2app->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached deepdiff-7.0.1-py3-none-any.whl.metadata (6.8 kB)\n", - "Requirement already satisfied: flit-scm>=1.7.0 in /usr/local/lib/python3.10/site-packages (from pydra2app->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1)) (1.7.0)\n", - "Collecting hatch-vcs>=0.3.0 (from pydra2app->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached hatch_vcs-0.4.0-py3-none-any.whl.metadata (8.6 kB)\n", - "Requirement already satisfied: hatchling>=1.12.2 in /usr/local/lib/python3.10/site-packages (from pydra2app->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1)) (1.12.2)\n", - "Collecting neurodocker>=0.9.4 (from pydra2app->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached neurodocker-1.0.1-py3-none-any.whl.metadata (4.8 kB)\n", - "Collecting toml (from pydra2app->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached toml-0.10.2-py2.py3-none-any.whl.metadata (7.1 kB)\n", - "Collecting qtpy>=2.4.0 (from qtconsole->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached QtPy-2.4.1-py3-none-any.whl.metadata (12 kB)\n", - "Collecting progressbar2~=4.2 (from xnat->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached progressbar2-4.4.2-py3-none-any.whl.metadata (17 kB)\n", - "Collecting isodate~=0.6 (from xnat->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached isodate-0.6.1-py2.py3-none-any.whl.metadata (9.6 kB)\n", - "Collecting python-dateutil~=2.8.2 (from xnat->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached python_dateutil-2.8.2-py2.py3-none-any.whl.metadata (8.2 kB)\n", - "Collecting importlib-metadata~=6.8 (from xnat->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached importlib_metadata-6.11.0-py3-none-any.whl.metadata (4.9 kB)\n", - "Requirement already satisfied: six>=1.9.0 in /usr/local/lib/python3.10/site-packages (from bleach!=5.0.0->nbconvert->jupyter->-r tutorial/requirements.txt (line 3)) (1.16.0)\n", - "Requirement already satisfied: webencodings in /usr/local/lib/python3.10/site-packages (from bleach!=5.0.0->nbconvert->jupyter->-r tutorial/requirements.txt (line 3)) (0.5.1)\n", - "Requirement already satisfied: pep517>=0.9.1 in /usr/local/lib/python3.10/site-packages (from build>=0.9->pydra2app->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1)) (0.13.0)\n", - "Requirement already satisfied: tomli>=1.0.0 in /usr/local/lib/python3.10/site-packages (from build>=0.9->pydra2app->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1)) (2.0.1)\n", - "Collecting ordered-set<4.2.0,>=4.1.0 (from deepdiff>=3.3->pydra2app->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached ordered_set-4.1.0-py3-none-any.whl.metadata (5.3 kB)\n", - "Collecting imageio>=2.24.0 (from fileformats-extras>=0.2.1->fileformats-medimage-extras>=0.1.3->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached imageio-2.34.2-py3-none-any.whl.metadata (4.9 kB)\n", - "Requirement already satisfied: flit-core~=3.5 in /usr/local/lib/python3.10/site-packages (from flit-scm>=1.7.0->pydra2app->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1)) (3.8.0)\n", - "Requirement already satisfied: setuptools_scm>=6.4 in /usr/local/lib/python3.10/site-packages (from flit-scm>=1.7.0->pydra2app->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1)) (7.1.0)\n", - "Collecting fasteners>=0.18 (from frametree->frametree-xnat->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached fasteners-0.19-py3-none-any.whl.metadata (4.9 kB)\n", - "Requirement already satisfied: setuptools in /usr/local/lib/python3.10/site-packages (from frametree->frametree-xnat->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1)) (68.2.2)\n", - "Requirement already satisfied: editables>=0.3 in /usr/local/lib/python3.10/site-packages (from hatchling>=1.12.2->pydra2app->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1)) (0.3)\n", - "Requirement already satisfied: pathspec>=0.10.1 in /usr/local/lib/python3.10/site-packages (from hatchling>=1.12.2->pydra2app->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1)) (0.11.0)\n", - "Requirement already satisfied: pluggy>=1.0.0 in /usr/local/lib/python3.10/site-packages (from hatchling>=1.12.2->pydra2app->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1)) (1.0.0)\n", - "Collecting zipp>=0.5 (from importlib-metadata~=6.8->xnat->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached zipp-3.19.2-py3-none-any.whl.metadata (3.6 kB)\n", - "Requirement already satisfied: backcall in /usr/local/lib/python3.10/site-packages (from ipython>=7.23.1->ipykernel->jupyter->-r tutorial/requirements.txt (line 3)) (0.2.0)\n", - "Requirement already satisfied: decorator in /usr/local/lib/python3.10/site-packages (from ipython>=7.23.1->ipykernel->jupyter->-r tutorial/requirements.txt (line 3)) (5.1.1)\n", - "Requirement already satisfied: jedi>=0.16 in /usr/local/lib/python3.10/site-packages (from ipython>=7.23.1->ipykernel->jupyter->-r tutorial/requirements.txt (line 3)) (0.18.2)\n", - "Requirement already satisfied: pickleshare in /usr/local/lib/python3.10/site-packages (from ipython>=7.23.1->ipykernel->jupyter->-r tutorial/requirements.txt (line 3)) (0.7.5)\n", - "Requirement already satisfied: stack-data in /usr/local/lib/python3.10/site-packages (from ipython>=7.23.1->ipykernel->jupyter->-r tutorial/requirements.txt (line 3)) (0.6.2)\n", - "Collecting platformdirs>=2.5 (from jupyter-core!=5.0.*,>=4.12->ipykernel->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached platformdirs-4.2.2-py3-none-any.whl.metadata (11 kB)\n", - "Collecting anyio>=3.1.0 (from jupyter-server<3,>=2.4.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached anyio-4.4.0-py3-none-any.whl.metadata (4.6 kB)\n", - "Collecting argon2-cffi>=21.1 (from jupyter-server<3,>=2.4.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached argon2_cffi-23.1.0-py3-none-any.whl.metadata (5.2 kB)\n", - "Collecting jupyter-events>=0.9.0 (from jupyter-server<3,>=2.4.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached jupyter_events-0.10.0-py3-none-any.whl.metadata (5.9 kB)\n", - "Collecting jupyter-server-terminals>=0.4.4 (from jupyter-server<3,>=2.4.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached jupyter_server_terminals-0.5.3-py3-none-any.whl.metadata (5.6 kB)\n", - "Collecting overrides>=5.0 (from jupyter-server<3,>=2.4.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached overrides-7.7.0-py3-none-any.whl.metadata (5.8 kB)\n", - "Collecting prometheus-client>=0.9 (from jupyter-server<3,>=2.4.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached prometheus_client-0.20.0-py3-none-any.whl.metadata (1.8 kB)\n", - "Collecting send2trash>=1.8.2 (from jupyter-server<3,>=2.4.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached Send2Trash-1.8.3-py3-none-any.whl.metadata (4.0 kB)\n", - "Collecting terminado>=0.8.3 (from jupyter-server<3,>=2.4.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached terminado-0.18.1-py3-none-any.whl.metadata (5.8 kB)\n", - "Collecting websocket-client>=1.7 (from jupyter-server<3,>=2.4.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached websocket_client-1.8.0-py3-none-any.whl.metadata (8.0 kB)\n", - "Collecting async-lru>=1.0.0 (from jupyterlab<4.3,>=4.2.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached async_lru-2.0.4-py3-none-any.whl.metadata (4.5 kB)\n", - "Collecting httpx>=0.25.0 (from jupyterlab<4.3,>=4.2.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached httpx-0.27.0-py3-none-any.whl.metadata (7.2 kB)\n", - "Collecting jupyter-lsp>=2.0.0 (from jupyterlab<4.3,>=4.2.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached jupyter_lsp-2.2.5-py3-none-any.whl.metadata (1.8 kB)\n", - "Collecting babel>=2.10 (from jupyterlab-server<3,>=2.27.1->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached Babel-2.15.0-py3-none-any.whl.metadata (1.5 kB)\n", - "Collecting json5>=0.9.0 (from jupyterlab-server<3,>=2.27.1->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached json5-0.9.25-py3-none-any.whl.metadata (30 kB)\n", - "Collecting jsonschema>=4.18.0 (from jupyterlab-server<3,>=2.27.1->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached jsonschema-4.23.0-py3-none-any.whl.metadata (7.9 kB)\n", - "Collecting fastjsonschema>=2.15 (from nbformat>=5.7->nbconvert->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached fastjsonschema-2.20.0-py3-none-any.whl.metadata (2.1 kB)\n", - "Collecting etelemetry>=0.2.0 (from neurodocker>=0.9.4->pydra2app->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached etelemetry-0.3.1-py3-none-any.whl.metadata (3.2 kB)\n", - "Collecting mypy-extensions (from neurodocker>=0.9.4->pydra2app->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached mypy_extensions-1.0.0-py3-none-any.whl.metadata (1.1 kB)\n", - "Collecting aiofiles (from openneuro-py>=2022.2.0->medimages4tests>=0.3->xnat4tests->-r tutorial/requirements.txt (line 2))\n", - " Using cached aiofiles-24.1.0-py3-none-any.whl.metadata (10 kB)\n", - "Collecting sgqlc (from openneuro-py>=2022.2.0->medimages4tests>=0.3->xnat4tests->-r tutorial/requirements.txt (line 2))\n", - " Using cached sgqlc-16.3-py3-none-any.whl.metadata (18 kB)\n", - "Collecting tqdm (from openneuro-py>=2022.2.0->medimages4tests>=0.3->xnat4tests->-r tutorial/requirements.txt (line 2))\n", - " Using cached tqdm-4.66.5-py3-none-any.whl.metadata (57 kB)\n", - "Collecting typer[all] (from openneuro-py>=2022.2.0->medimages4tests>=0.3->xnat4tests->-r tutorial/requirements.txt (line 2))\n", - " Using cached typer-0.12.3-py3-none-any.whl.metadata (15 kB)\n", - "Collecting python-utils>=3.8.1 (from progressbar2~=4.2->xnat->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached python_utils-3.8.2-py2.py3-none-any.whl.metadata (9.7 kB)\n", - "Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/site-packages (from prompt-toolkit>=3.0.30->jupyter-console->jupyter->-r tutorial/requirements.txt (line 3)) (0.2.5)\n", - "Requirement already satisfied: cloudpickle>=2.0.0 in /usr/local/lib/python3.10/site-packages (from pydra>=0.22.0->fileformats-medimage-extras>=0.1.3->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1)) (2.2.1)\n", - "Collecting filelock>=3.0.0 (from pydra>=0.22.0->fileformats-medimage-extras>=0.1.3->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached filelock-3.15.4-py3-none-any.whl.metadata (2.9 kB)\n", - "Collecting importlib_resources>=5.7 (from pydra>=0.22.0->fileformats-medimage-extras>=0.1.3->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached importlib_resources-6.4.0-py3-none-any.whl.metadata (3.9 kB)\n", - "Collecting fileformats-medimage-mrtrix3>=3.0.4a4 (from pydra-mrtrix3>=3.0.3a0->fileformats-medimage-extras>=0.1.3->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached fileformats_medimage_mrtrix3-3.0.4a5-py3-none-any.whl.metadata (18 kB)\n", - "Collecting soupsieve>1.2 (from beautifulsoup4->nbconvert->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached soupsieve-2.5-py3-none-any.whl.metadata (4.7 kB)\n", - "Collecting sniffio>=1.1 (from anyio>=3.1.0->jupyter-server<3,>=2.4.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached sniffio-1.3.1-py3-none-any.whl.metadata (3.9 kB)\n", - "Collecting exceptiongroup>=1.0.2 (from anyio>=3.1.0->jupyter-server<3,>=2.4.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Downloading exceptiongroup-1.2.2-py3-none-any.whl.metadata (6.6 kB)\n", - "Collecting argon2-cffi-bindings (from argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached argon2_cffi_bindings-21.2.0-cp38-abi3-macosx_10_9_universal2.whl.metadata (6.7 kB)\n", - "Collecting ci-info>=0.2 (from etelemetry>=0.2.0->neurodocker>=0.9.4->pydra2app->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1))\n", - " Using cached ci_info-0.3.0-py3-none-any.whl.metadata (6.1 kB)\n", - "Collecting httpcore==1.* (from httpx>=0.25.0->jupyterlab<4.3,>=4.2.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached httpcore-1.0.5-py3-none-any.whl.metadata (20 kB)\n", - "Collecting h11<0.15,>=0.13 (from httpcore==1.*->httpx>=0.25.0->jupyterlab<4.3,>=4.2.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached h11-0.14.0-py3-none-any.whl.metadata (8.2 kB)\n", - "Requirement already satisfied: pillow>=8.3.2 in /usr/local/lib/python3.10/site-packages (from imageio>=2.24.0->fileformats-extras>=0.2.1->fileformats-medimage-extras>=0.1.3->pydra2app-xnat>=0.5->-r tutorial/requirements.txt (line 1)) (10.3.0)\n", - "Requirement already satisfied: parso<0.9.0,>=0.8.0 in /usr/local/lib/python3.10/site-packages (from jedi>=0.16->ipython>=7.23.1->ipykernel->jupyter->-r tutorial/requirements.txt (line 3)) (0.8.3)\n", - "Collecting attrs>=21.4.0 (from medimages4tests>=0.3->xnat4tests->-r tutorial/requirements.txt (line 2))\n", - " Using cached attrs-24.2.0-py3-none-any.whl.metadata (11 kB)\n", - "Collecting jsonschema-specifications>=2023.03.6 (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.27.1->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached jsonschema_specifications-2023.12.1-py3-none-any.whl.metadata (3.0 kB)\n", - "Collecting referencing>=0.28.4 (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.27.1->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached referencing-0.35.1-py3-none-any.whl.metadata (2.8 kB)\n", - "Collecting rpds-py>=0.7.1 (from jsonschema>=4.18.0->jupyterlab-server<3,>=2.27.1->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Downloading rpds_py-0.20.0-cp310-cp310-macosx_10_12_x86_64.whl.metadata (4.2 kB)\n", - "Collecting python-json-logger>=2.0.4 (from jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached python_json_logger-2.0.7-py3-none-any.whl.metadata (6.5 kB)\n", - "Collecting rfc3339-validator (from jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached rfc3339_validator-0.1.4-py2.py3-none-any.whl.metadata (1.5 kB)\n", - "Collecting rfc3986-validator>=0.1.1 (from jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached rfc3986_validator-0.1.1-py2.py3-none-any.whl.metadata (1.7 kB)\n", - "Collecting graphql-core<4.0.0,>=3.1.7 (from sgqlc->openneuro-py>=2022.2.0->medimages4tests>=0.3->xnat4tests->-r tutorial/requirements.txt (line 2))\n", - " Using cached graphql_core-3.2.3-py3-none-any.whl.metadata (10 kB)\n", - "Requirement already satisfied: executing>=1.2.0 in /usr/local/lib/python3.10/site-packages (from stack-data->ipython>=7.23.1->ipykernel->jupyter->-r tutorial/requirements.txt (line 3)) (1.2.0)\n", - "Requirement already satisfied: asttokens>=2.1.0 in /usr/local/lib/python3.10/site-packages (from stack-data->ipython>=7.23.1->ipykernel->jupyter->-r tutorial/requirements.txt (line 3)) (2.2.0)\n", - "Requirement already satisfied: pure-eval in /usr/local/lib/python3.10/site-packages (from stack-data->ipython>=7.23.1->ipykernel->jupyter->-r tutorial/requirements.txt (line 3)) (0.2.2)\n", - "\u001b[33mWARNING: typer 0.12.3 does not provide the extra 'all'\u001b[0m\u001b[33m\n", - "\u001b[0mCollecting shellingham>=1.3.0 (from typer[all]->openneuro-py>=2022.2.0->medimages4tests>=0.3->xnat4tests->-r tutorial/requirements.txt (line 2))\n", - " Using cached shellingham-1.5.4-py2.py3-none-any.whl.metadata (3.5 kB)\n", - "Collecting rich>=10.11.0 (from typer[all]->openneuro-py>=2022.2.0->medimages4tests>=0.3->xnat4tests->-r tutorial/requirements.txt (line 2))\n", - " Using cached rich-13.7.1-py3-none-any.whl.metadata (18 kB)\n", - "Collecting fqdn (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached fqdn-1.5.1-py3-none-any.whl.metadata (1.4 kB)\n", - "Collecting isoduration (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached isoduration-20.11.0-py3-none-any.whl.metadata (5.7 kB)\n", - "Collecting jsonpointer>1.13 (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached jsonpointer-3.0.0-py2.py3-none-any.whl.metadata (2.3 kB)\n", - "Collecting uri-template (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached uri_template-1.3.0-py3-none-any.whl.metadata (8.8 kB)\n", - "Collecting webcolors>=24.6.0 (from jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached webcolors-24.6.0-py3-none-any.whl.metadata (2.6 kB)\n", - "Collecting markdown-it-py>=2.2.0 (from rich>=10.11.0->typer[all]->openneuro-py>=2022.2.0->medimages4tests>=0.3->xnat4tests->-r tutorial/requirements.txt (line 2))\n", - " Using cached markdown_it_py-3.0.0-py3-none-any.whl.metadata (6.9 kB)\n", - "Collecting cffi>=1.0.1 (from argon2-cffi-bindings->argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Downloading cffi-1.17.0-cp310-cp310-macosx_10_9_x86_64.whl.metadata (1.5 kB)\n", - "Collecting pycparser (from cffi>=1.0.1->argon2-cffi-bindings->argon2-cffi>=21.1->jupyter-server<3,>=2.4.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached pycparser-2.22-py3-none-any.whl.metadata (943 bytes)\n", - "Collecting mdurl~=0.1 (from markdown-it-py>=2.2.0->rich>=10.11.0->typer[all]->openneuro-py>=2022.2.0->medimages4tests>=0.3->xnat4tests->-r tutorial/requirements.txt (line 2))\n", - " Using cached mdurl-0.1.2-py3-none-any.whl.metadata (1.6 kB)\n", - "Collecting arrow>=0.15.0 (from isoduration->jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached arrow-1.3.0-py3-none-any.whl.metadata (7.5 kB)\n", - "Collecting types-python-dateutil>=2.8.10 (from arrow>=0.15.0->isoduration->jsonschema[format-nongpl]>=4.18.0->jupyter-events>=0.9.0->jupyter-server<3,>=2.4.0->notebook->jupyter->-r tutorial/requirements.txt (line 3))\n", - " Using cached types_python_dateutil-2.9.0.20240316-py3-none-any.whl.metadata (1.8 kB)\n", - "Using cached pydra2app_xnat-0.6.1-py3-none-any.whl (29 kB)\n", - "Using cached xnat4tests-0.3.11-py3-none-any.whl (20 kB)\n", - "Using cached jupyter-1.0.0-py2.py3-none-any.whl (2.7 kB)\n", - "Using cached bash_kernel-0.9.3-py2.py3-none-any.whl (617 kB)\n", - "Using cached click-8.1.7-py3-none-any.whl (97 kB)\n", - "Using cached docker-7.1.0-py3-none-any.whl (147 kB)\n", - "Using cached fileformats-0.11.4-py3-none-any.whl (104 kB)\n", - "Using cached fileformats_medimage-0.8.2-py3-none-any.whl (28 kB)\n", - "Using cached fileformats_medimage_extras-0.8.2-py3-none-any.whl (19 kB)\n", - "Using cached medimages4tests-0.4.2-py3-none-any.whl (893 kB)\n", - "Using cached requests-2.32.3-py3-none-any.whl (64 kB)\n", - "Using cached frametree_xnat-0.6.0-py3-none-any.whl (24 kB)\n", - "Using cached ipykernel-6.29.5-py3-none-any.whl (117 kB)\n", - "Using cached ipywidgets-8.1.3-py3-none-any.whl (139 kB)\n", - "Using cached jupyter_console-6.6.3-py3-none-any.whl (24 kB)\n", - "Using cached nbconvert-7.16.4-py3-none-any.whl (257 kB)\n", - "Using cached notebook-7.2.1-py3-none-any.whl (5.0 MB)\n", - "Using cached pydra2app-0.12.3-py3-none-any.whl (66 kB)\n", - "Using cached qtconsole-5.5.2-py3-none-any.whl (123 kB)\n", - "Using cached xnat-0.6.2-py3-none-any.whl (105 kB)\n", - "Using cached certifi-2024.7.4-py3-none-any.whl (162 kB)\n", - "Using cached charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl (122 kB)\n", - "Using cached click_option_group-0.5.6-py3-none-any.whl (12 kB)\n", - "Using cached comm-0.2.2-py3-none-any.whl (7.2 kB)\n", - "Downloading debugpy-1.8.5-cp310-cp310-macosx_12_0_x86_64.whl (1.7 MB)\n", - "\u001b[2K \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.7/1.7 MB\u001b[0m \u001b[31m3.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0mm eta \u001b[36m0:00:01\u001b[0m0:01\u001b[0m:01\u001b[0m\n", - "\u001b[?25hUsing cached deepdiff-7.0.1-py3-none-any.whl (80 kB)\n", - "Using cached fileformats_extras-0.11.4-py3-none-any.whl (19 kB)\n", - "Using cached frametree-0.12.1-py3-none-any.whl (124 kB)\n", - "Using cached hatch_vcs-0.4.0-py3-none-any.whl (8.4 kB)\n", - "Using cached idna-3.7-py3-none-any.whl (66 kB)\n", - "Using cached importlib_metadata-6.11.0-py3-none-any.whl (23 kB)\n", - "Using cached isodate-0.6.1-py2.py3-none-any.whl (41 kB)\n", - "Using cached jinja2-3.1.4-py3-none-any.whl (133 kB)\n", - "Using cached jupyter_client-8.6.2-py3-none-any.whl (105 kB)\n", - "Using cached jupyter_core-5.7.2-py3-none-any.whl (28 kB)\n", - "Using cached jupyter_server-2.14.2-py3-none-any.whl (383 kB)\n", - "Using cached jupyterlab-4.2.4-py3-none-any.whl (11.6 MB)\n", - "Using cached jupyterlab_server-2.27.3-py3-none-any.whl (59 kB)\n", - "Using cached jupyterlab_widgets-3.0.11-py3-none-any.whl (214 kB)\n", - "Downloading MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_x86_64.whl (14 kB)\n", - "Using cached mistune-3.0.2-py3-none-any.whl (47 kB)\n", - "Using cached nbclient-0.10.0-py3-none-any.whl (25 kB)\n", - "Using cached nbformat-5.10.4-py3-none-any.whl (78 kB)\n", - "Using cached neurodocker-1.0.1-py3-none-any.whl (75 kB)\n", - "Using cached nibabel-5.2.1-py3-none-any.whl (3.3 MB)\n", - "Using cached notebook_shim-0.2.4-py3-none-any.whl (13 kB)\n", - "Using cached openneuro_py-2024.2.0-py3-none-any.whl (40 kB)\n", - "Using cached pandocfilters-1.5.1-py2.py3-none-any.whl (8.7 kB)\n", - "Using cached progressbar2-4.4.2-py3-none-any.whl (56 kB)\n", - "Using cached pydicom-2.4.4-py3-none-any.whl (1.8 MB)\n", - "Using cached pydra-0.23-py3-none-any.whl (10.6 MB)\n", - "Using cached pydra_mrtrix3-3.0.4a5-py3-none-any.whl (466 kB)\n", - "Using cached python_dateutil-2.8.2-py2.py3-none-any.whl (247 kB)\n", - "Downloading pyzmq-26.1.0-cp310-cp310-macosx_10_15_universal2.whl (1.3 MB)\n", - "\u001b[2K \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m4.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m[31m4.5 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\n", - "\u001b[?25hUsing cached QtPy-2.4.1-py3-none-any.whl (93 kB)\n", - "Using cached tornado-6.4.1-cp38-abi3-macosx_10_9_x86_64.whl (433 kB)\n", - "Using cached typing_extensions-4.12.2-py3-none-any.whl (37 kB)\n", - "Using cached urllib3-2.2.2-py3-none-any.whl (121 kB)\n", - "Using cached widgetsnbextension-4.0.11-py3-none-any.whl (2.3 MB)\n", - "Using cached beautifulsoup4-4.12.3-py3-none-any.whl (147 kB)\n", - "Using cached defusedxml-0.7.1-py2.py3-none-any.whl (25 kB)\n", - "Using cached jupyterlab_pygments-0.3.0-py3-none-any.whl (15 kB)\n", - "Using cached nest_asyncio-1.6.0-py3-none-any.whl (5.2 kB)\n", - "Using cached psutil-6.0.0-cp36-abi3-macosx_10_9_x86_64.whl (250 kB)\n", - "Using cached pydra_dcm2niix-1.2.1-py3-none-any.whl (7.5 kB)\n", - "Using cached tinycss2-1.3.0-py3-none-any.whl (22 kB)\n", - "Using cached toml-0.10.2-py2.py3-none-any.whl (16 kB)\n", - "Using cached anyio-4.4.0-py3-none-any.whl (86 kB)\n", - "Using cached argon2_cffi-23.1.0-py3-none-any.whl (15 kB)\n", - "Using cached async_lru-2.0.4-py3-none-any.whl (6.1 kB)\n", - "Using cached Babel-2.15.0-py3-none-any.whl (9.6 MB)\n", - "Using cached etelemetry-0.3.1-py3-none-any.whl (6.4 kB)\n", - "Using cached fasteners-0.19-py3-none-any.whl (18 kB)\n", - "Using cached fastjsonschema-2.20.0-py3-none-any.whl (23 kB)\n", - "Using cached fileformats_medimage_mrtrix3-3.0.4a5-py3-none-any.whl (15 kB)\n", - "Using cached filelock-3.15.4-py3-none-any.whl (16 kB)\n", - "Using cached httpx-0.27.0-py3-none-any.whl (75 kB)\n", - "Using cached httpcore-1.0.5-py3-none-any.whl (77 kB)\n", - "Using cached imageio-2.34.2-py3-none-any.whl (313 kB)\n", - "Using cached importlib_resources-6.4.0-py3-none-any.whl (38 kB)\n", - "Using cached json5-0.9.25-py3-none-any.whl (30 kB)\n", - "Using cached jsonschema-4.23.0-py3-none-any.whl (88 kB)\n", - "Using cached attrs-24.2.0-py3-none-any.whl (63 kB)\n", - "Using cached jupyter_events-0.10.0-py3-none-any.whl (18 kB)\n", - "Using cached jupyter_lsp-2.2.5-py3-none-any.whl (69 kB)\n", - "Using cached jupyter_server_terminals-0.5.3-py3-none-any.whl (13 kB)\n", - "Using cached ordered_set-4.1.0-py3-none-any.whl (7.6 kB)\n", - "Using cached overrides-7.7.0-py3-none-any.whl (17 kB)\n", - "Using cached platformdirs-4.2.2-py3-none-any.whl (18 kB)\n", - "Using cached prometheus_client-0.20.0-py3-none-any.whl (54 kB)\n", - "Using cached python_utils-3.8.2-py2.py3-none-any.whl (27 kB)\n", - "Using cached Send2Trash-1.8.3-py3-none-any.whl (18 kB)\n", - "Using cached soupsieve-2.5-py3-none-any.whl (36 kB)\n", - "Using cached terminado-0.18.1-py3-none-any.whl (14 kB)\n", - "Using cached websocket_client-1.8.0-py3-none-any.whl (58 kB)\n", - "Using cached zipp-3.19.2-py3-none-any.whl (9.0 kB)\n", - "Using cached aiofiles-24.1.0-py3-none-any.whl (15 kB)\n", - "Using cached mypy_extensions-1.0.0-py3-none-any.whl (4.7 kB)\n", - "Using cached sgqlc-16.3-py3-none-any.whl (81 kB)\n", - "Using cached tqdm-4.66.5-py3-none-any.whl (78 kB)\n", - "Using cached ci_info-0.3.0-py3-none-any.whl (7.8 kB)\n", - "Downloading exceptiongroup-1.2.2-py3-none-any.whl (16 kB)\n", - "Using cached graphql_core-3.2.3-py3-none-any.whl (202 kB)\n", - "Using cached jsonschema_specifications-2023.12.1-py3-none-any.whl (18 kB)\n", - "Using cached python_json_logger-2.0.7-py3-none-any.whl (8.1 kB)\n", - "Using cached referencing-0.35.1-py3-none-any.whl (26 kB)\n", - "Using cached rfc3986_validator-0.1.1-py2.py3-none-any.whl (4.2 kB)\n", - "Using cached rich-13.7.1-py3-none-any.whl (240 kB)\n", - "Downloading rpds_py-0.20.0-cp310-cp310-macosx_10_12_x86_64.whl (318 kB)\n", - "\u001b[2K \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m318.4/318.4 kB\u001b[0m \u001b[31m3.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0mm eta \u001b[36m0:00:01\u001b[0m0:01\u001b[0m\n", - "\u001b[?25hUsing cached shellingham-1.5.4-py2.py3-none-any.whl (9.8 kB)\n", - "Using cached sniffio-1.3.1-py3-none-any.whl (10 kB)\n", - "Using cached argon2_cffi_bindings-21.2.0-cp38-abi3-macosx_10_9_universal2.whl (53 kB)\n", - "Using cached rfc3339_validator-0.1.4-py2.py3-none-any.whl (3.5 kB)\n", - "Using cached typer-0.12.3-py3-none-any.whl (47 kB)\n", - "Downloading cffi-1.17.0-cp310-cp310-macosx_10_9_x86_64.whl (181 kB)\n", - "\u001b[2K \u001b[38;2;114;156;31m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m181.8/181.8 kB\u001b[0m \u001b[31m4.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\n", - "\u001b[?25hUsing cached h11-0.14.0-py3-none-any.whl (58 kB)\n", - "Using cached jsonpointer-3.0.0-py2.py3-none-any.whl (7.6 kB)\n", - "Using cached markdown_it_py-3.0.0-py3-none-any.whl (87 kB)\n", - "Using cached webcolors-24.6.0-py3-none-any.whl (14 kB)\n", - "Using cached fqdn-1.5.1-py3-none-any.whl (9.1 kB)\n", - "Using cached isoduration-20.11.0-py3-none-any.whl (11 kB)\n", - "Using cached uri_template-1.3.0-py3-none-any.whl (11 kB)\n", - "Using cached arrow-1.3.0-py3-none-any.whl (66 kB)\n", - "Using cached mdurl-0.1.2-py3-none-any.whl (10.0 kB)\n", - "Using cached pycparser-2.22-py3-none-any.whl (117 kB)\n", - "Using cached types_python_dateutil-2.9.0.20240316-py3-none-any.whl (9.7 kB)\n", - "Installing collected packages: fastjsonschema, zipp, widgetsnbextension, websocket-client, webcolors, urllib3, uri-template, typing-extensions, types-python-dateutil, tqdm, tornado, toml, tinycss2, soupsieve, sniffio, shellingham, send2trash, rpds-py, rfc3986-validator, rfc3339-validator, qtpy, pyzmq, python-json-logger, python-dateutil, pydicom, pycparser, psutil, prometheus-client, platformdirs, pandocfilters, overrides, ordered-set, nibabel, nest-asyncio, mypy-extensions, mistune, mdurl, markupsafe, jupyterlab-widgets, jupyterlab-pygments, jsonpointer, json5, isodate, importlib_resources, imageio, idna, h11, graphql-core, fqdn, filelock, fasteners, exceptiongroup, defusedxml, debugpy, comm, click, ci-info, charset-normalizer, certifi, babel, attrs, aiofiles, terminado, sgqlc, requests, referencing, python-utils, markdown-it-py, jupyter-core, jinja2, importlib-metadata, httpcore, fileformats, deepdiff, click-option-group, cffi, beautifulsoup4, async-lru, arrow, anyio, rich, progressbar2, jupyter-server-terminals, jupyter-client, jsonschema-specifications, isoduration, httpx, hatch-vcs, fileformats-medimage, etelemetry, docker, argon2-cffi-bindings, xnat, typer, pydra, jsonschema, ipywidgets, ipykernel, fileformats-medimage-mrtrix3, argon2-cffi, qtconsole, pydra-mrtrix3, pydra-dcm2niix, neurodocker, nbformat, jupyter-console, bash_kernel, openneuro-py, nbclient, jupyter-events, nbconvert, medimages4tests, xnat4tests, jupyter-server, fileformats-extras, notebook-shim, jupyterlab-server, jupyter-lsp, frametree, fileformats-medimage-extras, pydra2app, jupyterlab, frametree-xnat, pydra2app-xnat, notebook, jupyter\n", - " Attempting uninstall: typing-extensions\n", - " Found existing installation: typing_extensions 4.4.0\n", - " Uninstalling typing_extensions-4.4.0:\n", - " Successfully uninstalled typing_extensions-4.4.0\n", - " Attempting uninstall: python-dateutil\n", - " Found existing installation: python-dateutil 2.9.0.post0\n", - " Uninstalling python-dateutil-2.9.0.post0:\n", - " Successfully uninstalled python-dateutil-2.9.0.post0\n", - " Attempting uninstall: attrs\n", - " Found existing installation: attrs 22.1.0\n", - " Uninstalling attrs-22.1.0:\n", - " Successfully uninstalled attrs-22.1.0\n", - "Successfully installed aiofiles-24.1.0 anyio-4.4.0 argon2-cffi-23.1.0 argon2-cffi-bindings-21.2.0 arrow-1.3.0 async-lru-2.0.4 attrs-24.2.0 babel-2.15.0 bash_kernel-0.9.3 beautifulsoup4-4.12.3 certifi-2024.7.4 cffi-1.17.0 charset-normalizer-3.3.2 ci-info-0.3.0 click-8.1.7 click-option-group-0.5.6 comm-0.2.2 debugpy-1.8.5 deepdiff-7.0.1 defusedxml-0.7.1 docker-7.1.0 etelemetry-0.3.1 exceptiongroup-1.2.2 fasteners-0.19 fastjsonschema-2.20.0 fileformats-0.11.4 fileformats-extras-0.11.4 fileformats-medimage-0.8.2 fileformats-medimage-extras-0.8.2 fileformats-medimage-mrtrix3-3.0.4a5 filelock-3.15.4 fqdn-1.5.1 frametree-0.12.1 frametree-xnat-0.6.0 graphql-core-3.2.3 h11-0.14.0 hatch-vcs-0.4.0 httpcore-1.0.5 httpx-0.27.0 idna-3.7 imageio-2.34.2 importlib-metadata-6.11.0 importlib_resources-6.4.0 ipykernel-6.29.5 ipywidgets-8.1.3 isodate-0.6.1 isoduration-20.11.0 jinja2-3.1.4 json5-0.9.25 jsonpointer-3.0.0 jsonschema-4.23.0 jsonschema-specifications-2023.12.1 jupyter-1.0.0 jupyter-client-8.6.2 jupyter-console-6.6.3 jupyter-core-5.7.2 jupyter-events-0.10.0 jupyter-lsp-2.2.5 jupyter-server-2.14.2 jupyter-server-terminals-0.5.3 jupyterlab-4.2.4 jupyterlab-pygments-0.3.0 jupyterlab-server-2.27.3 jupyterlab-widgets-3.0.11 markdown-it-py-3.0.0 markupsafe-2.1.5 mdurl-0.1.2 medimages4tests-0.4.2 mistune-3.0.2 mypy-extensions-1.0.0 nbclient-0.10.0 nbconvert-7.16.4 nbformat-5.10.4 nest-asyncio-1.6.0 neurodocker-1.0.1 nibabel-5.2.1 notebook-7.2.1 notebook-shim-0.2.4 openneuro-py-2024.2.0 ordered-set-4.1.0 overrides-7.7.0 pandocfilters-1.5.1 platformdirs-4.2.2 progressbar2-4.4.2 prometheus-client-0.20.0 psutil-6.0.0 pycparser-2.22 pydicom-2.4.4 pydra-0.23 pydra-dcm2niix-1.2.1 pydra-mrtrix3-3.0.4a5 pydra2app-0.12.3 pydra2app-xnat-0.6.1 python-dateutil-2.8.2 python-json-logger-2.0.7 python-utils-3.8.2 pyzmq-26.1.0 qtconsole-5.5.2 qtpy-2.4.1 referencing-0.35.1 requests-2.32.3 rfc3339-validator-0.1.4 rfc3986-validator-0.1.1 rich-13.7.1 rpds-py-0.20.0 send2trash-1.8.3 sgqlc-16.3 shellingham-1.5.4 sniffio-1.3.1 soupsieve-2.5 terminado-0.18.1 tinycss2-1.3.0 toml-0.10.2 tornado-6.4.1 tqdm-4.66.5 typer-0.12.3 types-python-dateutil-2.9.0.20240316 typing-extensions-4.12.2 uri-template-1.3.0 urllib3-2.2.2 webcolors-24.6.0 websocket-client-1.8.0 widgetsnbextension-4.0.11 xnat-0.6.2 xnat4tests-0.3.11 zipp-3.19.2\n", - "\n", - "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip is available: \u001b[0m\u001b[31;49m23.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m24.2\u001b[0m\n", - "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpython3.10 -m pip install --upgrade pip\u001b[0m\n" - ] - } - ], + "execution_count": null, + "id": "56a8b6fb", + "metadata": {}, + "outputs": [], "source": [ - "# pip install --upgrade -r tutorial/requirements.txt" + "xnat4tests add-data simple-dir\n", + "xnat4tests add-data openneuro-t1w" ] }, { @@ -885,91 +279,10 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "id": "3a6a38f7", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Usage: pydra2app make [OPTIONS] TARGET SPEC_PATH\n", - "\n", - " Construct and build a docker image containing a pipeline to be run on data\n", - " stored in a data repository or structure (e.g. XNAT Container Service\n", - " Pipeline or BIDS App)\n", - "\n", - " TARGET is the type of image to build. For standard images just the pydra2app\n", - " sub-package is required (e.g. 'xnat' or 'common'). However, specific App\n", - " subclasses can be specified using : format,\n", - " e.g. pydra2app.xnat:XnatApp\n", - "\n", - " SPEC_PATH is the file system path to the specification to build, or\n", - " directory containing multiple specifications\n", - "\n", - "Options:\n", - " --registry TEXT The Docker registry to deploy the pipeline\n", - " to\n", - " --build-dir PATH Specify the directory to build the Docker\n", - " image in. Defaults to `.build` in the\n", - " directory containing the YAML specification\n", - " --release \n", - " Name of the release for the package as a\n", - " whole (i.e. for all pipelines)\n", - " --tag-latest / --dont-tag-latest\n", - " whether to tag the release as the \"latest\"\n", - " or not\n", - " --save-manifest PATH File path at which to save the build\n", - " manifest\n", - " --logfile PATH Log output to file instead of stdout\n", - " --loglevel TEXT The level to display logs at\n", - " --use-local-packages / --dont-use-local-packages\n", - " Use locally installed Python packages,\n", - " instead of pulling them down from PyPI\n", - " --install-extras TEXT Install extras to use when installing\n", - " Pydra2App inside the container image.\n", - " Typically only used in tests to provide\n", - " 'test' extra\n", - " --for-localhost / --not-for-localhost\n", - " Build the image so that it can be run in\n", - " Pydra2App's test configuration (only for\n", - " internal use)\n", - " --raise-errors / --log-errors Raise exceptions instead of logging failures\n", - " --generate-only / --build Just create the build directory and\n", - " dockerfile\n", - " --license \n", - " Licenses provided at build time to be stored\n", - " in the image (instead of downloaded at\n", - " runtime)\n", - " --license-to-download TEXT Specify licenses that are not provided at\n", - " runtime and instead downloaded from the data\n", - " store at runtime in order to satisfy their\n", - " conditions\n", - " --check-registry / --dont-check-registry\n", - " Check the registry to see if an existing\n", - " image with the same tag is present, and if\n", - " so whether the specification matches (and\n", - " can be skipped) or not (raise an error)\n", - " --push / --dont-push push built images to registry\n", - " --clean-up / --dont-clean-up Remove built images after they are pushed to\n", - " the registry\n", - " --spec-root PATH The root path to consider the specs to be\n", - " relative to, defaults to CWD\n", - " -s, --source-package PATH Path to a local Python package to be\n", - " included in the image. Needs to have a\n", - " package definition that can be built into a\n", - " source distribution and the name of the\n", - " directory needs to match that of the package\n", - " to be installed. Multiple packages can be\n", - " specified by repeating the option.\n", - " -e, --export-file \n", - " Path to be exported from the Docker build\n", - " directory for convenience. Multiple files\n", - " can be specified by repeating the option.\n", - " --help Show this message and exit.\n" - ] - } - ], + "outputs": [], "source": [ "pydra2app make --help" ] @@ -990,21 +303,10 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "id": "1d824073", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO - Dockerfile for 'australian-imaging-service-community/examples.zip:3.0' generated at specs/australian-imaging-service-community/examples/.build-zip/Dockerfile\n", - "INFO - Successfully built docker image australian-imaging-service-community/examples.zip:3.0\n", - "australian-imaging-service-community/examples.zip:3.0\n", - "INFO - Successfully built australian-imaging-service-community/examples.zip:3.0 pipeline\n" - ] - } - ], + "outputs": [], "source": [ "pydra2app make xnat \\\n", "./specs/australian-imaging-service-community/examples/zip.yaml \\\n", @@ -1029,172 +331,10 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "id": "fa298a80", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "{\n", - " \"name\": \"examples.zip\",\n", - " \"description\": \"examples.zip 3.0: Zips up a file or directory\",\n", - " \"label\": \"examples.zip\",\n", - " \"schema-version\": \"1.0\",\n", - " \"image\": \"australian-imaging-service-community/examples.zip:3.0\",\n", - " \"index\": \"docker.io\",\n", - " \"datatype\": \"docker\",\n", - " \"override-entrypoint\": true,\n", - " \"mounts\": [\n", - " {\n", - " \"name\": \"in\",\n", - " \"writable\": false,\n", - " \"path\": \"/input\"\n", - " },\n", - " {\n", - " \"name\": \"out\",\n", - " \"writable\": true,\n", - " \"path\": \"/output\"\n", - " },\n", - " {\n", - " \"name\": \"work\",\n", - " \"writable\": true,\n", - " \"path\": \"/work\"\n", - " }\n", - " ],\n", - " \"ports\": {},\n", - " \"inputs\": [\n", - " {\n", - " \"name\": \"to_zip\",\n", - " \"description\": \"Match resource (application/x-fs-object) [SCAN-TYPE]: Input file-system object to zip \",\n", - " \"type\": \"string\",\n", - " \"default-value\": \"\",\n", - " \"required\": false,\n", - " \"user-settable\": true,\n", - " \"replacement-key\": \"[TO_ZIP_INPUT]\"\n", - " },\n", - " {\n", - " \"name\": \"compression\",\n", - " \"description\": \"Parameter (): the level of compression applied\",\n", - " \"type\": \"number\",\n", - " \"default-value\": 5,\n", - " \"required\": false,\n", - " \"user-settable\": true,\n", - " \"replacement-key\": \"[COMPRESSION_PARAM]\"\n", - " },\n", - " {\n", - " \"name\": \"Pydra2App_flags\",\n", - " \"description\": \"Flags passed to `run-pydra2app-pipeline` command\",\n", - " \"type\": \"string\",\n", - " \"default-value\": \"--plugin serial --work /wl --dataset-name default --loglevel info --export-work /work\",\n", - " \"required\": false,\n", - " \"user-settable\": true,\n", - " \"replacement-key\": \"#PYDRA2APP_FLAGS#\"\n", - " },\n", - " {\n", - " \"name\": \"PROJECT_ID\",\n", - " \"description\": \"Project ID\",\n", - " \"type\": \"string\",\n", - " \"required\": true,\n", - " \"user-settable\": false,\n", - " \"replacement-key\": \"[PROJECT_ID]\"\n", - " },\n", - " {\n", - " \"name\": \"SESSION_LABEL\",\n", - " \"description\": \"Imaging session label\",\n", - " \"type\": \"string\",\n", - " \"required\": true,\n", - " \"user-settable\": false,\n", - " \"replacement-key\": \"[SESSION_LABEL]\"\n", - " },\n", - " {\n", - " \"name\": \"SUBJECT_LABEL\",\n", - " \"description\": \"Subject label\",\n", - " \"type\": \"string\",\n", - " \"required\": true,\n", - " \"user-settable\": false,\n", - " \"replacement-key\": \"[SUBJECT_LABEL]\"\n", - " }\n", - " ],\n", - " \"outputs\": [\n", - " {\n", - " \"name\": \"zipped\",\n", - " \"description\": \"zipped (application/zip)\",\n", - " \"required\": true,\n", - " \"mount\": \"out\",\n", - " \"path\": \"zipped.zip\",\n", - " \"glob\": null\n", - " }\n", - " ],\n", - " \"xnat\": [\n", - " {\n", - " \"name\": \"examples.zip\",\n", - " \"description\": \"Zips up a file or directory\",\n", - " \"contexts\": [\n", - " \"xnat:imageSessionData\"\n", - " ],\n", - " \"external-inputs\": [\n", - " {\n", - " \"name\": \"SESSION\",\n", - " \"description\": \"Imaging session\",\n", - " \"type\": \"Session\",\n", - " \"source\": null,\n", - " \"default-value\": null,\n", - " \"required\": true,\n", - " \"replacement-key\": null,\n", - " \"sensitive\": null,\n", - " \"provides-value-for-command-input\": null,\n", - " \"provides-files-for-command-mount\": \"in\",\n", - " \"via-setup-command\": null,\n", - " \"user-settable\": false,\n", - " \"load-children\": true\n", - " }\n", - " ],\n", - " \"derived-inputs\": [\n", - " {\n", - " \"name\": \"__SESSION_LABEL__\",\n", - " \"type\": \"string\",\n", - " \"derived-from-wrapper-input\": \"SESSION\",\n", - " \"derived-from-xnat-object-property\": \"label\",\n", - " \"provides-value-for-command-input\": \"SESSION_LABEL\",\n", - " \"user-settable\": false\n", - " },\n", - " {\n", - " \"name\": \"__SUBJECT_ID__\",\n", - " \"type\": \"string\",\n", - " \"derived-from-wrapper-input\": \"SESSION\",\n", - " \"derived-from-xnat-object-property\": \"subject-id\",\n", - " \"provides-value-for-command-input\": \"SUBJECT_LABEL\",\n", - " \"user-settable\": false\n", - " },\n", - " {\n", - " \"name\": \"__PROJECT_ID__\",\n", - " \"type\": \"string\",\n", - " \"derived-from-wrapper-input\": \"SESSION\",\n", - " \"derived-from-xnat-object-property\": \"project-id\",\n", - " \"provides-value-for-command-input\": \"PROJECT_ID\",\n", - " \"user-settable\": false\n", - " }\n", - " ],\n", - " \"output-handlers\": [\n", - " {\n", - " \"name\": \"zipped-resource\",\n", - " \"accepts-command-output\": \"zipped\",\n", - " \"via-wrapup-command\": null,\n", - " \"as-a-child-of\": \"SESSION\",\n", - " \"type\": \"Resource\",\n", - " \"label\": \"zipped\",\n", - " \"format\": \"application/zip\"\n", - " }\n", - " ]\n", - " }\n", - " ],\n", - " \"command-line\": \"conda run --no-capture-output -n pydra2app pydra2app ext xnat cs-entrypoint xnat-cs//[PROJECT_ID] --input to_zip '[TO_ZIP_INPUT]' --output zipped 'zipped' --parameter compression '[COMPRESSION_PARAM]' --dataset-hierarchy subject,session --ids [SESSION_LABEL] #PYDRA2APP_FLAGS#\"\n", - "}\n" - ] - } - ], + "outputs": [], "source": [ "cat ~/zip-xnat-command.json" ] @@ -1209,8 +349,8 @@ }, { "attachments": { - "Screen%20Shot%202024-08-05%20at%2012.59.37%20pm.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABKAAAATVCAYAAACUtqzOAAABWmlDQ1BJQ0MgUHJvZmlsZQAAKJFtkD1Lw2AUhU9sS0WKijh0cIjgINJKrQXdJHYQwSFUBXVL0pgKafqaRLSjILq4FMRRhBb8A36s4uQoCFIUncVV6KCWeN9WTateuJyHw+FyOUBHUGHMDALIW66dmZkWl5ZXxPAzOhFCBH2IKprDJFmeowi+tX1qdxC43sb5rb3Bp8RN9fBl+006GTurBP7m26Yrqzsa6QftiMZsFxCGieVNl3HeIu636Snifc5Gk485q00+bWQWMmnia+JeLadkiavEMbXFN1o4b25oXz/w7yO6tThP2k07ABlJTGAdcdIEdfN/NtXIplEAQxE21mAgBxciJHIYTOjEs7CgYRQxYn4tiRTv+Hd3vleoAJM1IFDyPfUAuNgFove+N3QE9OwA51dMsZWfRoVa0FkdTzY5MgWEHj3vlToNl4B6yfPey55XL9P9B+Cy+Am/umPPxGQESgAAAFZlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA5KGAAcAAAASAAAARKACAAQAAAABAAAEoKADAAQAAAABAAAE1QAAAABBU0NJSQAAAFNjcmVlbnNob3QxYRJ4AAAB2GlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4xMjM3PC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjExODQ8L2V4aWY6UGl4ZWxYRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpVc2VyQ29tbWVudD5TY3JlZW5zaG90PC9leGlmOlVzZXJDb21tZW50PgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4K42l08gAAQABJREFUeAHsXQWAVUUXPssu3d3d3R2SgoCANIhSAlKCiCgKEj8oYSChICIooZQICEh3SHd3wxJLx7K7//nmvnm17+2LfQ8XOAP77p07M+ee+ebMvDvfOzM3IG6xdyNIgiAgCAgCgoAgIAgIAoKAICAICAIvCAKX1/1Ai9bupPeH/GKj8enlY+jStVv0Tv8fafzn7ahMkZyUptL7dHf7FNq0+xj1+uo3+vuHjylL+pQUv0Q72jlnOKVOkZjqdB5Jg7s3oYbVS1LzPmPp9QqFqcnrZah6++FUo1xBGt23NaWt3JX6dXyTer9bh+p3+5oK586srk+as1rJ1Ypkz5Sajiz+mhKWbE83t/5E9+4/otc7jaCBXd+ielWKU9KyHXVWddw6awglShCPKrUZTI1qlqZJgzpSyWaf08qfP6M1/x6izoMm0/KfPqULXK/WH4+nPm3r0r8HTtFmro+z0GjkJDq5cRUdWb6QijV+m7KUrEAL+nWi17p/SvGTp6CNP4yiAm80pqylK9LKkZ9TkUatKFX2PLRy9ADKW70uZS9flQ7/8xed37WFan82UuVJk6cA5a1Rj5YM6k2Q/+TBfdow/ivKU/0NllOJ/vqkizN1zNfXTh1Ax89eoS5DppivOTsJjBWL7u/8hQICAsxZnoY+o7f7TaAE8eLQr191VdfHz1pBfUfPNOexPoENNH+jnLKBHXOGUeygQMajv2o7xOMVb6uyTx/RjYrly6rS7u34hVp8NJYWr9tNzuzJ+h6wAy3LWX5ndtasdlllX3XfH0XVyxakL3u3oGy1elGvd+pQm/oVKXONnupWkPv3+j1Kp0XjP6IkZTpS6LMwsxrWNrdpxiAqmjcr2+hoSp08scKpeJPPKE7sQGpYoxQN/eFPczl9ki5VMjq78ntqy/1m9j/baM/8Lyl+3DiUr35flQV4n1j2LS3fvJ86DPhJF6PgTZMogv/dvH2fy22lUVMW08PHTyln5rR0aNEoatTzW/pn0z66ueUnOn3xOpVuPkCVrVm+EP0+uid9OHI6zVi8ySyvdKEctHH6IDp3+QZlzZDK3D5fdGtM/d9rQAlLtaeMaVIoXb79dSl9Nma2uWxUJ7mr1qaijVrTrj9+oXvXr1DRt1rTk/v3aMfMyVSoXhNKk7cQLRv6EVXu+jGlyZ2f1o4ZRnESJqRKXfqq61nLVqbs5arSurHDKGW2XFS6TRe2985UtefndPvCGdozbzo1/mYKRYSH0Z8fdaTyHT6giIhw2jZ1fFRqUSpun/OrxlGCku2izIfEMnzPJOky0qqvv7DJmyZ3Ada7L22c+A2FhT6lKl370a7Zv1D8pMlVH183djglTJmayrXrTifWr6CDS+ZSoxET6cDfc+nSvp1UqfNHdOfyBb4+j+oMGEXzeht9oljjNpQia05aM2Yo1ew7lIJPHKF9C38nrpjN/T2NxPK0gOQXBAQBQUAQEAQEAUFAEBAEBAFBIKYhUDRvFsqQJjm9P/QXOnspmNp9PpGSJIxPrepW4Ml3EHXl6yfOXaWvJi8yq543e3qaOJuJmtOXFNGjExpUK8HzrAiaMKAdNWZSCHOubq1qESbOh05eonXbD9O4mcvpwaMnuojT4+9Ltyr50xdtVASIfcaKTDz98MdK+mlIJ/q0YwOVjInpgePnqUmt0rT196G0cttBas/1QcDEOyryCXn+/qIXPb4bQqVadaS0+YtQLCZeEJJnyU6nNq2mB7du0P6Ff6hr+iP45BG6H3yNLuzZrup+dOUiFQ97+oSSps+ks5mPpzevUXIu7P6XAmPHNl/31UmsWBbiScus3XmEIiamffm+vmRDUJkvmk5APt2595C+/aQNPX4SSvmyZ6DM6VLaZzPHw8LD1fmTp6FM4ji2pya1ytC8Mb3V3+Qh75nLOstfskB2cmZnIDyn/bWB9h49p9r17oNH9HGH+maZ9ieadNJH+3Qdhz2DvASZBDvOmDY57Tt23iH5hDL5cmRQRTftOa6OR89coaSJE6hzfDxmPE5fuK76j/kin1wJvk3PnoXTjZB71K/DmzRpsIHHqQvX6CZf+2VYZ9o1lwmQ+HEpQ+pk5qJXgkMUyXT1Roj5Gk5mjuqu+tQ305bYXB8/c4WK//vH/wh/CPlzZFRH/dGiTjlzu/RtX09fNh+fPnxAZ7atp9sXz1KyTNkodrz4VKJ5O0XUJEzBZFcSQ7+bZ0/SrfOn6eqRAwq7uImTUtZSFfk8nIo0bEUZi5ZmEiacr1VQBG26fIUpbd4C3N/uKFtMljELxwvS2W0bzPf250n+2g3pxukTdP34Ibp55gRdPrSHclaqQekLFWPS6LAiyC7u3U4PQ24pNZAWzuTl8TXL6MHNYDqyYiHnLe5cRQx+/BfO5BqO0Q1CQEUXQSkvCAgCgoAgIAgIAoKAICAICAL/OQKYvCPcf/hYHZ8+faaO8C5C0J408NjQAYRDrABjShQWbrmegCfM127eob3Hzqm/iXNWKZIgKDCQ4IWjw+MnT/Wp0+Oxs5dVGkgDK2cec/7NMwbTyD6tKEmi+PTrQmPSCl3feH+k8uy59+CxIqZ2zB5mLhPVSUCsQKo3ZIzyVgp9/Igu799lzh7AdQ1/Zuj/7ImBk06ER5MKPMmEJ0d4mOFhAwLDUbh/45q6rPKZMHSUz9trwOvC1Zs2xYd0b0pDejQ1tyUSpy1Yb5NHR0AWgoC8ffcBVSqRl+LGCaJnXKfhvZvrLKRJLmBvH5zZEwisXFnSmv7SmYs5y5+OiRdndvYsLJwePLSQmM+4zimSJlIyAwMtU/V4cT0j+C5fv23WC82nbd980e7k3OVgdaVCsdzqiPqBuNMhnPtG5XeH2pC3SCvy1qeUoWo3qvzOEFqwegfVe81CZNTrOppOnr9G6U3E05XgO1ock7gXqVTzz2nV1oPma/A6zJI+FaGPDetltNE3/dqo9Ft37lO7zyZSYlNfxkWQXNYhferk5naB95R9eMZ9ASEoTjyFx+2L5yjkwlkmbU7SoSXzzRg9uHnDUpSJJmIeFGTVo9s3VX6UObzsL7pz5RKd37mFEjB5la1MFUUAhVy6QPleb6AI2WvHLHWzCPT9GQhi/OmA/h07fgK+FqovGUcTuRr25IlBJplSnz19ygR1kCWvaZBCnf0RLFbtD+kiUxAQBAQBQUAQEAQEAUFAEBAEBAE/IACSKE3KpOa/i1dvKa8LLGMCsaAnsfA8CuHJ9LjP2lK2jKnp4/YWD5Ote0/Qe02rqSVD4we0M2u5kifGIAL+9+MCmjBrJXVqWp2SMkmxcddR5RkDOVgulDJZYnMZb08K5MxEP81dQ290Gak8LiAnDnssXVwznr19Uquleb8t2sBeLCnULd6oXJRyZ7UQH/b3TZAsuZowb/hhJO2eM42X3/Bk3EQQhVw+TzkqVFMT5JwVq9sXjXHxyXPX2uj0eqev6DCTFzpcZ5LwwIkLOmpz/LxzIwIRU6bFQPPf0g17qWG1UhR8+67K+3qFImo5X9kiucxlw5l0QNufuRjs0J7gMYdlfPir1n6YuZyz/KvZlpzZ2fodR6hto8rKtrAED/ddueWAui9IMdgclgYmT5JQ3ecRL28DmQQyzdMA4uwtXoLnKEB3LJ3DMtRW9SpQQbbJBat32mTt3Ky6snl9sUT+bDRrdA91rU6lolSxeB7lEaXT06RIory6LpnIsK+n/q2T1JLTT3g5K/qvDiB8scwQfSyMiTkELKdFAJF4k0koLLdEQH/+5BteDmYVxkxfZm6XnsN/tUqxPX1y/y6BPAXBcnT133Qv+KoijbB8zVm4wB5EcRMnoRMbVtDZHZtU/tjx4qllfA/ZmzBT8TJ0af9OunxwD2ViD6kbp44ziWvUwZlMb64HMDkXJ0FC819g7Dh0eus6Ss3L8ECEwYsrQ+ESBC+us9s3quvw9kpfoKhKxz3PMWmGuqfNV0iNA3mq1aaHTK49fXhfqYQlhvBoTMueXTqEhzGpFc/iEaeve3P03HK9uYuUEQQEAUFAEBAEBAFBQBAQBAQBQcCHCDSvXY7wp0O/b2ZR369n0de8X9ODnVPVapGPOY7lQ72+/JUm8XKpw4tG0/FzV8wrST7g66unfEYHF45US5QgCx4zX4ybS3O+/YAurZ2gxG/bd0ItZ5q3YjtVK1uA93gara7DGwreIdbBicOQdRabcxBk3VrWUiTXg0ePlYdVGSZEsFTwqw9b8NK/moT9kAayTggzR/Wg2cu2qiWFNoJMESyvCz55lF7/ZDh7MYWr/V1AWsRPlkLtSVPz4/9Ro1GTKTw0VBFe9h5OWGrkKETY1dNRHl9fG82kBTyIuvPyR4SHu6aZvZbgFVOM9zZyFLDXE0ilEVMsyy2Rb9D4+dSgWknlqYNlb3+N66PaD8vFNA4gMvUSP2f2ZH3PcKsGd5bfmZ0NGDuH/vi6J11Z/yMTS0RLmICZtWSzIqI+4eWYVzf8qLyn7rOXFPQ7cuqS2vspZNvPlKhUB5UGXaxUUKrZWqShbZs3K9LA9xs73W+oy+Cf6TfeV2vqsC50684DtZ+TUZIUSTf2s7bKcwn7kyGg3rUrFlFLVBEHhh+NmolTtRR20YS+6hzE0kejZtAfbLM6YH81eLKBwEW/RcASwaa9x9CnvNcTvNcQQLZiyWnbRlXUfmvA4Bj2EBs8xVx3ldHVhx0gu+f8ysvv2lLjr39WfeQQ73+EJXrOwrFVf1OyDJmp4Vc/qCyXD+5VS/QQucQehthj6trRA7y/1FUq+MZbdG7HZmeivL6OumMpbIMvDR0g6OK+HfTvrz/Q1cP7qM7nI5lnDqS7Vy7S3vkzlBdjNt67qsZHg+nBjesEj0d4geGI/Z7Kt+9JgXHiUuijh7T2+2Gq/ljGV63XAFX2YQi86AzgrvP+T/lq1mc7C6c9c52Te+5ULkA2IXcHJskjCAgCgoAgIAgIAoKAICAICAIvCgLwFtLeE9B5xeT+1HP4NDV5HdGnJbVtWIXSv9aN93hqT5t53xtM+uHRsYU3BE9RvpPyBkE5eKQ85H2eQGJZB3hu3Oclf/Aa8UWIFyc2peR9n6x1hlx4cuXNloH1vhyJ6HJ1XyzDgReG/VI7lIOnxON7vCSKJ7XPM3iyCbm1Xlja1Y5JiLKFc9Jl3j/ob94gHHtw3eEN3qMTsPk2lmzqZZtaFtoX3lU62NuTvu7saJ/flZ1hz697bE9PTMtGtVxsLn7+8k0bsgXkWmL2CAIB5+sAz6pcWdIposleNvZcgn3qpYY6Hd6AIGKtl/0hDX0nccJ4aq8nndf6iL2x9hw967ZdA4tbIfej3ebWOsRNlFh5MVlfi+ocnkNhTNzCI8gXwZNNyF3dD15LsQKDCMtuETIVK0OJUqeloysX8/VARVzt/H0KYT8oHeImSsL1N7wB9bU4CRPx8r2nakNzfQ1H1B3L9bA8NzpBPKCig56UFQQEAUFAEBAEBAFBQBAQBASBGIeAPZED74GdvBkyvDTSMrkweMJ8pTP2kfl5aCca9kEzAhmB5T/WpJKzSb41OeGLyoPgstcZcuFdhQ2lPQl5qr3BmyW39KSIT/IeWbGIDi01cPWJQCsh8AzCn6+D/SbYWr59+zpqG53X0dE+vys7u3H7niMxahmgfQL2xnJml/Z5PY2DAMP+TI6CMzvEhv+OAnSMSs9dh884Kub0GpYJehPg+Vdv8HfeFI1WGSzz+2dYv2jJ0IUTp01PtfuP0FG3jkuH9KGy777Pb+97jd/ol0gRU1eP7KemY7z3YDr8zwL1dky3FHCSSTygnAAjlwUBQUAQEAQEAUFAEBAEBAFB4OVBoHDuzFSeN1lewvsAWRME8HZpxG8j237glNpo/OWpccyrSS3eaDqElzjuOHg65innZ43EzvwM8AsoHt5sXVvWpLEzlvtFe3hEYS+nJw/u0u3zZ5RHpF9u5IFQIaA8AEuyCgKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCHiOgLwFz3PMpIQgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKABwgIAeUBWJJVEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBwHMEhIDyHDMpIQgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAIOABAkJAeQCWZBUEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBDwHAEhoDzHTEoIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAIeIBAUEDaEhTABSL4L7rHiGu7yZfyoquPL8uHc91iMVa+wMmXer1s+gjOjvuh4OIYF1/a/8s8fvkSp5g6fkn7efY9Lng5x0vGW/+PtzF1HBG9nPeLV+F7RNpf2l/sXMZ/GQf8Pw4EUUQERZiQju5REV8+lBddfXxaXpF0PCzhv4/wEjkG82mDg+Ds2L4EF8e4+LA/MsTcuX03HtrYtQ/1FLmqM0SyB2k/x7g4sxfBKwq8VJJ838vzjjzvORs/5HoU44d830f6fhZ7EXuR7xP5PrEeB2IFBEQozyeGRR2jE+fuRdEpD14n5pY3GOGYq1/02y8m4K9sCB8+sMeYUB/f2YvYn7/bU9meD8dDf+sr8m2/L6T9bPFwZR+CV1R4yXjryn4kPSr7eTmex3z3/CJ4SH+R/iL9yRgHZH4n4yHGw6CIcKbqedKlmEl8qGAVxyU301E0gj0ITMJYmiHH3fIqP4SYysWo8tAqIlxpFyP1U1ADewQD9xiFnwf6KZx1flTJTfuL0faj6+Nt+6BVxf4Uev6ybwh/acev6NrfC1Be2g+DpULB1EVUozkdP1VOH37/v1TjL4Ojv4fk+8ewo5eqffV4hi4jzxeW8QKDwgv+/Cj6W/VXsW/p3zK+yfimv+9i2PgeC25PYKLMR+PUEvcgXdUtGuWVHjG1vNZLH+1x0XFJt7UnjYs+Cj7e4aNx00eNp/1R0r3Dl3HUQZ3a46rjgq/X+GqI/YWvtJ+BgLv4qtzarvVR7Nuwb2c4OLsu+EWNm+Aj+KgBx26+oe1CH6V/xdjvV24iFdRRt5f9UdpP2g9WYm8XOi72IfZhZR+BQTlqDUZcUYTRPT68TgEJ0igpPpHnQB+4MCZLFI/yZExGZfJnoPrlc1LZAulp59ErFI5fc/HrjYNy0b7+8BpRgrT+k+8vvV80uYKzY/sVXBzj4kv7fg7jV7THIV/W1x/j5H+pn7SfZ99PgpdzvGS89f94+7KNP1If5/3pv/xekHaRdhH7U71Anj/9xA+IfXllX0FMTHIwnKsDrEBEM3kahyRfyls0vDGlTZGQYgfFonhxYlPiBLEpacJ4Ko57Iexg4qnBZ/PoWVi46d64Grk+SUFaZUqu8jtK96a+nuIj+S2d3xne+ro+ojWlvSLbs+Dj+fjkqv/B0nw5frm6n6TDihF8Y9+QJO3nPp6Cl2/tT/qz4Ik+5avxTOxJ7EnsSfqTjCe+eT6U8TTmjadBxr4yeGxHIxtH4zHe87gaKtQ+NdGXlyZ5AqpVOrsx/jr5PHLuJr3Zfw7duf/Uof5BQYFUjz2k2rxemGqVykaDftlI249c4rze6McI6f2tvCrvOZ7RbY8Xs7wF5xdTf3Ryb+zLlX1YcPGPfFf3f/nTMcz4cjwU+zX6wfOyV2k/z/AWvKLCS8ZbGb+iso+X//tQ2l/an0dB/powcBB7MHDIkyExda+bi/JnSkiBuCRBEPAxAmHc7Y5cfEATlp6g45cfsPSov28yJ49FTUsmpkxJ4IijiSYfK2UnDuPBxbsBNG/XfbpwO8wr/igIMqGwMcxE76j184W8dMkTanEOj6HPwund4YuYfHpiGh4t9UiROC51blCcuvBfuhSJzOXX7Tmnzn2hny/wEj2iZ2+Cn+Dny36oBwqxqxfTrqT9PGs3wcszvGRcELx8+X0j9iT2JPZkmbe9CP0hd4ZENL5zUcqdMwelTp2aAgMD9deoHAUBnyEQFhZGuYODFcnZ46e9TELdd8rTZGXyqXeNRFSpYgXKmzcvxY4d22d6RCUoNDSUjh07RlmSbabvVmsSyrP+HMQ/+Zv5MgyGCN4ejcK+kRdy/5ES5+zjr43H6ODp68YtTZkSxo9DvZuVoZ5NS1GSBHFtij5++szIH536Kg8o7/HxFtdXrpzgbGPX5vYXXBzjYurpZpy8jBvCfTN+QVZ09ZHyRkO6i4O0n+AFBNy1F5f5ZLw1upRhVr7DVeQJroyAy/4ndmK2k4TxYlODSnkoOW8l4uuw6cAF2n/qurSHG/YGzyeQT+nSpfN1M4g8QcCMAIhNbWPd696nXpP3OOyfAeyB16wUyKeKVLBgQVXeWKllFuW3k6CgIPM9L93ZTN+sDFGDuifjumkPKJSDQ5XFn9CbOGqqJXhT3vr+F67foRt3HlKqpAkcArhm91nzvZCh8Wt5aXS3mpQ+pcXjybrgmSshFGa1T5Tn+lnqBrmel48+vtb4vKz3h/HChl7W+sF2EDyvn9ifv+0f7eKr8cvz9pXxIbrtK+2nrde98UXwigovy1gAnKQ/y/gU3fFJykfV38S+nNlH/qypaM3YNrz/re2P6hiXfBWmLt1H3b/9xyxOxjvH9pg/YyLl+WQGSk4EAT8iAC872ByeQByNDyBwMiSOoNy5cystQD4FMCv1PI958uShDBs3EXR5ZmKf3B0/THtAGQiikHXwNI6yxh4qhhRPy9vkZ1UWbz5B7esWtVbJfP7oSai6FzYX/6HPG0xA5TOnOTq5cvO+jW7IY3M/d+JqfyuLdI/LRxPfV+V+2oZelfpqi3JZX7E/DZU6usTLw/4Godr21LmH5X2tj8jz7PtI2k/wgg3oEO3+I+OthlIdo42njKeCpxUCYk/ujdfYTsSf5BOa5J3ahel/0zYQ5kk6SPtEbp/AWCTL7rSByNHvCMATCjbHExP+9oxsj4YCEQRvpPDwcBXVHlDP62gsQ4Vu4VDTHJzra2RBOqrGjJlxQf8+4W3ckOI7eRP/2mlTIS3/weNQOsseTfmzpKQtP7ZzST6h3O27j8zeDd7WL7r4SHmjBQV/Ew7GwWf9T+wrevZlag5pD5MhvWj2JO3nmf0LXp7h9aL1B9FX2hcIyPOWyQ6MwwuHR/5sqUya++8QxLPc3JlSqBuIvRg4Oxs//dcKIlkQcI6AI3vU15yXen4pikzi23kyfvAeUMxagZoBw4aSzGApEsscB0/lXrqqqmLq+MyL8vb333/qGs1fd5iaVitgRvFJaBg1GziXnj0Lo9Vj36HkieOb06I6uffwCdfDqJxX9UOVolPejIf3+NrjY8Tdb58XojxwZqx8YT8vFT5if9Een1zZvxo/fDh+vVT29wKMX9J+nn1/G3j57vvfVf96odLN4+1L9v1qPALJ96t5PJP2dff5/oXqvy9R+5pmDGq49ueHMb9RnzI+OLMffzaAyBYEnCEAnsYJP4Mi2tvJWfHncd0YP0yjlbP+Y/f8EWSwVcagg7cQaDchPuNTHXcvHZUMCEBJQwlPy8fhRYR4u511+U8nrqJapXMQltoh9BqzjK7dvEerv29LyRK7vyHfUyasLPp4p5+n5ef9rynVq5BH6a0/uF3o0o27VP/jWXT8wk0T3u7h6+n9LflfHPna7vTRsEfX+h//oydlSpOE+oxbTspzjgHX9d86qQMVyZmOEtYcbsL7+bS/vj/uZluf53f/A9O7UY4MySlBjeFmPGCL0GfP1M6UL0sqleaOfiXypKPNP3agMXO2Uf+Jq63k+bZ+pfNnpPXj29HImZtpyC/rlLbu6GfB2zt8+UbRGr+OzuxOWdMlpenL91PnkYtd4lMmfwZzPQdPWWeV3339b/3zCV24fpeKvPujW+W3TOpIhXKkocS1vrLK77z96vPGp3XL5aauXy+xyu++flwoRrdf69cL08+fNoCSTsPs1Yeo3fC/olX/XVO7UM6MySlZ7RHqPrb27Bx/f+IHRbz5/r+zvD/vz/iAcjYfaxpPLfrfWWGk5Wg21govS7pRH4v9jO5Ri7o3LkNl3ptMB8/wS0WUvVjS/Vl/y3jhXD+5P6xE8LHtr2KftniIfdji4Wv7QB/0f8B4GJ35m2U89XX9Y5B9udkMWA61fft2On/+PGMaQFmzZqVSpUpRrFjaT8RNQdHItmvXLkqQIAHlz58/GlKkaExBwFH/Mp7fuL8xsQA708FVHG/ZO3z4MO3du5cyZMhAJUqUoOTJk+viHstDQWP8METYjofO+29QRDhnhd58QCH14WVcFY+GvKrFs9GHLcrz5HYV7T1+ValyiSdXPb5bSr8NaExz1x6iBeuO0JafOnpEPkGvWNw4hmcNR7ypHxfztLw2iJU7TtHNO48Ib+nDBLVIzrT07+ROPBn5Klp4R7e9YmR5K5w90o/LIYzsWovmrDlEN0MeWuxZCfK8/Ty6P2f2a36um6f2Z1Tb+OTCkfTTm9ppua70N9XQNCeLLM9VeXfT9TAai098OT65uj/sx9v7ZUuXTPVtyGhSNT91HrEoEt7297eup6P2sc/vKH6I3wSKFyy4W37P8SsUN06Q2/lnfNGYTl+67XZ+VWlvxleunKP6eSLPm/bbffQy/bHqIIqq0KhKPoobO4hmr7Zc+3P94WjXX7e1t/YFHKKLj315VNgbffCcg7FDjxvW36c6zV17NL6M+ZNlOpLnSfvb1y9acWCDX4sg5D+y52jpb1Jd9Jf2E/tFZza68gvZH9RAwM8Vn8+mY+dMP1rjmmlciu5xTO86VLNUDgzZbn0f1P6gGyVKkYIWj/qGnj7kt5U7GR/rf9KXjm/eSsc2bY6R+GctXoyK1a1Dfw3nH4XctQ+G3VUA+TRs2DC6du0apU2bVn2PrFu3jlatWkV9+/alOHHiuBLhk/Q1a9ZQ+vTphYDyCZr/sRAH8zcMAXqbSjyrqOcVKzWdxY8ePUrvvfce7dixw5w7YcKE9OWXX1KXLl3MRJaz8rqQo3Slj5PxAPraj79BxB5LKj9/WI7gshxd5/Iqn+N0pZiS5zjdlfxMqZMQSKjNEzvSjH/20Rc/r6Frtx/QfCae8CaISbwn1Jdda/AvycZaZQ2Eq+NNfpvezqOXuH5cqyj0j1I/vok35aEbCLVD/Ouuks/xJaPbUPWS2alqsay0bu9ZK9yd4xvAs3E0uNf6q3ob8gMDYlEYW4qlvvq++uhd+1nkRaO8wpn18ND+gDNC7KBY9Peo1lS+82Rz/YwUx+1ni2sMqL9qJwf4cSXUVWfp6npk/XXdbfu5IR8oI1jkRi5v2Ju+buQ3ZHo+PgTyLDNMtauD+tnob9xBffpwfOJbRNl/LPdzpV/k9EEdXlPFl249QXXL5yZ41vy+cr/pfvq++qjLW+FpU0+drvPbHy3plbpNUXaOD/v6WfC2lO/2zd+cT+W0ys9lnYwvqlL4cKCfI/m+GJ8UueFh/8d9VfDw++fI+WDq8OUC1RMgokqx3pQmeUJqP3yBQYrwNSWaP3A0cGI8o9DP0fiqdMOHnX62uOt2srSvbf/zbbrSyaZd3ZOv66K0NOGi9dRpQAh46es4WuzFUj/kU0HJ8c33m7f2Y9EX+qG9tT629fCN/Mj42N5f0i14CP7W/UjszzJ+2OKi7eTlSjcGSKJ9J67w6ol7PC5x/XguoEh7NU4Zo6jqLyruWfrFa3fULYCa/feTPb4JUiRX5NOzp08pT4VydHD1mkjjvLV9Gj9I2I+jMaR9oJzCy339VAEXH6dOnVLk04cffki5cuVSuY8dO0Zjx46lAwcOUMmSJV1IkGRBwA4Bm+c0S/9Rg4Bd1qiiN27coJo1a9LNmzepU6dO9Nprr9HVq1fp+++/p169eqmi77//flQinKap3mT3fGs/fhhxi/68BxR3PpNIy9E44yQVLNd13HG6kRnyHKdb5DhOz8ebiiPAW+ndN4pRwyr5aegva3lJ1Q7639R1aulI+7rFVR53Po6eu0FjZm9Rv2Y/fvrMXMRb/TTj53Z5jSyAtML5UvBdpUss5eIRQb3Y62tg+6q0Ztdpql8hLwWHPKDsTb6lAtnS0KwhzRThhrHy9r1H9AF7g81jQq56yRw0d3gLGjZtPX33xxYlb/OkTpSXibrczcfQLd50HcsWT875kH5duoc+n7SKVoxpSyXzZmA30AB6yG8RnM4kX+8xS7WW9Frx7PTrwMaUOllCJe/05VvU8JNZdOrSLRV31X4+SzfRup7aH/YHu/vgMRXLnY461C9Ov/y9W+mtP6zb76NWFan/u1UoYbzYatnnxn1nqclnfxCWal5Z/DFtO3hB1R1lR/esQ+3rFac+3y+jX5ftVfa9f3p3evDoqSK6LPU27uS2fZgKul3eBIin8pVWVvanyxvawjQNDeZ92ZLy8pI87JdWNFd6ehYWTruPXaY6fX4j9B/dHsbjDkvhYs1rFKLvPniDUiSJz29hiKBz10KoSf8/6Mi5YJUOsvj3oc2U3DhBgeravpNXqF7fGcpGoUPhXOlo1uCmvFQwBYWyayiwVwE34D+38TFKqfbBqdbX3fL6nvqOnpRvUDkfwf4+GrdMEVCftKlEs1bsM0SqT9f1BP7AAP2/YuEsqtRWxuLjCctp4cjWql9eZ0J+EBPz07hPQ78Ts3ur/ok2ysJeWLundVXkffPqhZSXKOz5N7bZnt8uUTjOG96SyhXMRJkafa3Kt+PxdFT32pQ4QRzVfuf5YbT5gNl04PQ1Ovp7L0KbwSau/d2P0tYbqXTq06qCw76jx9jT8z6kw2evUwWuA8p/+dsGGv7reqt2NFrEE3xxY0s7Oi6vlGOh3rSftXwlB1JMN0zCr7/+fWhzqlQkqyK4Uc+fF++ij8cvN27Jn4VzpHU6Vmu9jcyGflHhHl393S1v0UeducTXph5cRI8b+ro+amnAL0OqxGy7b/N3WWr1vYPvsK6j/6aFG4+Y8TXrwQXmuxiDkNfd+un203pZjsaZ63RTPqNCbuPz/PQzFLPUS8fdrZ/Ob3+U8kDEtX3Y46bjgp/g5zv7wYhn4BlBsQMD6PKifrSXyahavX7lH+yz09Jv3vF0HqrkDZy8mr6etdkyrsHg+S+q8StP+XJ0/9YtunDgIOUsU4YOrlptLh83cSKq/M47lDh1Knpw+zbF4jdzQV7GAvmpeP36tOTrbyiCn+/w6qv6fT+iff/8Q1eOH6cKLVtQyixZ+MedWPTozl3aOH0G3ecJcpHa/FySKiUlSZ2G4iVJrNLWT/uVHoawxzcHyMxSpLA6v3joMO38a6E6z1qiGBXlsoFxYis9Ns+cxfJuKT3zVa5EefkvFr9dDNcQIn+PabxVsrl+xlXjWlSfT548UclPmaTTIW/evNSyZUtKnTq1unSb8fn1118JZBXeIlahQgVq3LixepvZLcZ31qxZdPLkSQoNDaVkyZJR+/btFZkFTyosnbpy5Qo9ePCAQHLhPrNnz1bXMmbMSHXr1qUiRYqo+1y8eJGGDh2qCDHcG6QD8kh4wRBQ/dLQ2aZ/moxS27CrWg0ZMoSCg4Np8uTJ9A73VR3efvttKsP9+bPPPqMWLVoom9Np7h6VDi7GD8iy1p93XTIC6qHPccWbOMppGd6UL8V7v1gHvHr0G578t+BJbpdRvKSFhZ5iUiR3JoOoss5rfX7mym0aMmWtImowKdZB64a4N/p5W75j/RLql4v4cYPYkys1NWJiDRPJtUw4QWba5IkoQdzYVK98XsKSmrtMAGAZyNoJHdR1eG+duxpCDSvnp+lfNFFv9NvAhEk8zvN2rSI0hgmoOLEDmXhJr76I2tQuSmPnbqP36pdUBMsqXgI4pX8jwt46S7Yc4y+vq0yolKAuDUvR1gPnaQ4vN8nFmOKLDAQACC54AVQplo22T+lC6euPZGLG8JjSWDrCb0jTbDo50nHQvLNm20Cio/LAQl/XRy3IVVzna8SE2aaJnei7Xm/Qwg1HzCQH0nX79WxWjoZ1rqEIvZnL91E19kYDobd2fHuqwJ5TIfceU9US2c35m7xWQLVD69eLqMl8RvbUgw3+vvKAOU9U+g2OApfBjAtCVOV9kQ4Zuv5aHo4IGnd4IIIwAvH02z97lddhWSYr1o3vQOU6/2RTHuVAZEz7vDGFscvxAl6mlC5lYr6Wmbb93JkyN/xaEVn/fPuu2pvrT36ZAIjMptULKjv9vnddenfofMLkfvXYdmyncWj5vyfUSwVgdzponV3h4wpjV+WRjuDu/azloV+i/6JvnePlcJf5V8o8mVMSluWh3yK4qifyAP98TCBnS59M4f96mVxUsUgW2sLEMrBbtPEoE/PFaQQvMwUBBV1Tcz/VxE9C1gF6dOZ+jf3l0I9b1ipM771ZkvvCUVq985S6h35xQ3xeivdD3zcVaYsH0XQpE9HbrxelxaPfpmxMgI+ft43v9TqnP6EJf/6r7ueq76AeKZLGV/0JJPjVB/dpFy9zQ9DY4twaP8T/y/ZzpA+uaX0xDmPcBjm3cvtJfilGQerRpKwafz/4bonCPKqxGj8s6ACZ8aLAHT88INjjYx//r/HC/osTPqqvdLXWN9Bqj4tA/qFjz6/dKHH8uLRp/zm6wPih///BhHSFLpN5mf0VM8aQAWyiGoPK8xikgz0e1nFX2ECGdX6JCx5iD5bxTvpDzOsPaBOMj1gyfeoiE0DX7qr4w8dP1bOByZkH2dwO+H6GTPwhWJ876w9ZmNg4vnkznd69m/K/VoXS5cxJ15hEQf5Kbd6m+IkT0y4mgrLzfkdYpodwjYmU2PHiUqaCBejC/gOUPk8eipswAV07cYKK1KqlyKft8/9U5EvxBm/ytZq05Y/ZFI9lpWUPonN799FVllH6rUZUmNO2z51HuSuUp2wlitNxXt4Hsqpko4bqPnd5cl2SZVw6fIQuHjqkSKxSnLZuylRKnS0rFaxRnc7u3kN3rl+nIq/XUq+uV7iynhoH6Oys/khzFUA2geSZMGGCIpwKFixIhQoVoooVK6o9oDBR/+6775QYeJuAEPjrr78oduzY9NZbbyny6fLly9S9e3el38yZM2nGjBk0ePBgunfvHh3iemHPHizvixcvHo0aNYpwTxAH2HcK5MKIEcZekxcuXFAyoQ9kTJ8+nT799FNXVZD0GIiAI/u0vuaOyuvXr6ds2bLZkE8oh/2fPvjgA/r4449pN/ft6tWruyPOJg900fq46j86PSjC5G0CSbhoHTyNo6y38jABhXeOo1CmQCY1Cfts4kqqyA+hkz9tpLyj7PM+CX1Go2ZspG94MoVz++BpfSLlt8IKsiOl291Qp3flTVbtw/Rl8GAwNlzXkn75exf1+Gaxyjq4Y3VFHsGLoiMvEUGoyL/Arxrbnr7tVYeKvjOejp2/oTyeIKdZ9SLmX0EasjfG2DlblHfKU/bKWLb1GA3qUFUx/VMW7aJl247TL/wL/vAuNekqb+iO8uP61FXlO331FxNSB9T9BrSrSp/zX9/WFelLKw8Glcgfun46PmjuaRrSLLuOmo+D5p5R5/b5ncU1Ls7StWDbdMQi2GPnEk1etIMn4aVpwYhWVKXrz+o60rTcz9u+prAo0Hosk028hp0DSKuS+TKqfXwW8a/zPZqWo/KFMtH+k1fVxBx5SrB9Qka3xqURpe8ZYy0TcVt9LHFXuKAsgrPyRiqnm+3FuOIyvy4IyVzWPr9Otpfb5/uljOFOlbxveg8qyh5laZIlsNwfTDDLG8MkHx58mn3+O/2z7YTKP65PfXqvQSn6X+fq1I89RG6wN8/KHSep2+hFKn3UjA0UvOwzysPejrgvPMsS8d5oH4//RxEeyDSmdz3q0ggYW9oM1+31t467g7F1fkfy1DUrjF3l1+l9W1dAUSa916g6TfprOw15rwb9r1N1emfoPJXmqp7mxdycu8HHMwgeeQWzp6GdU7upsazQ22OVHBBZzdi7KXOaxGpCb6DCmrDeEWSMJxgXir07XuVfv+cMTR/UlGqUyk6rdqCNTFpz/ixpk6j2O8uE/dczN9Id9h48zEuFQT5D3ri5W5mo5THi1j0aNnWtkueq70AWbgESM2fTb8zkGAqb7qzk2Mf/y/bTChn6mbRUeBLlZiLRIJ9CKG+LMSrrB9/+TXdWDaR2bLs9v11MH79d0eVYrWrPomHzUeFu3RdjMl4g0TrwDyuOAyoaTl3fKkdJEsRl4vQItRg4W2UdMX097Z/ek77v/YYam82/3AFv/tPB0RiUmseg67fv6yxO7ckdW4KQqPBV6Vb6uJUfmayCS/lWeXEq+W0BETwED2sEXnl74OeuZ/wDcblOE82wbD98gQq3MZ4NzBc9PLF4JET9vJWGyaaguHHo9M6d9IS9b+7xcp68VSoxOXRCeS8lZUJk//LlTBjtpcu8z0yD/iA6Iij08WO6femSIozO79tH2UuWoNtMsDx99EiRRJfYo+f6mdOUPH0GeswECzyp1PMQ1xf32bnAmP9kK1aUEiZPpr4nMrPn010mkQ7yvkoq8IMo8sIrK4J/ED2wcqU6HuRjqcZv8XNOBGUuXJjC2KNo10LDUypVlsyUjskw/b3jqX05gxlEUr9+/RQZtGfPHtrMhB08l9KkSaOWOd29e1ctgWrWrBmlSpVK/cETCvlAQNViUi4xk2/IDyIK+zidYLJOB2xk3qFDB65TgCqDPafatWtHiRIlomzZslGmTJn4LfHG/DdHjhxqyRXKVq5cmVasWKHFyPFFQgDPR3b6Ih6BNW0cYAM6wC7Mz1V80ToOz7kCBQo4zA9CEwGkpbvykF/vdY1+ZH1fR/oivw5IZx9Jg7VCBFWJzhGyELyRAw8UePE4C/H5l/3vetVVS1PeY0IGy8M+bFnRnP0E/+L/zpC5vAToDj01kU/e6BGd+ju6HxRsM3guHeUlSXhoz8u/pH/GBMhHrSup+vbj5TU6rOKJOgLkgAxBmLhghxnPLfwrMog1eOAgzF61nwbzRBeeEi1rFlaTPUwAQRhgGSMmsNsOXVDlv+OliFPZW+XPEa0ZnzBFrMDDARNU3C9P5lRK5re8nAp/CLF5+QyCJgYd1c8eL5BN1iQU4u6Us5fjaVwpavrozV4J8EopnT8TtalTzJyk9cByI4SDM3qa0xKZrlUqmpUmMC4goOAltuPIJZVn8aaj9GalfJQ5bVJqwLLv8/K7/ewGjaDlRnX8r3CBd5IeIOz1CwqMpQYMfR11wQAyg72fEHB96ZbjlKdFKnqD9zU6eOqauq4/sqRNpoiG5SbyCfl/YE8ZEFBFeVkd+mG1HlPok3eqsHdZR14ilpTJDX644BCb3Y6RH6Qqwm9MyGo9pi3ZbSKgVJL5uk53dhzMtjbYigBFHMFZfvvrxt3cz4/yeLGAQUxG0EheyoYAXBFgJ/rlB+7UUxXij01MPiGADEKApwgC7nftljEBhxeT3rtBJZrScY5lkwjIf+iM0WbQE3HrcJyJKnhoFWXPyatLPlVk9Ar28PmciX4E+/yIR9V3KnPfUQQU5wNR8MS07Bnl3OnP/0X72evFqpoD9K5fMZ+KL+F+oOuBPnKIlygCtwypkpjH6kk8ViMg32arsRpx6+AO7vZ6OYr/V3ihLvjhInezbyO16+2VA81VhTckQo3SOeniwn7m6zjJli65Q/tCGvCdzmOQxluPQdhbTXv+OcJD58fxvxpvXekl6Ub/EBwEB+v+Kvbg3B4wJiIALwQsBQ+5/1h9B8XjeRG+d/UznpHDvU/sKXWVnye0XOujo/bIXdH4oa0eL59DwJK5xEygxGEvnLhMmCAEnzmr5IF0wh8C5J7avoPgiYSlb2mZyNq9GHtREj2+f5/K8xK8hCZvKR78FTGFcghIRz7oA3lxmWRBPCEvSzu/bz+fGfLPstcGruerUlnpVafXBypNf6TKmo2SpElN8JDS8q6fOq0IKB1356jlRXXE8jq8ZQzL6vCnnhfYa+nnn39Wnk6FmQhDmD9/fiQxyIu/iRMnKpIKZFP8+PFt8oGc0u0NggpxkE8IWM4HokkHveQP8SRJkqglfTpNji8WAo7s01ENYD/WwTqOpZl48x2WeaYw9TmdDu8oBL1vmZah013FoR+CIz0djSfI52QPKCVHdXqc6eq4OqpS6EBGcY+OpfiV5Fgup/ZFMpV3dGjKv/5n59fKN+w3gx4+DlUeOht4I+/m7IXRuGpBWspLfvLxL9XYx8YbPXBPp+VMDes03aSwOd10cpT3Q8Em5Ai7eDndog2HKfifz6kJL+Xox54fGHQRLl6/o84Rw2baCHfvP1IDEs5xPSyM/RywrJDLTOK9sUBAteV9XOAldoC9dbbwkrpeLSrQB83LKyynsCcLDGg2b4h89GwwfcpkQGVe4oTljtMGNlH7JfX/cYWZ/Pv30EXcyiZgCR/uZ2hp6IEMzuKD5sATKgdPAk4rOc7yOb1uwsNpukk7+3TjZoaeb/b9jf6d0pWXibzJbwljrwwOwAGkGgZvLFtyVNczvNQJk+hbdx9STZ44YV8d2Bk8QEBAdWZyJQfbHyakumPa6+Es/l/ggiVhIBez87KuM5dNOCg02O2Sl9E8eoK9nbTGqpn5WqiBF38CDwQ1qFjlgz0EMtECW9TlIeURY4WA/ZCw/8/peR9Rct4fCg9MJ5kk/n3FfurD+29xE6hymnTOyHvFHOE8CNiXSwUI5Pto7dw52mMMOe6UU/dTmT27X18mkrU9lcxrkMYQE8p7L6FuWP7208Id5v4VVT1RDp5D1njiGshOjYN6axkuAhe79tBxjH06fzjLU8FRfk4o2Op76t2yAntLFqb8vE8PlvjhPF3dr2y9SLl8kIu+cxq2YtIJy/a0Pu7ij3zPu/2Ajb1+uKbxCzX9mPGQ28C6PiDxER5zX9Fj9R0eq3U5pOmxWpfDNZ3uDu72ejmK/xd4qXrwB2zVaWA7SGDqx0fOBKsl59Z5LwbfMeFpqpWVfcKEgKsOegxSceQzJbg62mPjKn+kdCjCIdJ1N+8v5QygBAfBAQiIHXhnB0YpfHVEUFz+Dl7JqyDgmV+244/8jJqD5gxrpbN4dITX88CfVpnGYbQPt5CT8TWQvXrSsDcNvJuuHjuu7hPAZEeZpk0oV/nydGzjRnUtWbp0FMKkCMipoLhxVaND74u8+TYIqOL16/HDZACdZzm4Xr5VSwpi2Zt5eVjw6TNUpUN7RVJBD6URH22+P3GVrz3jfZZAKCEfcmYrXlzdH15QIKoWffmVioPwSp4xA3tgXaaHTAylzZ3bLC9RSmMrFy3fXftUgqP4WMgeVvBYGj58uMqF50MswYPnCQijSpUqqes9evRQS+cQwebQd+4Y34lYupc/f361BA9eUAvYA2zDhg2qDD5AMukA8gnL8rDvVFzGG3WZO3culStXTmUBgSXhJUDAZOeoiY2dmiLahl3VtG3btrRp0ybCcdq0aWYSCsszp06dquy0bNmy5j7iSp51utLBmZ72epvivEsDv01BScFR/+GCPnc/HaW8lTdo8iomjr6lTyb8Y/7FH/IcBXgHLf22LY2fu4X6jl1KjT+ZobyKfvi4AW+GnEDt3+ON/lHXX9fNfTwgzxIseGKfCwRM/q3zoB00fvCYQujGe43o9imcM416qFcTPZZ9595DRVq9XjY3eybEpcWbjtBvS3epclgCBHJgDntJoTzIpuHv16LWX/xBmRuMpEKtxygja86eU0hX5BfyLdlJTfvP5I2kZyh8M6dJwiQYiAGL/lqfqPAaNPeUqS6e4+WO/Mj6sIocNH4HTl2lH9kbByQANlHWaXBNhRcZyJE2g/7gus5Q9d1x5AKl5z1wbt99oPBY8e9JtacRiD182e/njbNR7oPmFRTh8OP8bV7Vb7DCBdp4hqfWX9fP3fL4lQsBS9qs2yt7hmSqr2DDa4038oEArlMuN58Z+tVW50R/bz5qyodcCBHKCwL4Gp4ORn5j6Rzx3mLn2AMoryKfsAQnfb0vqcr7k3jpJ3v08RcyPIOgz/rdBknZ5a0yZv3aseeZETRGxv2s9df6OcJjsCI+dVkc3SuPXI7kRVW+PS9DwsCbvfFoJm2Gm/6+pHof/aru+iHINj5bZ6rn+6qeSIrgJVy6nkYcnwjW91NxxkrXF0cjGPUzRazSbcujPjpYn0MO3jj675T3FTFdtuMPlLTGEOURCU/NOuxtovOjvZDfuu+8be47M2jnkYtWfcf2fp7iifzPs/3s9dNYabxRNwSQz0Zew57g/YTxAOPFMZux2ki3HquN9jQkQwY2jt2mcL9O5RTuQ824w9PQuv3t9XMUf954GTXRfcW2f+k04IcxE+HUpZvq+wRjbYdh89TG5CBoLXVBLos96zHISI8gPQYtUWOQ7f0sMozy9vHnPd7a31/inrWX4CV4eTr+vez5MToioG+E8vMrtjGYzD9qIb6fvaN/4GdR/OGZ1Pj71634ct6Kw9LfHI/nOh37LeE54MCyZXSJvXkuHjpIF/fvo9u8yXXOMqV5adtTtXwOXlLx+JXueSrhR0a0jGHP4WHP6DovM8vGexfdOHOWEIfs2EyahFy+ovaDSpYuLaXIlMlEsBjPEZCg29fAwIhfP3OGUmTOTCmYXErAnj3F3qyv9pm6zMv5YrNHVs5yZdWzbImGDagKb+AdyPvlXuFlgXHYmygzk0EJkiWlLEWLQKRZvlHXqPufKuDiozwTciG8Ufq4ceMIr7wH6bRmzRrax8sPsXdTFt5wHWQRiCUsiQL5hH2csDxOL52D5xL+sBwK5BM8qhwFvdn4okWL6D57i63kJYcbmQzU3i2Oysi1FxEB2KX+g/763PK87U6tWrduTc2bN6fVq1crkrNGjRqEPcq6dOnCfEG4sjcsG/UmONNP919H6bwHFCpgVMJSFe/iUDo68i7wG7TGzt6s/gpmT0tteYL2Dv8in4yXm9iHIrzEZ9rApvQWk09dG5dVxIDOA8JhsRUT56v6GXXDXTzD56tutenmnQeEDVpTJE3ALrPZlKqTea8YG7ygs6k9vmSPm04NSlOHN0spEuUYv9EPS5kQpvAeR5xRaYHJfbcmBtv9Ky9dwtIXeOzg12eQD1gzjgAyqkapnPTboGY0k5c3NKhSQH1BwCsKaze/+GklLRz9Lv0yoCmN472Nrty4S191r0Px+U0SG/YySeAPPJVm+LDFM/KabNt0+/w6riSZ8MP5R98v4Q3fC1AGE+Gn2+933lerXb2StHf6B/TVr+t40+fk1I+xDeaN4fWypwnztvIGzkXUssm/1h9S9YeHWSle1oeJ55qdxnJJ3Eff39DSj3FVN8/k/7xwu+obvVpUpOJ5MrCH3DkmC5JQC64bwtAp/BYTvdeJSf5U7lfD2f6wEfsb5fMQlgzdYLvKwssPjcA15bz/+2UNTR/cnO3mHRrND0XwFgOpAs8I2JheR1yKCWO4iWfmJXvf9a6vRIDkQHv8tnQ3DepYg/eTKam8HuBVBdx10P0BcX/jq+6hMHDP3gozCYElhUfYwzGEPeYsIYI28tJW7C8G28KG5NO5noO5nu25nvAws62ngScwNXQwPEvM9cV1/jPHTTfS9mwqpIsrXHV+k0hTFisJnIA36WBJ8C8DmtAg7v/wtCqc01gHvmnvGSUHbYlN0Qe0q8ZegGvYg83oO/ui6Dsm9Qw9jDtbfeLU0MOijW/iSrKqcDTkaaVMeG87eF4RrXn4O2Xpd+3oj5X85tCWxvJpECJoA/SV96IYq839CzVXuF/mzeaBe9NIuG9UuNu1f4zDC0gbdTGdGXEjYrrEG63O2sTejpV4z7LC6vtnKW/SP7hTTfWiA4yvwMLahtU5X0NwNAYFm/d/ikb7Kululjfp4i971aYm8t1sD9V2+JD8FhQsZ2JPwALhJbMP0ziEJwA8U+G7WodzV2+r51wd9+ao7cYyHkfGL0fp0nTn2jV68tDynINcJ7ZupTLYyyhrVtrAHhTVOnemep/0U/svhTFZZsg0vs9ObtumPJBO/buNm8h4njnME+Fi/Da7xrzBNgehRxcAAEAASURBVPKGMCGDZX1IV3mQz+r5VMvbt2QJk08ZqRpPnHHtFhM1kI/9n7CvUzF+Exz+4Cm1i4meUN5v6gJ7YcEDqkzzZgomeEshaPkaB75iXFefKodd3Jzg8AQbgndmHLB5OEgoBHgiYbJfm9/OB2KuZ8+eNGnSJBo2bJhKz549u9oYOk6cONSgQQNawvXDvlHYTwpvJ8P+UDd5s3X7kCFDBmrVqpV6Cx7ywyMKcb0kzz6/tfeUfZrEYzAC6Adm9Sz2iW6CgHEBdoW+4Or4yy+/KFvEhvQgRZMmTUrt2rWjUvzigD59+lB97o8gNEuWLOmWPINoRj9CX4VCFv2UclHEg5DZ4KkNJhhFvY3rm3lb3rrcoTNX6ZPxS2nIz6uoHU/aPmpdhdLzMh3rULtcHnqXl59t2nfGDBTSE8TjavmwXha9DCOwxA2oncVZKaVuLd6jSQc0ECZ6P8zfykTbJnXZaDSWpQZaoz2u375HLQfMoqlfNFNkCTJi2QfwAKmAgPuOm7NZEVBY4hTMZRDwy3O5QlloxrLdHDPk9fj6LyrOm2g3rlqI30RUWOU7ceEGwZMBzOSKf4/T4MkraUCHGtS/bVWVfpvfkjHgx+W810yIijurp++ve4Yz7o9gwG1rz/U/mka7fu2p0lFPtEjP0QvVK+3rVcxHP37SSNkOPMCAt8ZrJ3tEaSJP44ilkyCgMCnV+aLTXzzHzXNc8IBSvftPTBK1pSrseYE/BNjLqN/W0azllr2XVAJ/wDtpdM83VPQM77VWqdMPfM41NT0I6EFm/pr9VCRXWtU3/9ellsqPpVfN2NPhxAVjrf2faw8qsnPF2I4qHd5k2OQ6U5qkTMiy63HIfar74S+0YNS7vHS0osoDu8zNywYNAsu2Pf2Jt7o519Pddvnc1E8wmXZkDzOX76XuTcvzpLsGtRr4u8t6om4I2k7Ndq2s1tArXLcBvnD4OmxetwcevlRQHcEuP18z8vNDrCkdHpQgnge0r07ffWgQgyCc+rMXKghz3H/Z1qO8VLgwfd6+GntT7qMe3HfSJEtIde36TgvuO1pvQwnbeviz3XR7mSqv9Pb2fgY2kGSxgxrdJ9OyMR2YkM2h/kDmY78+2DkCxl1HY/VQHqsn81it9FOYI7fhueoKd2/196QctLGup8bR1RH2huro9rbJb1XPuw8esXfydJr1v1bUit+uiD8sfZ7xzx7+M/bsgL4IsF3I08F+DKrIY5DD+3EBm/v7NO75eOsJ/v7TG63qT1xEvuAr9vW8+q8eEzH+walo8Hs1+QUkIeqH6Mz8o1+v5vzcxAme6rOAn8027T9rHndR3tn3wcpxY5V85LC+zwX2goInlO4Pi4YPUx5Jj9gbhx/gzNeRfu34MZo/cICNnNM7ttOZnTsoPk+CH7HXkJaD+2yfM9scx3XreOjjR7wU8XuKzR5N+O4IZaLJ0J9o5/x5/Ca+BRQ/UWJ6cCfEfB3pO/+cT3sXL6JAJnqeMgGl7+fuEXq5E4oWLUr4e8iE3WNeEmjvkZQ9e3b1pjosn4M3FIgnHbAJOcgqbFYOcgATfHiuILz55pvqT+fFEUv68IY9LOFLxntj6YA3mlkHvSeV9TU5f1EQsDyPWvc/a+0tPAKsmXuy6VnM0RH2pG3KWgaWfLZp04YaNWqkvPcSJMDLp1zLgwzj+c2xns76V0C8Sv0N6dZaeHkecf8SBSTK6GXpqIvBo6ffO1WpDxNRenNslMAEuWDLb3hJQw8qwh4JCP3GLVHEjIr46MOfdXOlYlbesBX1h6dFdAOWN5TMl4k3MLyqCBZH8vJnS6NevX6J9+l43uF54gyPtBLsnXOEN2pW++w878p6cD9f4BKX3ZDL8MbA+05cVu1rf/t/f+lJBXKkpcRVB1BBPl4Kvmt+S6B9Xvt40dwZ6MrNu3TdtEm2dbo7Nof8IJ3wJjZHMqzl+evcFxi7o9t/XU9HOmLsDGWC29EYg7cUJuIlvth4WoeY2Hf83X7wxEXb7Tp6kZ+tHX9tejpWR4W7xtpfR3/jZa03vFBT8vJ4LI2OKkRnDIpKrqdpzxMbT3WT/IKAIPDqILB87Hv8w2EOytl4BN0MeUgha4aqH5nLth9Hb1YuQHO+bOMVGF/PWE8DJy2nHz55iz2zS9PrPScTPHAdhWpduqolb47SXoZr8wd85lY1Vo+srzYWdyuzZBIEfIDAli1bqMYnfzuUFCcwgEa04JdtMWnkq7B27VpaunQpjRw5UnnuuSMXe0h9OvsiPQ1z/FzsTEYQ09TMXDF3xSwX2HUU9zZu3MR38qz1wWawvy/fTf/wL/JzvnyHUpveppU9QwoqlCMNbT141kxAYdNveGtYl492/RQumtH3DV7u6nf+6i2ftA/uByeJnYfPRynv6NlrUaZ7ax/u1hdMarTbyw17hofNjsPnlL3zDX1rL76W5wP7e8rr9Dfuxd5c6OiR62v0foPJPnTqisIDfdqd9t53/KLT/BHhAbTjEOMM6j4KeScvXI/W+OO+fTnuv4Z2/hm/rO35JHuHWcfdwdff+fcf5x8PnLTPg0dP6P7Dxypdfz+E8R4OO7nv6Li/9XNHvr/b7869BzxewDPMcf8Bfueu3owy3R6v/ScY9yjk2ef3ZdzfeFn3x8vXQ+hKsPakddz/DPtDDTnw9/fh01f+O/tiFQL42ciXeFvj4Y49S37jGykmjI/SXpGfF8Q+n499qvHQNB494We4Wj0mqR8GMT6t2n6MGvadim8QDFimYHw/uYrjh0hj/mcUw3O3s/ng2okTbL7/X7b+4Oh52JF9mwCWgyDwfBFwwmdYdXqf6VOtWjXCn6cB4xFGRE++r4O0myRuxnNSFUwHj+OqsMntEufRlWddPjQ8jH4b3IqGTVlJtXkAXjOpGyVLZOwNlZX3prnC3hoI2F9lC0+y8QBrXR5p0Y6DvYEc9ekDedHEO9r1ian357ZWOMdU/f6r9vez/YWh77JRRbyi+Ktm9dP4Jfbs//FS2s8YmNz9foqJeOkxyC/f355+n/h5vH1pv78NM4z+85an7SX5FfLu9n+xP8/Gy/8KL7ywASGIVy9gvrZpD89vTOER/zi0YusRHfXqGIS9EDg8DQ1V8sV+DBidtbeRKp+CwHNEwBmfgTGBg94DSmtkEMRGGq75O27cg/kRXhngyfihPKAMFg3FoHB0jlADJE105Tguv2bHCZo5rA3V7z2ZPvxmAU0dZKyLxUOraQylResP0oPH/BryaNXD0f1RN2ATHXwcyRV5tvYiONvioe3D/7hU6PD9K27fwNh/45fjdtXtK8fo4yPt59n3U8zDq0KHMaxUTPieBDbok9IvY0Z7SDtIO8SEceH52+HCdQeoRunctOnnD+jO/UcYmHwasvEqksu83QZWRsjzT9TtG8YTbLyRTjbz9qkJijAnCMDWYHNR90ujMEgmBOtNwZ9n3HhW8mz+xK+iQgH7oAd6++s6HkW6khdFuhLhXfr0Jf9Sr1ZVaFy/xlS89Uga1rUuZUyTjC7wsof6vBYa+3J8N2sN44A6GY2hNbY9end/ijB+ibA8CNhKtcS8lG8W8IqX91f7vej4iv2ZWtCP/cOP45fZ/MwTbMsV2zM/1k/d6CWWL+3HLexB+yq8bK3Po/L2RV8a++KKmMdb+0p6gK990ZcGHz88X5mxEnz98vwq+JoQeLHsa9Y/2ylXppT0bv0ylDMTvyHOx2ELv8Rp+C/L6dkz9oBS4cXCJzIc/tP/yIXblDtXMKVLly7ybeWKIOBjBIKDgwk2Z8vTWNl3BM4DeP/WUAoKYn8iDpqIUpHnEMe91TMjnpcUCWaln1bC5mhJx7vQIz9vBvA16+cLS35DTFTpSl40yuMOTuRjT4h/thyhNyoW4Febp+ZXnZ+i+lUK0dGzV/ntZJl5j6idtO/YRQf1YZk29fFCP+hlYhid6YcsKjjRXydLeRf4wwvFpr0YOZu4i/IvI/4wHrE/owv5s339OH4ZyvOnP/XHTV5l+dJ+nrW/wott5lUfX+3rj35kHm8FH7EPGIQpvMrjKyCQ+tuNl4yJ/fhhE49eOvZg/GTsX+oP8Ef6fSHS/Mz+fp7GWXkf6h9Z3xdX/oQ/d1P+zMnRCpQ6dWrxhFJIyIevEYDnE8inEydP0YQF/DZ7/SyCG1mNv7h862E4nTlzhnLnzu1rNdySh3tDB0V8qedJ9/t3UASzVgHMomHlnto8Ckcv49DWl/Ic6TNo4mJ6vXw+ypU5JZ2+GEzrd51QrwVPmTQh9RuzwG/3Vy3BvxYrnLzEx1F9RJ6tvSmc1T480bfHlwlvsT//2wMw9vf4Jf3dtr/7Eg9pP9P3uJvfT4KXc7yAjdqHKhrPQy/T94/qp/yE6Mv+KvgInmJP/vs+lP7l+/517MIN6jFmJXVvfJvyZ0nOW7+A/ZMgCPgWASy7O3L+No3/cweduBhifO86+P7Fdr0r916hlIl2KwIoe/bsZk8o32oUWdqzZ88U8bV7zx6lQ0QYSCh+iZObz58YnwLilemBmR0/bPFfNI8RT+9SQJwk0ZbjSo/RHzYmvD0oBZNON27fpxTJEtIOfgvetgNnfFIPR/ePeMJ1i8t18wFOjuSLXMP+BGfH/VBwcYyLL/vN8xq/pP9zW/phHJX28wxXwcs5XjLe+n+8lXHQuf35Y3wUvAVvsSsZ12QceHnGAVA2SRIEUbGsialKobSUPEGgqXJ88HsIoNsPw2jDoWu098w9uvv4mbFS0AMeiT2g8Npxng/whEB7dnkbR319Kc+ZPl/8sJCK5s1MebKkpUXr9lLe7OkUAWVTbx/Ux/r+qi2VZ46JX/OxfF/gb63viypP4QxPM8HXpj+K/UV/fHLVP4Dx8xi/vB1fXen/qqdL+1nxem6Mn4KXc7yAjX5DsPRXjIv+H39f9fFL6u+8P4r9Sf+T/iH9g7+GfMZXvAz2hN2u7z0KpT1n7tCFGw8pYdxAXhbKnn/4vuY0hRef+CMewV5a956E0a37oXT3URiTT/Bn9ax9AuKVft9aVa2yV8eI0IcUEDuBVsHvx6SJEvBbIR76/T6ANCL0AdctoVe4WJmClLeYqMN2E5zNXdgGH8HFMS5WX8k2eHlz/XmPXzIumL8ifTIuSvt5hqfg5RwvGW/9P97K+Ofc/rz5/hI8BU+xGxm3ZBx49caBAGbTAmPF4jfgofWfT/2xdA4/2PPKOz561++UBxQ//VvGLRXxMo5irJAKWh8j5hv5wFUHlh9y776O+UW+akfLHbhu+i14fPE51M/m/q/Q/RTOr1B9lYm5qi9MTuzP0htd4eVNusL4+Y1fr2r/dsvepf2M50ht8d7gYfd9GcnexN41upG/zxU28n1vBsgf9ufKPiXdDL88bzIUYg9iDxoBGY+kP8h4oHuDWvoWziu0zOEF6R9BAYq5Mj1/QWlTUPp7GEdRX8qDi5wO3ujj+/IWhWKGPhod37Sf7/HyXD8DV5MrnwVu4/nrlY9bADBw8hxfXULKY6zSaBj9B7GXe/yyra99/V/0uLSfZ+0reLnCyzJAyHgZebx80ccL0d+V/Uu6RkD6v/R/GS90b3h55pu6RtK//5v+HRiYvthgoxE0exaNI7yf4AOmQjTkxMTyqm6xWLOXrF4xrT6Cs9F97NtFcHGMiz1O0Ym/zONXdHCJieOxo/pI+3n2/SR4OcdLxlv/j7cvyrgiejrvJ47GYcFL8BK7UL1A5osyXzYMQXBwhENAvBLt1c98igE0dRkcvIkTvxMwIBZ2YfeuvKauYmR5q7rFSP1YqRiNn5v6RZhw9sb+Xob6w7YQItVf7M/v9v1Sj19sUy91/0CnseojkfrPK1B/T9tX8ILRGCGSvVjZEnJESudrnuIt+Q2sBU+xJ+lPMn7IeCjjoUZAxoNXczwIiFvsXW57DAXaBKJz1ObkK3kixzftIjgKjtHp16+K/cj49WL3E2k/z9pP8PIMr1dlHJR6il3I84Lv5kXSn6Q/SX+S/iTjgP04YCKg9IOoHAUBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAd8iwHvumnYh961ckSYICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCCgEsKu2BEFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBwG8ICAHlN2hFsCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCggAQEAJK7EAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUHArwgIAeVXeEW4ICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgBBQYgOCgCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCfkVACCi/wivCBQFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBISAEhsQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQ8CsCQkD5FV4RLggIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAICAElNiAICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCgF8REALKr/CKcEFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAEhoMQGBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAFBQBAQBPyKgBBQfoVXhAsCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAgIASU2IAgIAoKAICAICAKCgCAgCAgCgoAgIAgIAoKAIOBXBISA8iu8IlwQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFACCixAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUFAEBAEBAG/IiAElF/hFeGCgCAgCAgCgoAgIAgIAoKAICAICAKCgCAgCAgCQkCJDQgCgoAgIAgIAoKAICAICAKCgCAgCAgCgoAgIAj4FQEhoPwKrwgXBAQBQUAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAJKbEAQEAQEAUFAEBAEBAFBQBAQBAQBQUAQEAQEAUHArwgIAeVXeEW4ICAICAKCgCAgCAgCgoAgIAgIAoKAICAICAKCwCtFQN198JQePw3zS6uHPgunB4+e+VR2WHgE3bzzxKcyX2Rh/sbjWVhEjIMHOt248zjG6aUVgs3D9l/2EOHCNGKi7fyXbRIVXsDqv8QrKt1gyxhnJAgCgoAgIAgIAoKAICAICAKCgO8RCPK9SN9J7DlmK01bdsJG4OulM9KorqUpZ8Yk1Gf8vzR58TGb9IypEtDgDiWoZY0c5ut/b7lA/X/aSWev3FPXapbKQH1bFqaKhdOa8+iT3mO3qdMxH5SjvhO206RFR3WS+fhGuUw0Z0h1FT9w+jZ9MWUXrdp5WcUhu0fjAlSjZAYaMXM/Df9tr7mc9cmkjytS65o5rS+Zz2/dfUKfTtxBv68+ra5lS5+YGlTITF+0L05xYweqa/nenkeXbjw0l0kUPzY1fi0rje5WhhLEDaLiHf+ikxfvmtP1yYj3S1P3t/JTjhZzqEz+1PTH4Go6ifacuElVeiyhe8vfVffuPGoTrR9Xj0rkSWnO03LwWipXIDX1bl7IJT5onyehYTThwwrm8pj8JanzG634pg6VL5SGCrdbYG4XnalQ9uT0Y9+KVCxXCnXJHTx0WesjyMbUb860vmQ+T50sHp2e3dwcRzvPW3eWVn5bh0LuP6XMTf6gNWPeoNKMEQLsDPVBu6P9EWavOU39J+20kaMSfPBx/1Eo9f1hO81ccUpJQ/v2aJyfPm1TlAJjBShdXGGbvtHvBDk65MqUhEZy+6MP2Qe0wxdti1Gzatld2g7Kzl9/lsbNO0y7jt8g6FaXMfn83WKUI0Niqv3RP7Tl4HX7W6j4vqlvqTwOEz24iLqnqj+THMnbuP8qtR2+wet2WbjpHKVOFp8qsH0+ZUJC9cVVpylpwtj0VZfS9FaVrDaaWtuOTcJ/HAGZkqLeDMKYtGB4zUjaNB24hpZvv0jXF71N8eMa40qkTC4uYAyauPAo/a9jCZXz1KW71Gn0ZtpxJJjQjydyPy5q6sfIcP7afSrbZTEVypFc9TUX4ilx7d9UFozrR2c2VecYFzE2IXzdvQx1aZCP7G0dNpkpdQIaz2NPWR6vEFDXXt9vU+NmvfKZ6Yc+FShFkrgqDR9Lt16gFjy+9ec+9tk7Rc3X5UQQEAQEAUFAEBAEBAFBQBAQBHyDQIwmoMKZrWhcJRsTSsUJxMUd9mAaOm0PdRyxidaNq0vh/Et1c54wg3RBAHGAiXEnnpyUzJuKcvOEG6QCiKxxvcvTG2Uz0a17T2jmylNUp+9yWjLqdapSNJ0Nkta/fuP+b1bMQsM7lbTJE58JHoR9J28pOV0a5qNve5RVE/EFG85Ro89W0e4pjeh9vt6ienaVF8RW1nSJ6cPmBVUcBIijgIk1JvC5MydVMjKlTki7eZLfg+twgid3MwdWpdhBhuPaV11KESZSwOHC9Qf0/tebaSSTXkOYgIOHASaFDSvbTpZTJLZMuJbwhAt4NXktm1IFGOsQYYp0Gb2JNv/4JsUx3ROY6Gyu8IFe1jK1bBy1DJx/070sNa2aDad0nuvx3eyD1PjzVXTi92Zcj3C38VACrD5A1h2Y9pa617Hzd6jZF2to04T6lISJhMBAA8Prtx/T138coB//OkLlCqZRpZMliqPIr+1Hb5gJqJU7LxEmwSt2XDITUFuZZKnDNhVVWLN2HeXIkZ2yZbVth6jKIG3iX0fp38PBtPb7ugTiaNexG8quYA9t38it2twdbL9nIrVaifT04PEzRZI2GbBaETP29hfKdof2RHBlOzNWnKSu32yhyf0qUa1SGbnfPaHvmYxqMWgNrR9fj6Z9VsXsaViEiS0QkJWLGmRv5jSJ1D38+ZEvSzJFfHh7jxEz9lN/EwGB/gSSeQPX6yAf3x2+nnZlb0h5uH86sh1X95z/519Uo3o1SpYsqaus0U7XfQz90FGoz6R23sxJzOOJozyurmEcfcAkpyag3me7APkEMvL7uYeo3VcbaOfkhhQQQLSS+86AybtsSFFX8nU6iK4z/ANCdibj1++5oi9HGl9wX4QbIY/Vjwc1P1xGwYvfVvYIwg19qVezgkq3//26l77rWZYePnlGc9acUWSyWbCcCAKCgCAgCAgCgoAgIAgIAoKAzxEwZuE+F+s7gckTx1GTDnhWFM+dkt6ulUt5XeglHHHjBKpfsfFLNvJ0bZRP3fwyT1gwnwb5BEIGBEfC+EGUOU1C+vTtIooc+m7OQZeKgqzApMf6L12K+Krc9OUn1eR+MHsmIR2T+s4N8qpf1h/yhB9Ehi6XkH+Rt44P/Hk3ff37gUj3/509LW6yB9TPn1RSBBo8E+CptZTJsmXbLtJe9lLSIV2KBEo+vMGqFk+vyJBDZ0J0MqVhPfX99TEp66QDyKse3211uswPk7VnPHkdEwVOUeGj7+PqmJgxRvvhD15P79bJRcE8gXz8JIw8wcP+Ppj0wnsMdc/IxA1C9vSJVDwL2wHC9OUnKIRJST2BVhf5ozp7sP172PDigScVsB/FRCe8YzTxs3r3FarGuEcV7ty5Q42btqS2Hd6j1WvWMrnj3hLQa7cfURq2p8I5kyu7gUfd4hG1KG8Wz4iL9CkNG4E3SquaOZSqWIrqKkRlO98wQQjSEF6GKZPGVd6Io7uVpja1c9EdJoH1PYE7QrqUFjus3P1vWmtFIGg9QOzBCwueLCBgj1+4o5I6jthI//x7UWdTnk3wZNEB5CG8+Up3WmiWe+7qfbbZQyoLlgh+wF4vkAv56LM6IF9zJs2QBmLpyLkQGs198uCZ2wTCePHm8zR16XHq1bSg6ovwfKpdJpO6DhnObEfLd3Q8fPgIVahclfp9+jntP+B6/NEyQKS/xaQsPIJQVxCiCNAV3o4/LTI8QQ+fDVHxHxYc0UUVUdZ66DpVTxCQ2nMSY8lSxjYs3FhCCUIasoEHPMj00s9H3A/h6Qecca+BU3arZZdfTt+nvBfRV3H9NBNE2w5dp1ZsFxhjO9TNrbwwQeBdu/WIQACBhPc2bD5wTfU92IqjAK8n3Bd/8IzS3ou4N8gvhD7suTnsvZLKO+vnvw3Mlv97SX1PlCtoeEo5ki3XBAFBQBAQBAQBQUAQEAQEAUEg+ggYrjzRl+N3CZj0Hz57m5fkHVdkUlAgswscLgU/ME88sVRrFns3YSIC0gaTeCxBqljY8GyxVrJSkbQ0g5c3wesjFpgKJ+Ho2TvmyZ3O8lqxdIoIAEGBSbd9eMfBNfs8BbIlo1RJI3tBwcsCumEZnXXApB6E0J4Tt8wTK52OZULwOpi95gx92dnirbV652W6/9B2X6qWNbKzB5BBQrVjT5pH/Ov/p5N2KG8WLU8fE8UL4uWOZeh1JgTgCZY/azKdZD5GhY85k4uTQzyJ1qTE5eCHNGLWfrXMCYShN3i4uJ1NcvfGBSgek5izVhlL3XQi2gCTetjddtNyotplMipiDEQFiFEs6US+qMJbjRrSG3Vq06K/l9Cw4V/Rx598Ru91bEft275L8eMbRKaj8m1ez6W86/K3mU+N2IsN967M3nr2duGorPW1BRvO0jEmc9DOizadV30HhKWr4Mx24EyDpZ16WZOWA28zEDWuAupg7YWn88N7D0tX4VE2jJetfvbTLpr3v+p0hkkieDbqANLonpVN7zl+k6Z8WpmWM5HS4NOVdH5eC+XRcvS8QcQO5OWxWw9eo1mDqtKJC3ep27dbFGkM8hbLSbOmS0SLvqpJU3mp70fjt7OsSvQbk1Sd38yrPOJArmQykZXQIUvahMoGcO7MdpDmLAwc0J+6de1MM2f9QS1bv0O5cuagjh3bU8M36zsrorwb27MnETz0BrCHD5b8vTtsAx2b2YQeMdGN9tBkEchSxIPvWPYNA0mFgGVvIG/gYQiCBl6TyAv+CYQf8ACJjiWaf7LdwGsObTBi5j4a/+dhysfkJ0hiENLwBsS5DjkzJKFg9iZESMtjlfXx2q2HlI1xntq/irI/vaxOZXLjA/XGOLCWCV8sG0abQEd7IgpjPZYDwmsSdoIxETqjjRduPq/ulCa5MeaCkAYuIEyzpEuoPNye8Tiql1K7oZZkEQQEAUFAEBAEBAFBQBAQBAQBDxGwZTk8LPw8sk9ZcpzwpwMmSHr/JVxbw5OS7UdumJd1YGKy+Yf6BIJKT8qsJ0paTgaeJGHCcu9BKFl7Bel0fcTk/Y81xl5M+lpWnrDAE+XkpXtmMkenuXvsxBNcR+F6yCOHxBTyYhJ3kQk3HTApxZ8O8B5qWCmrjhI8BjCBtw5YdqMJKPBu3/UsR0XbL1ATQ+x7Yx+wT1P7unmo69dbaBXviWQfosLHPq+zOJbqTPn7uLkNsUSmX6vCKrsneDiTH9V1kE+OQrkCaZQ+WPYDG6vFdgWSBfa1af815dUDQhDEoKsQL148at60CVWtUoXe6/w+jRz1jSKlsmfL5rQo9s2BHYMMgdcV9qCCN9efw2oobxynBe0SsK/X5ZsPFRF5lm0BE28QOvDGiyo4sx29pxT2Q/ImYP82+wCSD+HUZSZDOIK9ebAU1Z3wUcvCygutPJMUE9jrB22llxdCFnAD2QIPMPyBtADJUJmJQxAQvw14TeGJtlzGJFZKJoVBvIK0SMhHhPhWNgJPxpsmcseZ7bjSO2XKlPRBz+5UpUplat2mLQ0ZOjxKAkq/OAHjWeIEsQn7x5XIncrcj13dD+lrvq+riNacLecocgmYWAd4WCFgOTPIZuAPjyiQPdq7aiMvXwWmWKKIsQhkITDHEjwQVZpE1j8OBPFeZQh3eYyFvelltuqiBx8QgyWcS9kLEeMRAohfewIK1z/mfdN0gAfU2F7lVFR7/QWZlt5qHe8+DKWSeVKpPCCsJAgCgoAgIAgIAoKAICAICAKCgP8QiPEEFCb8H5g8K7DcB8vsrL1A4G2ECSsmxu8MW682uU2b3CBSkBfhKi/BsCcKsAwFv+JHRT6hbMPKWWjiRxVxGimUzJuSzly+F+k6vAmS815LeiIcKUMUF+BlBNLAUQCB0KK6sYwK6X1aFKLqJTJQrFhEINSwvEVPrJCOTcudbXSOdARghCWK2NMHniSOwlDeSwqeOI42ZI8Kn8TsaYVNia0DPHEQEpgm9zj/ifcSwrKd0/9n7y7gpKraMIC/dHd3N9IgXYIg3aiI8Ik0KC2lNEoJ0ohIo7QKSEgIUtJId3fD0vWd58ye4e7s7Ozswi4zu8/xtxM3z/3fOyvz7nveqyxRswWZbCZIFhQPbOtNNXzRR+bF9sPXdHZNP2WAhqGOqMmF84uaYu60kydPydRpM2TGrNlSpHAhmT71p0BrQuGaTaWKKGN4J35wTbUYukkPhcKXfXdt+zcraK9ZBdfirZfoLME2qhC9qxbQtYNsOzRciwiIWdsulY2UPV08P59P6/yAXiMQimLVX6jhsjNWHNfbHaLqm1VRQ0QDa/gMoiEYhIDDJRVsM5+767cf63m4mQB+TIsZPZKkVJ99tMy+2WA4n46fFXONIhPItHtq+KJZ10wL6vPWrf/KpMlTBPXB6tWtLc0/b+ZyE6hlh88Him9/pW5OgIahgPP6l7Ovh8AQ2nOV/ePYEJg2RcaRQYTAEjKErO3sVdv7poNfBbQxH59J/G5F8M4E3PD7wFmLpz7vaE9UFpZ+9g0iOvsDgF4gCA8l8yTXw2DNsOU8mRL6WxuZr0uHVpSxCw/q2n8YKo16YGgm4Prkqc3HBDidZeP52zAnUIACFKAABShAAQpQgAJvRECFLjy7oWYThrzhB1+CrMEna8/x5ePHriVVhtADPaQM87AsvnyhwKxjw/A7/DUdX1jLtv9TD9vBMviyFVcFH9xp+dVfzpdvPefnNvT4YoPCvN/O2uvOJvwtgzvOod4QalhZG+42huEy+VQdLNPeyZhQu5RSX84wrMoafDLLuPPcrm5OSaSG03SzZA9Y18OXNxRxx93ADp2x1eaxzg/odUZVb8kxQIfABVoalYnj2BAMwzAd1OnBHebQguLhuL3XfV9eFe9GtgwyZZBhg4bMi39VpgQKkOOaDKyNHjNOylWoJJevXJHfFs6T+XPnSNkypVVRZlt2SEDrI1CEIXOmoeh169rZ1VCkm3pSUG2xEgIBuH4whHDNzov2O4lh3h2VpRI3puusKCyHYvT4TFnrMmE6tlmm/TIVrLuAt0FqqOeG4ur7Z9TVNxcopIJKuBsZ7uKGO/6ZoAE2agIlZgcoNo2GbRxS9Y9M8BnTUJ8MbaHKGsOdHfFzRN1JDTcMMMESZPigoRA1hpmZTBk9UT0gyGYN1hxXAVUEroPbGqphd/jJkCG9bNqwTkYMGyLZs2V1uTkcG+5+iOPAEDzsH3WwkKUW0XcossmSuu2kvhcyNU2AChmLaI6BdzO8FnfJRMH1uX3LyUp1p0oMFUbDZwDnA9v5RtWAMnfo1DN9H0zgz2Rdms96Mt+aedZlg/r6XRU4Q8MfDvBHCXMjBsftIJtpfKcSergyaniZOk/mujDXD0zQMMyXjQIUoAAFKEABClCAAhQIHQGPD0AFhQFfgIa3KaLqRB3TxXCxLoaY4YslhorgyyWGsfT5eZf+8obbbePLEb6UIEiFmj7r91zWwRyzXwwfwTAs6w/u1IbWVmWR4AsRhn3g9uLIFkCxXnyp/ayq6y+VKNaLu+g5tgrqrmIodow7iuFLHwJaWLbp4H/07cZR08TddlVl0Vj7jde4c5djQ1ABtys/rO4UF1DD8Bl88YORtbnyKaC+DOIYUOwdgT4M0emh6k0hkIhsNmcNQZ1GFTOpItD/6qFib9LD2f5cTUOw6dc1J3UmFDKi0BD0u3zjoS6EXzy36/pPWD5TpoyyeuWfMnnSeMmfPx8mudVw90dkuyBQhCFzKC49YfFhXRwdG3DXFu4478hEW7j+tM5+wfBCBHYRRMA1+Lc6Lwi8plcBQ9NcXTuDWhTSnycMjb2lCrhj6BLqJyEwUundVGYTTp8RFHAMrj5R1/h7HZar/p3Sw6FqlEin10WwA4HR9Xsu6QATgi4mYGQ2Pm/dKVVE+6XMVceCYzB3MsR8ZOzgepr0+2G9HtYtqYqg/64CewisIGg9Y8UxQVbXrJUnZLYKSsdW5xmBXLgh4ILMoynLjuhlYIXfD2XypTC7D/Jz1Q8qy64dW+Wb3j0ldWrXVmbjOH4Mk8VQuOKqnt276vyhRVdDQlMltgVycUy4A+eg6f4D33Cp//VaHTjSQWwVQDQZQWYfCGKj/aGGe56+5CPNhmyUTwb8rQOAuBbRWqg7YvZUv9/weTZF4qNHiaht8TsW9ZUQnMQ5/n7ufj10GgE8E8TSGwnmA4akmob6fq4asr1w50U0/G5GrStkiqKh/hV+/+P3WLNAfkfrFfhAAQpQgAIUoAAFKEABCrwxAa/+8y+ySBwTST6qmFGmqS+VuPvd1kk1pFD2xDpzAHfFQgYPGr6UYqgGskrQvm6ST/pP2y3t1RdUZL3g7l6m4csUfqwNX1wv/faRYIgHMgVQNDnXp4v0Ih8UTS2/Da6ggyzWdVDo3NrX4b/u18PfrF+ssDwyPjAcqZcqwoyiyvjSjC/2DdTQuz5qKFZQGu5WhR9ra1Aug9OhdigqjbpUqJkTUBvRtoi+k5g1d8eVD44Nd/Pro/qArAk02M/rX97PLqzbw4wB6i5V+EKNu2yhZtCb8DD2AWUeOZteMJutNgyuCdMQnCin3uO8mKCUmefsuWoV/3WznC3nOG1g84K6mHKtnqvtsxAI+E4NTUNz1/ZLdTc303AddVR3AcNnBNcjvoAjIIOGulsmCwbvXV07pVUhcQxLnfj7IX23OHwe6pRJJz+oejsBZShim2i4G9vsb8pKjcRpbRPUI4a6IcOu24Rt8rkKfKBh+6i51UH1q3avNZKgykz9mUKAw9qQeRX/g5l6EoZyIrCGgJtpo78spu7otl7fwQ39RHAXxffxOZveq7S+21s/9dlHUBR1keDyngoCY8ge7qDXskZ2HThNVHWWHtqHfpqhvWYfzq4dM8/x+dPGjRwnBfoed0DspTKfflTFx6t0XaWzsvo0zW+/GQH6qAuTq+NEvTZkS+rfN75bLq4yPREgR80kXAPjlS2ayYrC63xZEkrPxnn1Z26zyu5DTSzUT8K5+a5VIX29mzpRqBHVwXdYdDX1+vDZfTrwjuvzB+Vd7+s1OsgD77HKC3153YZgIo4DfUOQEYXG0QLaNJY1Lr0n79TnGtdUqxGbdHAM5xv1w6wtKOfRuh5fU4ACFKAABShAAQpQgALuCUR4qZp7i3r/UsgEiKi+eDr7koxhLpjvmBng7lEjUwkZE/jS9aYazsyNu48CLEr+pvYTGttBwAZDohBUCG4LSx7uGiBIgIwrZPcFNOzodWwfqPpG+OJtagS52y+zHLIKY6ihrgH1zSznzjOO9YrK2kNWojVogQwnZFo5u2sktot5+NyZPmAIazcVbN43rbZ9t8giQzAF2X7Whn2iNpbjtvG7AMeFQBXajTuP9bC14A5zte7zdV4jg9Oxr9jePVVMG8dv6jQ52wfWTRQ3ug7aIFuzpgpuIhMIQxNNw+9B3BnOWYYiznWUyJH8XSvwg63ZNz6n5uYBxs9s/20/4/hwvZjhgm+7P9w/BShAAQpQgAIUoAAFwpOAx2ZADVY1lL5VGTBsFPB0gQ1jqkp+VbvrTbXRCw5IL5W1wRY0AQRSMMzzezVErIBvrbQ4lWYEbSOvuTRqK51f+OFrbsXv6rV7rda1yPxODf6728sb6yF92AIKt6OFtpPeqYc/zFR3SKxVKp2H95LdowAFKEABClCAAhSggPcIhKsMKO85LexpUAQwNCigRL6qxdM4zXgLyva5rPcIoDD3CVVgGjXLkJXD5l/g4ePnMl0NU0Y2GD4fpkC3/yVDfgoysQK662c2Ve8OQ+XYKEABClCAAhSgAAUoQIGwIcAAVNg4jzwKClCAAhSgAAUoQAEKUIACFKAABSjgsQJ+C6J4bDfZMQpQgAIUoAAFKEABClCAAhSgAAUoQAFvFWAAylvPHPtNAQpQgAIUoAAFKEABClCAAhSgAAW8RIABKC85UewmBShAAQpQgAIUoAAFKEABClCAAhTwVgEGoLz1zLHfFKAABShAAQpQgAIUoAAFKEABClDASwQYgPKSE8VuUoACFKAABShAAQpQgAIUoAAFKEABbxVgAMpbzxz7TQEKUIACFKAABShAAQpQgAIUoAAFvESAASgvOVHsJgUoQAEKUIACFKAABShAAQpQgAIU8FYBBqC89cyx3xSgAAUoQAEKUIACFKAABShAAQpQwEsEGIDykhPFblKAAhSgAAUoQAEKUIACFKAABShAAW8VYADKW88c+00BClCAAhSgAAUoQAEKUIACFKAABbxEgAEoLzlR7CYFKEABClCAAhSgAAUoQAEKUIACFPBWAQagvPXMsd8UoAAFKEABClCAAhSgAAUoQAEKUMBLBBiA8pITxW5SgAIUoAAFKEABClCAAhSgAAUoQAFvFWAAylvPHPtNAQpQgAIUoAAFKEABClCAAhSgAAW8RIABKC85UewmBShAAQpQgAIUoAAFKEABClCAAhTwVgEGoLz1zLHfFKAABShAAQpQgAIUoAAFKEABClDASwQYgPKSE8VuUoACFKAABShAAQpQgAIUoAAFKEABbxVgAMpbzxz7TQEKUIACFKAABShAAQpQgAIUoAAFvESAASgvOVHsJgUoQAEKUIACFKAABShAAQpQgAIU8FYBBqC89cyx3xSgAAUoQAEKUIACFKAABShAAQpQwEsEGIDykhPFblKAAhSgAAUoQAEKUIACFKAABShAAW8VYADKW88c+00BClCAAhSgAAUoQAEKUIACFKAABbxEgAEoLzlR7CYFKEABClCAAhSgAAUoQAEKUIACFPBWAQagvPXMsd8UoAAFKEABClCAAhSgAAUoQAEKUMBLBBiA8pITxW5SgAIUoAAFKEABClCAAhSgAAUoQAFvFWAAylvPHPtNAQpQgAIUoAAFKEABClCAAhSgAAW8RIABKC85UewmBShAAQpQgAIUoAAFKEABClCAAhTwVgEGoLz1zLHfFKAABShAAQpQgAIUoAAFKEABClDASwQYgPKSE8VuUoACFKAABShAAQpQgAIUoAAFKEABbxVgAMpbzxz7TQEKUIACFKAABShAAQpQgAIUoAAFvESAASgvOVHsJgUoQAEKUIACFKAABShAAQpQgAIU8FYBBqC89cyx3xSgAAUoQAEKUIACFKAABShAAQpQwEsEGIDykhPFblKAAhSgAAUoQAEKUIACFKAABShAAW8VYADKW88c+00BClCAAhSgAAUoQAEKUIACFKAABbxEILI39NPHx0cmTZ6iuxohQgRp37a1RIkSxWnX79+/LxN//EnPS5smjdSvV0e/PnP2rCxYuNjpOpEjRZJ48eJJqlQppUTx4hIzZgynyzmbeO/ePflr9Ro5eOiwHD58RBInTiw5c2SXvHnzyLtFCjtb5a1MO3v2nMxfuEiyZM4sNapXfSt9CK2dnj5zRhYu+k2yZ8sqVat84HK3z549k9Fjx0v06NGkTauWLpd9EzPv3LmjrzXHbf27bbts37FTHqjrN2/evPraiR8/nuNift4/ePBQRo0eI4ULFZSKFd7zMy8obw6p6/bP5Sv0KimSJ5ePP2oY4OrWZUsULyZF3y2il/117ny5cPGi0/VixoghCRMmkPz580nWLFmcLgOXP5evFJy7lClS6GXzvJPb6bLWiWvWrpMN/2yUnt27SbRo0ayz+JoCFKAABShAAQpQgAIUoAAFPEjAKwJQd1WQZ/SYcXa2QgULSOlSJe3vrS/WrP3bvmzxYkXtAahz587bp1uXd3ydI3s2+XnKj/pLsOM8x/f79u+XNu2+FAR3rG3xb7/rt80+a6q/GEeO/PaZz1+4oI8fAZmwHoDC+cD1UrNG9UADUI+fPJEfRo+VWLFihWgACsGiIcOGy6lTp2XGNFsw1VwzffsPlKnTZpi3+jlRokSyYO4cyZgxg5/p5s3Lly+l61c9ZOmyPyVixIivFYA6duy4n89GtaofSNy4cc2u/DzPmj1HZs3+RU9DwMcEoOYvWCg7du7ys6yzN9/07in4XFgbgk5VqtUSBI+trXWrFvJV186CoLOz9t++/fLZ57agYZdOHRiAcobEaRSgAAUoQAEKUIACFKAABTxE4O1HRoIBsXzFygADUL//scTlFpHhMWb0SD/L4IvviRMnZdyESYIMj0afNJF1a1b5WcbxzYsXL6TJ/5rLjRs3pFTJEtKqZXNJnTqVPHz4SLapbJYhw0bIlJ+nSUT15bl3rx6Oq4f6+4QJE8oHlStJ/nx5Q33fnrxDZL+9X7GCxI4dO0S7eeLkCZk2faa+Vqw72rxlqw4+4bocOmSwJE2aVGbOmq2DPPUafiz/bt7gL9sP1+vg74bq4JN1W2/q9br1G6Rm9Wr+Nvf06VNZ/Nsf/qZbJ3Tp3NEelML058+f68/IylWrBZ/N/gMH60zDypXe16vhc/RVj946+NS82f+kYYP6cvbcORVc6ykTJv4oyGJ0lpG1deu/0qZ9B+uu+ZoCFKAABShAAQpQgAIUoAAFPFjAKwNQv/+xVPr3/cbfF/Pbt+/I6jVrXXJjWBOGLDm2smVK66FzHzb6VE6qLBVkTKVJk9pxMfv7AwcP6i/WyJwZN2aUn2FVyKLCF+9+AwbJIvWFvWePr3SWin3lt/ACw9Emjh/zFvbs2btEFs/kSePfSiefqWukU+duet8/jBphH7I5sH9fOXPmrPyzcZOs+mu1nyyujZs2S5eu3eXS5csh1uelS/90GoDatGmLvywlx07g2nf2+ULm3aVLl2Tb9h2ydt16MQEoBLQQTCpa9F17oDZLlswyacJYqdfgI5n80xT56MMG9iwoDHkdMnSEzFSZWGwUoAAFKEABClCAAhSgAAUo4D0CXhWAQrAHdZXWrvtbtqgvrY7D8FCLCQ0ZLfjiHtSGL8HYBzJMDh485DIAZYbdJUuaxOlwpYYN68tvv/8hMWLGlMtXrvgZ0ochR6iZg31gCFjunDmlnqpVhS/v1oYg2OxfftXLYRgi6ufgy33dOrX8BLTcWe7U6dMyfcYsyZkzhzSoV9e+G2S1zJ23QHueU5kn6dOnFwxx/FD1P2rUqPblYI5aO/9r+qkcOHBQ1v29QY4cOSJZs2aRKh9UlvLlytqXxTa/HTJMkN2Cel0YTuaqudP/w0eOKrN5kk/V1qpVs4afzc1fsEgQEGzc6GPJlCmjn3mbNm+RRYt/kxMnT0kudezIAitZorh9GdPXGNGjS9cunezT0XfUkfp32zY5evSYpEuXVtkX0tk4kZ0MqUQQZZPKZsJzDFXzKJ/KNGvy6SeSSGWewQ3nGw21wjDkDl5JkiTRgSRkP1mDNhhyVq9ubR2AWrT4dz8BqBat2urrs2zZ0lIwf34ZMfIHe59f90WlShVl48bN+rNz9+5df9f1kmXL9C6C+/nCeUMAatfu3faums9sw/qvrknMxDWYNm0aHQzef+CAvJPbVg/qjyXL7MGnH0YOl569+wQaFLPvjC8oQAEKUIACFKAABShAAQpQ4K0JeFUACkqoX4RgCIomOwagzPC7atWqBCsAhSCHqUOTMlUKlyelSOFCej6ypb4bOlw+a9pEkiVLal8nlgo8/fHbQvt78wLDB1u1aW/e6oAXghY//TxVhn43SA9Bwszz5y9IzTr1dZYV3iMwtnv3HhUsmi9L//xTpv9sK7Tu7nKXLl3WQ72QiWICUMgYq123vv6Sb/ax9799eqjUHBX4mvrzZEFwBG33nr16/T17/9P90BPVA5ZHAGhA/z7y6SeN9OQnKqiG4YdomOYqAOVu/xEcQ50kFJV3DEBt+OcfQWACQR1rAArXg7kmjB/qF6FeUPt2bXT/nqhgGfqK+SYAhWugZet2OgCEhdB/HCf2sUAVcp829SdJmCCBXh8PGFrXp98A/d4EMNdv+EcNV/td1qxaLgigLPtzuZ6PIZs4DhSrT5XSdo0VVMEW1HGyNhNwgbu1FVNB0kYffyjlypaRefMXWGe99uvo0aJLtapV9DWGz5jV+eHDh7qIf+7cuSSHKrIf1AAvAnoIBqKlS5vW3tc9vseH7VobgnD58+XT9dVQo8p4xIkTR1Abqtn/mugAHgJQbBSgAAUoQAEKUIACFKAABSjg+QJ+v/V6fn/lvfLldC8RDED2imnXrl3TAYMK75XXWSdmuuPz/QcPBMWLzQ8CKsjCmDhpstSt/6FeHHfrypkjh+Oqft4je6Vzxy/1NKxbpFhJqVyluh4ehGFSKDrt2K5fvy6d1fApNAwhPHnskBz4b5f8ONE2BKxb9172guZzVXABwQoMP9q/d6debtkfi/W6f6vsI/Qbzd3l9MIOD9169NTBJ2SbbP5nnRzct1vVHPpHD4dCLSwTVLGuhiBY888/k3WrV+p+mYLSo34YKyiMjYY7FH7S6CP9EzduHOvq/l6/Tv/9bczJBASl/tu9XR+bGWo3/PtRcuToUSdL2yaNV7XAMPwNQZGN69fKru1bZM/ObTrAhUDUCLW+aRjyCScEnub+MstuWKZ0KX0uZ6h6Tri73tI/FulVUC/szMmj0q5NK7lz566elihRQrM5+7NxwzVgbVMmT9T9CKgwt3XZ4LxGAXK0JWoYnrVt2LBRv61dy2/2mXUZvEYtNfPZwvPWf7fpTLJmzVvZg3DIVDPNDCWMHy++mWR/TpDANu3GzVv2aQhAd+/WRQef7BP5ggIUoAAFKEABClCAAhSgAAU8XsDrMqBwdy4MFVq58i8/w/BQ5BgNdz5z1TB0rnrNOgEuggybrp07SSRVnDqw9kX7tjrjZuQPYwRZGgja4Gf8xEl61Q5ftpcvVKaN2daMWXN0hhUCGxieZVql9yvo4WOoa4Nhcl/37qHr5WA+MpCQ9YGG9RBEuX79hj0DB3V10AJbTi9keUDADoZoKMqeMoUtGyd58mQyTr0vWKS4no/jypIls31N3Fmwd09bEA0TcZcyZBAhUPJABfcQiMHQvUED+tnXcfUiuP13tU0zD30ZOWKYvT4Xho6hWDwChrPn/KqDgGZZ8+zj4yNjx0/Ub7t26mgfholgyOBB/aVo8dK6QHinDl/ozCgEQtH6fN3TXnwbhn2+7iWNGjeVHTt2qWydpnoZxwcEQ9Gc3XHOnHPMR60oFEsPjYbzCzcE1u7cuWO3+2Op7Tgx3NIMJ3TWHxRHD6jhGu2lrh0MH0RDnTTTTMDNvMdz/Pi2ANQjlX3FRgEKUIACFKAABShAAQpQgALeLeB1AShwV69aVQdHli5bbh+Gh+FOaO+VL6uHi+k3Th7w5RrDjNAw1Grd3+vtw+5+nT1Diqkv4EFpGNKGHwwl27R5s/rZqr+8Y9ujVGBqz9698uOEcfoW8YdVzSS05MmS6WFr1v1gKBiaycwpXaqUXub7UaN1LanKlSpJmTKldPaLtQaRu8tZ94XXZmgXMnVM8Mksg+FhqJWE4YInTp70E4Aq7Dv00CyLIt4YomYNQJl57jwHt//ubBvD1FB03toqVnhPB6AOqVpMzhqKf5uG2l0YXmhtuH5wblHHC8e9e88ePRuZVtaGoYBb1R3sXLVo0Ww1tl6q4WmO7dmzZ/ZJkRyG59lnhMALXFt1atXUdZYwDK+2eo2g3NJlfwqGnTpeK45dQAArjbpz3YsXz+W4yoZCxhwaPiPfDx8i0VWtLdOsww6fOzF48viJXtR6vZt1+UwBClCAAhSgAAUoQAEKUIAC3iXglQGo8uXKaGV8KR40oK8gm2fHzl26PhQCBK5aWnVnO9RaMg1ZHk0+a66/KPfs/Y38vniB04wUs3xAz6lTp9L1m3AbeWSszFCZTLgLHobL/bttuw6UnVSFsNGQXRLQ3fqOHz+hl8FQoyuu7EJxAABAAElEQVRXr8rAQd/qYXLIqsIPjq9d21bSqkVzXTfI3eX0Ri0PN27c1O+SJk1imfrqZaqUKfWb8xcuvJqoXiVJktjPe7yJFSumDkD5jsDzN9/VhOD239U2zTwE+hxb4sS2gujnzp13nKXfI5Bo2lc9epmX/p7PX7ioh2maYvSu6lz5W9l3QtIktppht9U16NhQBBwN5zukhts57tO8r1qlsg5AIcCLABTuWoeG14E1DMnEMFjTUIj/y45d9PA7DD/EkFLTcFwoNA5DHC/qplnb7Tu39VtrNph1Pl9TgAIUoAAFKEABClCAAhSggPcIeGUACl/KkcWEABQKG6PuDFqN6tWCLB8vXjz5+adJUuH9KjrQ075DJ5kyeVKgQ57qN/xY39HrzyW/Sa5cOf3sF8OlPlNFks/6Fs7GXdBQMD2eGj6I1qvHV4I6U84a6ieZ1rzZ//Rd11CkHNvAkDnUzMFt6KNEiSqYj+bucma7eDb1dZzVqsJ88+U/dqzYeGtvESSC/fWbehGU/ps6U9Z9Y0iis/b0mS2rzDrP556Pfps8RXLrZPvrWLFtAcyMGdLL0CHf2qc7vkiv7opnvUvgw0eP/AVQ0FdXwSMT/Lt69Zrj5uWmb90jBExDuxVWd5rEZ8wMwzOF3DFUNKgNhcwvXLwkQ4eNkO49e0vGjBn0nSzNdlKqQCcCUDdVQBRD9KzNnFdrcX/rfL6mAAUoQAEKUIACFKAABShAAe8RiOg9XfXb0+rqTndoK1f9pe90hi/MyLAITsMdzb4fNkSvioylWapWU2Ata9YsehFTG8fV8onVUC20TJky2RcrXKigWH9iq/4jUwqFytEwpHDY8O/lmRqah8Lr/fp8LVs2rZeWLT7X800GlbvL6ZUsD+ZOZLt27RbrcC8sgto8mI6W0vdObfpNCDy4238M9UO7f99WN8nalSNHj1nf2l+jCLZjM9MyqUCIs2ZcrqigUG4VWLSeIxRr3/vff6rO12Gd5YbaXghUoR116MO9e/ckV54CumbUjZu2bDO9oOUhQ/r0+h3uKIe7zFnbuvW24XuFCha0Tg6V1wigNqhfV+/r9z+W6kAU6jYFJ8sLG8E1Czu01m2/0EP69Bv1kM33c/S3umugtSEwau60Z+6AZ53P1xSgAAUoQAEKUIACFKAABSjgXQJeG4BC7SC0Ob/MVUGBfTojylpfJqinAV+wG9Svp1fDXc2sQ7GcbcvcjQ8FrZGR5BhAQGBl6rQZetVyvkMGK1Yor9+PGj3Wfrc7TMC6LVq31QGniypbBG36zNm6GPa06TP1ezwgmyaBb2Fmky3i7nL2jfi+yJw5kx7+hIwqFBG3NhToPnnqtM6CQd2foLYXqp4Pzgl+njyx1fEJaBvu9t9kbKEulblzGraJ8+94pzizL9QfMsXpMQ3LjR4zTs9GHTFnLVWqlLrYO+o8jRj5g/3Oflh2/sJFMmDgtzJ+/CSJ61sYHkW50bBdayBv3vyFulZU7Dix9V0ZI0e2ZbaZACPWQWaPqUc20xL0xDKzZ/+CRaTRxx/q59B+QM0mtK/79NPPtQIp7q8XCuABAa1hvtlkOAfDRoy0L2mOb6a63q3nccbMWXoZ+KCoOxsFKEABClCAAhSgAAUoQAEKeLeAVw7BA3nMmDF0TRoEetBQS+h1W8/u3XStGgQfen3TR6b//FOAmyxbprR0VHe5wx3wTH2mHNmz6TvWHTh4yF7Y/Msv2qksj6x6OyiAjWLVKO5cqux70uyzprqO01J1y3sEVZAlYr6Qt/j8M50tgiLkGH6H4uj79u/XNaWwMRMQcHc5xwPBUD/cqa5xk88Edy7b+u82KaCGBe47cMB+d7zpU3/yUzTacRsBvUdArUYtWwbNutUr9bCrgJZ1t/85c+Sw1wuqWr22rjN0Tg1x3Lxla0Cb1tNbtGojuLNhsqRJ5Ze583WQA+fA3InNcWUUxh7Yr4/UqttAJv/0s+zd+5+ULFFckDllss6++3agDs5h3datWujt4pzWrFNf92ubymQz/fqmd0+9C2TZoeEuibCpV7eOfNq4kc4O0rXMvh0i+w8clHRqaN98FbzC9YC7LObIkV2vF9oPuBZMcXns21rXKTh9wdC7rl066SArgqq4fjEMFZ8Nc1dLnNf6KvMKheAx7A9ZjX2/6RWc3XEdClCAAhSgAAUoQAEKUIACFPAwAa/IgDJ1dBwznKpVtWVp4Itq0aLv2mnN8hgiZZq541YkdZevgBqybL4bPFDPxlC8FStXBbSoDhx1UAGoCeNG2+s5IbiwbfsOHXzKm+cdGT/2B+nU4Qs/2/hx4jgduMJEZB4hyIFgA4IiI0cME9NnZNb8MHK44K5iKLA+Zux4HXxC0eaZ03+2B1DcXS6Cby+MDd6iLtWiBb/qu9whgDL8+1E6+IR9zp87Rw8/811NHy9eG0cz3focMaJtLxEiuH9Zudt/uEybMllnJyFTZu68+TrIg+FdX3XrrLvh2LemTRrrwAnuZDd2/EQdfELQb+L4MdZu+3uNwAhqe+Ec4nwiCIjgE66zASo4heCjabFjx5YVy/6Q9ytWkP37D+g7HyL4hAy1n36cYL9LI7Kd2rVppVdDZth63yFned7JLQvm/aKXR9AFmVS4HhA0a9u6pdmN0+cIvnfHi6gy495EM9cetoXXdWrbio4jG8paCNxcQ+Z8W/fteA6s81o2b2a/o2LX7j3t2WWjR47Qtc5w3Dh+OMAPn5UkSZwXyTfbNb8TXO3XLMtnClCAAhSgAAUoQAEKUIACFHh7AhFUoeSXb2/3YWfPuPPdaTVs7cXLF5I+XTo/BaqdHSWGqV26dEnuqqLYqVSdpbi+BcqdLXvz1i25qO66huDTm1jO2T5wFzIUi86QPl2wsp6cbTOo09w9zlu3bsvVa1d1TS0M7wqs4U6Hly5fEdR9shZ5x3o47nfyFdLBpYP7bHWvrNu7/+CBHi4ZVw2lS6aCIq7290gVIj+tsnfixo0juAOfs6AItvdQ/cRXGVGO27py5arAIKUqkI7i+OGtYbjm6TNnJHq06JJSDYV09AlvHjxeClCAAhSgAAUoQAEKUIACYUmAAaiwdDZ5LEEWOHX6tJQt/74uJr5uTcAZb0HeMFegAAUoQAEKUIACFKAABShAAQpQwC4Q8Hg0+yJ8QYGwJ4CC4d179pY9qsYTWs6cOcPEQR5QdaTWrF3n9rGULl1K8uXN4/byXJACFKAABShAAQpQgAIUoAAFKBAcAQaggqPGdbxe4NjxE4LaUGgotv1F+zZef0w4gCNHj+q797l7MAkTJmQAyl0sLkcBClCAAhSgAAUoQAEKUIACwRbgELxg03FFbxZ4rmp2Xbl6VR4/fixp0qRhvSFvPpnsOwUoQAEKUIACFKAABShAAQp4vAADUB5/ithBClCAAhSgAAUoQAEKUIACFKAABSjg3QIRvbv77D0FKEABClCAAhSgAAUoQAEKUIACFKCApwswAOXpZ4j9owAFKEABClCAAhSgAAUoQAEKUIACXi7AAJSXn0B2nwIUoAAFKEABClCAAhSgAAUoQAEKeLoAA1CefobYPwpQgAIUoAAFKEABClCAAhSgAAUo4OUCDEB5+Qlk9ylAAQpQgAIUoAAFKEABClCAAhSggKcLMADl6WeI/aMABShAAQpQgAIUoAAFKEABClCAAl4uwACUl59Adp8CFKAABShAAQpQgAIUoAAFKEABCni6AANQnn6G2D8KUIACFKAABShAAQpQgAIUoAAFKODlAgxAefkJZPcpQAEKUIACFKAABShAAQpQgAIUoICnCzAA5elniP2jAAUoQAEKUIACFKAABShAAQpQgAJeLsAAlJefQHafAhSgAAUoQAEKUIACFKAABShAAQp4ugADUJ5+htg/ClCAAhSgAAUoQAEKUIACFKAABSjg5QIMQHn5CWT3KUABClCAAhSgAAUoQAEKUIACFKCApwswAOXpZ4j9owAFKEABClCAAhSgAAUoQAEKUIACXi7AAJSXn0B2nwIUoAAFKEABClCAAhSgAAUoQAEKeLoAA1CefobYPwpQgAIUoAAFKEABClCAAhSgAAUo4OUCDEB5+Qlk9ylAAQpQgAIUoAAFKEABClCAAhSggKcLRPb0Dp48cVKuXbsmz1889/Susn8UoAAFKEABClCAAhSgAAUoQAEKUMArBCJFjCRJkiSRjJkyhkp/I7xULVT2FIydIPj04uETSZcguUSJ5PGxsmAcIVehAAUoQAEKUIACFKAABShAAQpQgAKhL/D0+TM5c+uyRIwRNVSCUB49BA+ZTww+hf5FyD1SgAIUoAAFKEABClCAAhSgAAUoELYFkOiDmAtiL6HRPDoAhWF3zHwKjcuA+6AABShAAQpQgAIUoAAFKEABClAgvAkg5hJaJY88OgAV3k48j5cCFKAABShAAQpQgAIUoAAFKEABCoRFAQagwuJZ5TFRgAIUoAAFKEABClCAAhSgAAUoQAEPEmAAyoNOBrtCAQpQgAIUoAAFKEABClCAAhSgAAXCogADUGHxrPKYKEABClCAAhSgAAUoQAEKUIACFKCABwkwAOVBJ4NdoQAFKEABClCAAhSgAAUoQAEKUIACYVGAAaiweFZ5TBSgAAUoQAEKUIACFKAABShAAQqEWYGXL1/K02dP/R0fpmGeJzYGoDzxrLBPFKAABShAAQpQgAIUoAAFKEABClDAiQCCTPOX/SaTZk+TK9ev2ZfAa0zDPGfBKfuCb+kFA1BvCZ67pQAFKEABClCAAhSgAAUoQAEKUIACQRXYumuHnLlwTh4+eijzli7WQSgEn/Aa0zAPy3hai+xpHWJ/KEABClCAAhSgAAUoQAEKUIACFKAABZwLZM+cRfYc3CePHj/SPwg8oeE9WvRo0QXLeFoL0xlQL54/lytHDsmF/Xvl2ZMnnmbP/lCAAhSgAAUoQAEKUIACFKAABShAgSAJJEmYWBpUq60DTVjRBKLwGsEnzMMyntYi9VXN0zpl+nPu3DlJkyCZeev286O7d2TViMHy1/ffyp4/FsqBlctk2xw1NvLoIUmePadEjxPX7W1hwdtqe8vWrpI/Vv8pB48flecvXkiq5CmCtA0uLLJm8wa5fvPGG7Vbs2m9XL91841u0xPP1Z17dyVa1KgSIUIEmbHoV0mcMJHEjR3H7a4iDXPO7wtk6ZqVkjRxEr2+s5VvKMv5f/4mObNkk5u3b8mC5b9L7mw5JGLEoMWqEYGPET2GJIgX39lu/EwLzc/XrTu3Vb+ii/U4I0WK5Kc/QXlz/d5jmfXPWcmdNp5EjhjB36pT/z4lCWJFlfjqx1W7df+JxIga/H642raZ9/T5C3n05LlEjez6XO49c1s2HbkuOVP7/z155c4jmbPxrORNF19dE/6P1+zL2fMu9YeAmYvnyiH1O7RA7rzOFuE0ClCAAhSgAAUoQAEKUMBNgdgxY0msmDHl+OmTftaoWLqcZEyTzs+0wN6cu3VF0qRJE9hirz3f9TeR19586G8Awaf53drLkb9Xy5OHD/x04NS/m2Vuh5Zy++IFP9NdvTl36YLUbfWpjJn+o5w8e1p9gV8hnQf2kpFTxrtajfOcCCxQhdBWb1znZE7wJ81btlgQhArLDdddzeYfy7Nnz/RhTv5lupw8czpIhzxx9lSZOn+23LvvI5FdBFwuX7sqP/06Qx48fCi49vH66VP/d1YIbOeTVMD34PEjgS2m9xFan6/+PwyV6Qt/0X26dPWyPraHj2wpqoF2NIAFLtx8KJ1n7pGHj587XeKLqbvl8IV7TueZiYu3XZDGY/81b0PkGTfBKP71Wtl1+lag2994+LqM+vOo0+XOXn+gj/eJCmYFpSGA+mW/7rJ7/3/ywkPvyBGU4+GyFKAABShAAQpQgAIUeNsCqPm0bvM//rqBadbC5P4WeIsTwlwNqN/7fCXXTx4PkPSByuqY26GFfD7nN4kUOUqAy5kZy9f9pTKensuyqfMkVoyYevKEWT+rbJL50rTex25leJhthffn8QNHhHeCYB0/Mryeq+Gkr9NOnz8r7+YrJEO693W5mVxZs8v6eX9KRJVpFRotND9fJ86ekvy58oTGYdn3cWda7UAtT171kafPQ/Y2qS/lpQqE3bX3K7RfXPW9M8eQHv0kbcrUob177o8CFKAABShAAQpQgAJhSuDazeu64Li15hMO0AzFw4iUD2vU8bhheGEqAOVz47pcPPBfoBcWglCXDx+UVG4MA3mghi6hPX782B6A+qR2A0kUP4EOTGEesilmLZ4nf238WwcKPihbQb74X0uJGiWq9B35rcSOFVsw/AQZJbmz5tDzBoweJhfVesXyF5ZvvuymhytdvXFNMH3fkYMSKWIkqfZeJWnXpIVEiez3NB1TKXZdB38txQsWkT9VgCx+3HjSqFZ9qV+lFrojtVo0kiJ5C8iqf9bJe8VLy9dfdNNDCBevXCpHTh6TNClSyVetO0jeHLn18r+tWqb7f/3WDSmoTL74XytJlyqNuOrPjv92y8Cxw/VQpnhqSCPGmH5a50N59vyZPob1/27S286aIZP06dBdUiVLIf1+GCIpkyaXFh831S7xVL937tujK/QnS5xUBnTuKTkyZ9PrTZk7U9Bfnwf3pWq59wXbGzdguO6XXsDycOz0CflEBRVR6T918pQysEtvyZQug87cGfXzBL0uMjAwJKyl2nfdD2q47Kdl03L4xDHpPXygZMuYWTbt/Fc6fd5WKpd5T7DdlevX6msgX8535Ov2XSVRgoR61eB44jpx5pFCeWH/aLVbfiLWIN6vSxbqIXUzR07SQ/OwTK9hA/RwxDaNP8db3QaMHqqvPww1+7RTK5kyZIzuP0wdXZC+2Ull+M0a9aNZ3f68cMUfMnXebL0OrqGe7Trr6xkLYFsTVWD20rUrOtD15Kl7Ndfc+Xy5ug6xH1fnwnR+/MyfdAYjrhH8Uq5WvpKeNVZlNq71/atB9fcqS4dmrfV0V/s027Q+D1tyWH7ZdFZPav5eRulRK4d+Xb7f3zLgw9xSLEti6T7nP5m98YyeXipHEhnROK+cuOIjw5ccEZ9Hz6TS4A2ysmdpQVbVT2tP6u09efZC/lc2g3SrmV2iqaFznWbs0c9zt5yTdIljqcDVC+laI5vULJRKb3f/uTvyvwnbZVWv0nron56oHj4evVW/bD5ph3z3cR55N0si6TNvv6zed0Wu3X0s+dLHl1FN80vBDAn0cpj2yZh/5fcdF/S8YZ/klaJqHcf26+azMuT3w3L8so8Uz5ZYhjbKo4fnWZdDBl/7vl/pSW16d5YvmraUd9RQ6IB+Z349YpD63RlF/t66SX+m5oyerLL2Xv0ODMrvVFe/m53t5/e//gzwGrceE19TgAIUoAAFKEABClDgbQocPn7MT8FxfB9HQ+DJBKGwTJIinlUHKkwNwTu/d6f9GiivvhxX7Njdz897KtATUwWO0M7tebWsfSUnL+pUrq4DSRgC1aLHlzJtwRy5fPWKDrgkTmD7QjZ43Pf6C/43X3RVwZUmsnTtSvnh54l6a/hCji81CHoM6NxL9qs6VC16dJDqFT6QwV2/li27t8umHf/qYSntvummU+W+7dZH2jRupoMLGG7l2B6rL9CoYYPhLN/3HiS13q8qo6dOki27tutFMW/Npg0q2PI/KVu0lA6ifDdhpBR8J5/80Oc7SagMMBzmmgrY/bNti4yYPFbKq0DV2P7DVHDhng4UYZiMq/70Vl8SEcCaPmKC1K9aS9DPE2dO6YAYghFDe/SXcf2H6/pMw38co/t1RQ3vQpALDS6LViyRiqXKyZh+Q/W0b8eP1M9LVq/Qzg2r15GBygxGCJQ8CaCQ/LFTJ6SqCiiMUBaPVUBi0DhbphUCWH+sXq6DRpO/G62zXxCs8Ll/32U/dSd8HxB4vHL9qg4eNv+wiQ644Nwi+NTx8za6f+cvXZQuKiCIFlzPgDxQ56llo6Z620O695MUSV7VRENGEwIqCOKh4bxv2LZZCuUpoN+bh88//FQypk2vg4v9OvbQgb2AXB49eSyok/RC1TmzNpzTUVMmSM2KVfT5SpYkqbo+uurzgj7oIF2mLDK85wBVM+22dVWXrwP7fAV2Hbo6F9YdIziLIGepwsV05qKZh3pEw3r2l4bqFzYCbAgUB7ZPs671efep2yqzsph8WSWrDF58SLafuKln7zx1S+4/ei6/bb+gg0+Lu5RQwaEycunWQ+m/4KAUyphQGpdKp4M845vZzlvPX/YJhsFNbF5Q+tXPJeNXHZfvfjukt4chcGNXHpfO1bLJ5+Uz6NpTP687Ze/Kr5vPScoE0f0EnzBz8Ifv6GW+rpNTyuZMqoNP+86q4codi8vab8pKlEgRpfvsV8F7BMFix4is52VPGVcqDlwvN338BhXX7L8iCGh9Vi6D/N2nnKRNFFMqqyDanQd+h2ymTpFSOnxmC+x98+VX8m7+QuLyd6b6/Yrg+cc166nfLTX9BJ9wEO7+TsWyQdkPfg8HdI1jW2wUoAAFKEABClCAAhTwFIGiBQrp5AwkWSD4lEzV+cUPXmMaEkqwjKe1V39W9rSeBaM/d69c1mshyJS3Rl2nWzisijAjA+ru5UtO5ztOxHCRuWN/1rWf/tm+RZCZgx8EbHq366KzmHD7w+G9BujMD6x/7NRJWbZulXRt+YXeHLKeEIBCy+BbDOwj3/7hwtitsrZSq4wS/LUeX9RQ4Bw/JQ8f0AEUBKOctVaffKaL+aKgL7JuVm5YI8UKFNaLNq7TUMw+vvqur95va7U8GvaJLKm/VD0mFFVPkiixDnhh3sAuvfSX8EOqfo+r/qCO0KlzZwRDu/DlvkLJspJcfcE/dEIVaVfDxWCC7Ctk2wRU5BmZQ03qfoTdSq1KVWXGwl/166VrV+gi2I1rN9TvfR48kEEq2yqghmwKc6wIkMz+bb5etFCe/Drglk8Nuzp38bxkVwGSzSqL6Y7PXV1U291+YmPdWn1pz/bBuUUgI0/2XHo/2DcCW5dVUG3lP2uD5YkNOfNA8e80KWxDlpBNFkVlhpiGawmZSEtUXTIcK/oVSxWiK6xeWxuyqOKoLDxkymGdlyq4iECkMxfretbX81X9LmR4VVLZX2gIbjbv/oVsUHXVTMCpV9vOun+4npCR5k4L7PN1QmXPuLoOXZ2L5JZgHfqEAn04BkxHMXy0XipQjaw72M/5Y4G+nmOqobau9unsuIZ+kkdyp4knBVQGEYJFyGwqnMmWEYflI0WMoLOcth2/KR/kSy5/dCupp8WOHlmSxY8uMaNFlkzJYsvpa/dl0bbzOhMKGUVoh1QNqYl/nZA+9WzXW/WCKaVtpcx6XtokMaXKt//IRRXQShI3mkxRmVOj/+f3/GPB9Elj2ZePHyuKIEsrYeyokjZxTDl6yUeyp4ora1VAydqGq6wn9A/LINPpL5UtldF3O1hu+vrT+phrqP6gdaiaVS+HrKq6774aZodM0PSp0+plMqvMRBSdd+d3ZrOGjfU6zh7c+Z2aRX1egrIfBFQDusarV6jsrBucRgEKUIACFKAABShAgbciEEWVE0IiCEYg4bVpCEIhgQEjCHADK09rYSoAZYbUIcA0+eNaEkXd7craXqiTc0dlq6ClypPPOivA1wiy4E5ejdXwMvygIPOilUtk7PTJUlQNnzOFofPmsGUYYEPINEIwyIzHTJksuX37qCOFjADTokeLprNNLlyxBcRQ7NyxIWDg7OIpmPvVMeTKkl1nw5h1MRTNtL2H9kvl0rbAAabhSxaOCYXJTqqspXyWvuPLeRU15A13rEMLqD/ffdVHBYVGSB81dAwNQ/76quyaD8pUkMMqqIUaWTPV3doQEOnSvJ0OUOkFLQ/JVRaNaajgb+ocXVDBQRPowPy8OWxfvM2yjs8Y3mcahkaa4V8IJAybNFpnnWE+jhsN2T1B6SfWMZ7IxEI//966URCQNA1BtivXgu+J7QTkYfbh7LlulRoyZtqP6lp7rIOQNdQXZWfXinVdVy7W5ayvMVwUGVYYwmcajhkZbefV0FL4mOAYApwIOrjTAvt8RVV3/kNzdh3eUYEMV+fCGoAKqC9mGQT6cLtSXDvB+SymShhD7wKBpsRxoqnt+M0gQ9CoW43s8q0KTvX6dZ+kTxJLMKytsgpGWdvOk7Yi4QUy2jI1Ma9Y1kQyZsUxeajuYIeWUQWqTCuhglTY9yJVyDxrijg6yFW1wKvPvlnO8fnFi5c6ewmZWggyJVdBMGvDUDxMR0sWL7rexyWVFWUNQJ26el8w5K9o7zX2VbEOhu+5av8dOqBnu/qdmSalbUhhQNtx53dqUPfj6hoPqB+cTgEKUIACFKAABShAgbclgO991uCT6YezaWbe234OUwGoZNly2j191LApVy21Q5ZIQMtiqBpqLXVv3VEvgi/ZDavVUVlQs3QGUMF3bLcTP3rquD0j5oAaZoe0N3yhRYtsiUjivWOAAAWCE8e3BUcwpM7cohxfhPGl33F5bAMNQ97y5rTVcULmkcnIwbzIlrpRSVX2x8HjhzFZt7s+9/QwKwQKsA303TRk8aA2SzF1zGjO+vNMBWAeqLuH/fjdDzogt1rdhW7MtEmy4M/f5f3S5aWyqoGFWkkIfE2YNUXXiipXrJTZhf05YsRI9tfWF8jM2aeyv0zbd8Q2/Mi8d3wOaDsDxwyTK6qu1o/fjhJkQ+xSQxZxB0MEoC6r6yOgfjrL2DI1aOKoIXFoH9esLyajDEP6Div/bJky6+GNQfU05zeg43A8Xuv7yirgh2FDCPZhSGVNNRwzsObKJaB1E8ZLIKj1NXXYOPsi2/bukkxqaB8ysBCwfKru0od6ZTfv3LIHAe0LB/AisM9XiYLv6jWdXYdxVH/QAjoXemYgDwg8ObbgfBYjiOu/Lly6/VBqFEopPWvnkN1qWN5QVffpfxO2ybnx1f3sPoVvIAhZT/lVXSa0Padv6wBQjKi2z0tkFeQyDcXim6khcHNVhlKu1PGkmRqWF9N3ObOM4/NzFXyqNXyT1CycSqa2LqwynGLJiKVH9FA/s+yRS/fMSz30DkPyUvgG2cwMBKYqvJNMMKzQtC1Hb0iWFK8CZGa69TlpYltml+vfma7/1+TO79Sg7sfVNW7tP19TgAIUoAAFKEABClCAAsET8P/tK3jb8Yi1IqtsiTJqqFRgLZ+qLRLPkiHkankUK162dpXOwDhw9LCup4SaRg9VcfIy75aQd7Ll0tkeE2f/LOcvX5Stu3fo+iWOw6Bc7QPzsqnhYQhajZ0xWQ8DQvCppaoVZYaTOVv/5/mzdH0i1JhC8MFZkAfrYbggat0s/3u1zlhBsAgNmVpYBzV8Vm1Yq4fGjFTBDNTBQXZVgP1RGVnffD9YRv40Xh87CpcjaIOA21ZVhwpDWVDsHEPeMqRJrwuqR3DyRV93wslDRTWcD/1FUGWjyjL6cc40J0sFPgnZLGbY2V1V22qcskVDFltw+4kv/Mj2Qn0pBGCQEfX194Ok76jv1JYjBM9T9yrgB3P3xf9UUA5BHmvDvFJFiskMZYU6T9ZsMOty1teuXKzLWV9XLFVWUKActaPuP3wgU+fP1sE8HD+CRMhEwnlCRtSk2dOsq+oaZ/gMOWuBfb5cfS4COxeO+4upPl8YMnrNd/id43zz3tU+zTJBfUZNJ9RHOqTuRJdTDdXLljKOIKCEj0Wc6FHkogrwYPgdioFjKN0IFaBCvadNR67r2lGOmVLW/TcsnlYHqVDg/CP12lkzdzU8eP6u3PKt5ZRBZWGlVnWbDqo+oc6UybDC+iiKjmF3t+8/lWF/2ILXZXMm8bPpmiqghuF2C7aeV3Wunulhgu8PWu+vBpSfldSbN/U703G7ju+Duh9X1zi2vXC5rUaY4374ngIUoAAFKEABClCAAhRwT8D1n5nd24ZHLVVA1T56+fKFbJhkK3zt2DkEn8q1sWUzOc5z9r75R02QsiRzlyzSFeWxDIaVoZgzblmPNqL3QOk+pJ981L6Zfo96PLjznGlqdT8tQgS/cT9kT2Ao3vdfD5KeQ/tL444t9fKoc9LDRV8vqWK99Vo30cGfpvU+1gExPzvyfYO79qEG0mDf4tzoP+4Uhwwo1BBCsGiAyhZCQ42gr1UxdVf9QRZYb1U757sJo+SDpvX0eghmof4S1kOdJRRaR8NQrH6qGLz5Aqwn+j5YXUwWEGaVKlJcPqxeV2aqTCwES/KrjCgUArdmdQW0HUzHHQTRWjX6TAeGKn5SW79HwWvckQvZSrUrVXOvnw7nDhvqpWp/9RjaTwdg8B7DzwapgvI4dmw3qJ7YBlpAHjhPOGcd+veQId376mWtD3UqVdfFz02dMes88xq+5rpz5YKAoWnWc4I6X6fPndVDGjGsEdlQuGMcgl5oX6nAL4KXuDMf6i1Zh+AhaIWhdlXLv6+XtT648/ly9blwdS6s+8HrEoWLquDYVPlS3ZGtZ9tOjrP1exyzq2vf6UpqovXcYRnH9w2KpZF1B65KMd/harpeU6vC+nNRJHNCHXx6p8tKuTq5pi4M3nT8NsnVeYXe3YcqqIQ716FFtGQ/6QnqATWayudOKiev3JcimROZyf6e0YcuM/fqANS3H+WR/gsPyMBFB3XA69PS6XUWFGpJoe+Zk8eWQYsO6WF6GFa3sHMJPRTvnAqKmfZxyXRyXO0TmVxoWGdyy0K6lpVZxt+z2nbMGDFc/s50doyO23H0Nde2WQ6/U4O6n8Cu8UkqwIrguMlQNfviMwUoQAEKUIACFKAABSjgnkAEVV/opXuLhv5SmzdvluIZbV+8grr3S6rOyBkVCDmzc5s8URkbGdSXz7SqZlNadQcmf98O3dw4Midwe3B8+XbWkP2Bu5ZZv3w7Wy6waRjChGwNM4TPcfn9Rw5Ka3U786U/z9WZJ+iPs2Fjjush8+e2ylhJktD/l1QEenwe3BcMQ3FsrvqDIXvIMnLsKzLE7t33kaSJ/GZNOG7b2fs1akgfzhGKmKOh3hJumY7jDcje2XbMNGSH4c5/zoxep58PHj7UATIcv2MLrqfjdsx73Jntvjo/KCbu2HCHOtTiWj5tvs5ac5wf0HtXLgGtgwys2+oueQgyOTb0EUNGnV1fjss6ex/Y58vVdejqXFj3hfON68Ddz6irfVq36+7rB6qO0111lzjHmktPnr2QZ2ponHX4HGopxY0ZRaJF9huwdravsn3XSR1V+PuLD7I4m22fdu/hU13wHLWqMBTv+r3HkjRudKe/EvF/hit3HknSeNGcBpDNRp8+f6GH6WFIXlDbm/qdGdh+g7IfV9d4YPvhfApQgAIUoAAFKEABCnijwOaT/0nx4sVDvOthLgPKiKVQhavxU9T3zm9m+us8B/bFOnEC/4Gd4OzPWRAooO0gsOJuQ+ZSQMeAL+QJ4zkvHO2qP6aIs2MfMHwPP8FpqLOEWk2oAxUtajQ93K1YgSLBCj5h/86CJaZfr9NPZFjgx1kLrqezbWEaMsgcg0+o5YXhlOvVneiQfRZUb1cuAfUDNZ4CWg99DOj6Cmh71umBrevqOnR1Lqz7CKqRq31at+vuawSYrEEms15UFWRy/PQhSyqw9tv2C/L7jguCmk2NVEZSYC1OjFd3yEAQylXQCFlGjoEyZ9uPEimiy+04W8dMe1O/M832AnoOyn5cXeMBbZ/TKUABClCAAhSgAAUoQIHABcJsACrwQ/feJRKrDKbKZd5TwRnHr6zee0zWnqPGEoY4bty+VWVRXZTPGjSSelVqWhfhayWAoWJXVXbXB6roe7smLWgSDgUQJIqsCkn9pgqBJ4oTNn8fhMPTykOmAAUoQAEKUIACFKBAmBQIs0PwwuTZ4kFRgAIUoAAFKEABClCAAhSgAAUoQIE3KBBaQ/ACLy7yBg+Km6IABShAAQpQgAIUoAAFKEABClCAAhQIfwIMQIW/c84jpgAFKEABClCAAhSgAAUoQAEKUIACoSrAAFSocnNnFKAABShAAQpQgAIUoAAFKEABClAg/AkwABX+zjmPmAIUoAAFKEABClCAAhSgAAUoQAEKhKoAA1Chys2dUYACFKAABShAAQpQgAIUoAAFKECB8CfAAFT4O+c8YgpQgAIUoAAFKEABClCAAhSgAAUoEKoCDECFKjd3RgEKUIACFKAABShAAQpQgAIUoAAFwp8AA1Dh75zziClAAQpQgAIUoAAFKEABClCAAhSgQKgKeHQAKlLESPL0+bNQBeHOKEABClCAAhSgAAUoQAEKUIACFKBAeBBAzAWxl9BoHh2ASpIkiZy5dZlBqNC4ErgPClCAAhSgAAUoQAEKUIACFKAABcKNAIJPiLkg9hIaLcJL1UJjR8Hdx8kTJ+XatWvy/MXz4G6C61GAAhSgAAUoQAEKUIACFKAABShAAQpYBJD5hOBTxkwZLVND7qXHB6BC7tC5ZQpQgAIUoAAFKEABClCAAhSgAAUoQIHQEPDoIXihAcB9UIACFKAABShAAQpQgAIUoAAFKEABCoSsAANQIevLrVOAAhSgAAUoQAEKUIACFKAABShAgXAvwABUuL8ECEABClCAAhSgAAUoQAEKUIACFKAABUJWgAGokPXl1ilAAQpQgAIUoAAFKEABClCAAhSgQLgXYAAq3F8CBKAABShAAQpQgAIUoAAFKEABClCAAiErwABUyPpy6xSgAAUoQAEKUIACFKAABShAAQpQINwLMAAV7i8BAlCAAhSgAAUoQAEKUIACFKAABShAgZAVYAAqZH25dQpQgAIUoAAFKEABClCAAhSgAAUoEO4FGIAK95cAAShAAQpQgAIUoAAFKEABClCAAhSgQMgKMAAVsr7cOgUoQAEKUIACFKAABShAAQpQgAIUCPcCDECF+0uAABSgAAUoQAEKUIACFKAABShAAQpQIGQFGIAKWV9unQIUoAAFKEABClCAAhSgAAUoQAEKhHsBBqDC/SVAAApQgAIUoAAFKEABClCAAhSgAAUoELICDECFrC+3TgEKUIACFKAABShAAQpQgAIUoAAFwr0AA1Dh/hIgAAUoQAEKUIACFKAABShAAQpQgAIUCFmByCG7+Te39ZRtl765jYWTLX1b5EY4OdLQP8wmTZqE/k65RwpQgAIUoAAF/AlMnz7d3zROoIC3C/Dfmt5+Btl/ClDAmYDXBKCcdZ7TAhdo1KhR4AtxiSAJzJ49O0jLc2EKUIACFKAABUJWoMe2RCG7A26dAqEowD8ihyI2d0UBCoSqAANQocod+jt7+fJl6O+Ue6QABShAAQpQgAIUoAAFKEABClCAAhYB1oCyYITVlxEiRNCH5vhsjtdxunnP+TYB42GejQufKUABClCAAhSgAAUoQAEKUIACFHBPgBlQ7jl57VLIgDJZUOYZB+PstbNp1mU5n9lkXvtBYMcpQAEKUIACFKAABShAAQpQ4K0KMAPqrfKHzs5N5o55Nns17x2fOd8m4Ohi3hsfPlOAAhSgAAUoQAEKUIACFKAABSjgngAzoNxz8uqlTOaS9dm8xoGZ19Zn85rz/ft49cXAzlOAAhSgAAUoQAEKUIACFKAABd6CADOg3gK6J+wysGwezrfVzfKEc8U+UIACFKAABShAAQpQgAIUoAAFvF2AGVDefgYD6b81kymQRTmbAhSgAAUoQAEKUIACFKAABShAAQqEiAAzoEKElRulAAUoQAEKUIACFKAABShAAQpQgAIUMALMgDISYfSZGVBh9MTysChAAQpQgAIUCJbAiEZ55KPiaeWFulNwlk4r5OGT54FuJ2KECNK/Xi65du+x/LDimExsVkBqFEgpw5cdle//PBro+lyAAhSgAAUoQAGRcBWASp8klmROFst+3h89fSEXbz2Uk1fv26eF1IuS2RLL+ZsP5fS1+5InbTxBhaG9Z++E1O7e6HbPnTsnPj4+9m1GihRJEiRIIEmSJLFPC86LJ0+eyIkTJyRDhgwSPXr04GyC61CAAhSgAAUoQIEgCVRXgSM0BJXaVMwkI1QQKbD2TZ0c8lnZ9DJn81m96L/Hb0r6xLFk3znv+LdcYMfH+RSgAAUoQIHQEAhXAahBDXJLuZz+gyY3fZ5Ilzn/yYq9l902n9y8oNzyeSrdfvnPrXV+bf+urDlwVZpM2C5TmheSyJEiSv6ef7m17uss9CYyoNq0aSOrV6/2141ixYrJ9OnTJXXq1P7muTPhzJkzUqBAAdm4caN+dmedgJa5f/++9OjRQ1q3bi05cuQIaDFOpwAFKEABClAgHAuUyZFEYkePLHcePJV4MaNI45Lp/ASg8qo/Ek5rVUSSxo0m9x8/kz/3XJbJ607K5+UyaLUPi6XR6+PfjjlSxpG0iWLq6QljR5UFXxaTzMlj6/f/qT8yfjx2q9x9+EzW9Coj6RLHlHUHr0qlPMn1/MlrT8qAxYcku9rGmCb5JZt6fvnipRxXfxStMXyT3rdekA8UoAAFKECBMCQQLmtANRi9VfDTfvpu+WndKYkVLbIOCpXKntjtU1slbwqJG9P9+N2Ylcdl5j9n3N6+py1YokQJ2bdvn/7ZuXOnzJs3T86ePSuff/55sLuaLFky+fnnnyV9+vTB3oZZEVlaP/30kzx/HngavVmHzxSgAAUoQAEKhC+BDpWz6APGMDqfR890oClX6rh6GjKiFnYsLsniRZPbD55ItCiRpEHR1FI6exJ59vylXgbPt+4/lUSxo0mUyBElvgpioa3pWUYHkxBEQiuQPr781qmEfp1IBadiRo2kg09nrz+QyBEjSKv3Mkkk9Tzs4zyC/e86dUsP70NQa8JnBfR6fKAABShAAQqENYFwGYDaeOS64GfhtgvyzYIDkk9lIql/c8jA+rnt5zdrijiytX95OT+2qpwZXVX+6FxC4qi/mKHtGPieXr5a/hSytGtJPQ1/McPyWPbiuGpyalQVaVMhk56HB/yF7f13bH/1sk/0fTGtZWE5O6aqXBhbTY59X1n9oySj4yLBfm8yoPBsfrAx89rd+XHixJGMGTPqH2QYVa1aVWrXri0bNmwQDKVDNlORIkXk+++/l3Tp0kmrVq30PtavXy/vvfeeJE2aVIoXLy4zZszQx4L93rp1Sy9/5coVvezjx49l4MCBkjdvXr2Npk2byuXLtqw0LP/s2TPp37+/3k+uXLnkm2++kZs3b8rdu3elYcOGert4Xrx4sTx8+FBatGiht4P+1KtXT06ePKn3E5zjd/TSO+MDBShAAQpQgAJeIxBVBYwKZ0qg/i0gMnXDaVmrMtPRvqqeXT+XyZFYB4qQHZWr2ypp8dNO2XT0hlxQ5RpmbTyrl1mw7bz0+HWffm0eEEBC0OqxKu2QudNyyd1tpd4HspuSxIlmFtPrley3Tge+8O/O5PGjSxKVaYWWIFZUmbv1vDSfvFOa/7TDvg5fUIACFKAABcKSQLgMQDmeQPxD44EqQJlC/UMADf9AWflVKUmZIIYsV8PyDpy/I4UyJlB/ySqu5+MfLWj4K9bsTbaspl/aFdXLL1L/MJm79ZwOUPWqlUNnV2HZ+LGiSLL4r/4Rgmlon5RMK+/nSab/8jV21XF58uyFfFMnp/6HjG2JN/cYAf/asbTXeX/79m0d6EmVKpVEjRpVEDzav3+/9O7dW6pVqyaZMmWSAwcOyAcffKCDQUOHDpWUKVPqwNTMmTN1LxC4wjoIFqH16tVLBg8eLDVq1JCuXbvKunXrpEqVKvaspn79+sl3330n5cqV0/Mx/A/bRf2ozz77TG+jWbNmkidPHhk3bpzMmjVL+vbtK8OGDZNDhw5Jy5Yt9TLm4XWO32yDzxSgAAUoQAEKeIfA52Uz6LpP6O3uQRWl4jvJdMcxLA/ZT9lT2jKhzt54oKev/O+y1P9hi/yx86J+H9ADMqTQjl2+J09VhhSG3V29+1hPK5AhgX7Gw06V5YR2/7EtWzua+vdm/0UH9bQsauhexw+yyARV3LxJqfR6Gh8oQAEKUIACYU3A/TFkYe3IHY7n8u1Hkj6JbRx/u/czq7TriDJ0yREZpVK00ZClhEBRqoQxZNyqE9KzRg75TxWe/GXzOYkbI7LcvP9Epvx9Skb43gkFad3N1D900qox/4cu3HXY26u3uVLH028mrD4p+IfOkt2XpN37mXwDV7Z/vLxaOuivrBlOWDu471GnqXHjxnr9S5cuyZYtW3RnJk+erKeZ7Q4aNEg6dOigp+EZbdWqVRIzZkxp0qSJDh4hiNSoUSM/fUEm0/jx46VTp046ywnbK1q0qJQuXVoHokqVKiUjRozQAae2bdvqdaNFiybLli1Twb4I8v777+saUBUqVNBZWihuniVLFh3MSpgwoaRNm1aOHj3qZ5/om+l3UJ+xLhsFKEABClCAAt4j0LRMet1Z9c8G/YdB0/MokSJIk9LpdKYTpqVSf4BEwzC6/io7fvH2C/o9HhCocmz/nb2tJ6VOaPt3JN6gJhQaglKm3VZ/8ER7/uKFmaSKmN+V7iqjKmvyOGqInu3fmZ2rZpUfVY0oNgpQgAIUoEBYE2AAyveMog6UGd+P4XRo+IfKp6XS6dcoWIlWUP0l64K6m5214S9d5Qetly9VXQFkSeGvWPFj2v7hEUMFsly12ZvOquF5aWVqy0I6Cwt3VRm+7Eio3JnPVb+czbt3z/aPKNz9rn379jq4g0Lk1obhc6bt2LFDypcvL7FixbIHeipXrqwDTCbrySyLgBEahuyZQJep53Ts2DFBphUahvGZ9uGHH+qhd46ZTJiPIXfIkEqTJo1gn8iqqlu3rlmVzxSgAAUoQAEKhCMBFAtPrf6I+EL9gStjh+U64xyH/+2H76iMo3TSXBUZrzzkHz0fwaMlXUpIBnX3ZLzGTWoePHmmtXAzG8dSCVvVv92Q+YRsdxQcjxUtkiCohULlgd1peW2v0vqPjtNVndBFKtDVvlJmua3+qMlGAQpQgAIUCIsCDECps4q/ZuEfGLd8/4cfUwWj0M6pFGz8Q8Xabtzzn5WEbKk9gyvqu6kg8wn/2MAPglWBtf0qi6rykI3So0Z2KZo5ob5LX1mVCt5o3L/y96Frga3u1vygZvc4Lo+dlCxZUhYsWOB0f2Z5zIwfP7492IT38eLFs7/HcnHj2tLbrUEjTH/wwJbujqF7GTJkwKq6od5U1qxZ5c4d222OMdzP7M/x2ayD6Rimt2nTJpk/f77+WbFihYwePVo2b96shwxiWcf13X1v9sNnClCAAhSgAAW8Q6BjlSy6o/tVxhHKHZg2avlRHYBKr4JN+GPkV7/s00Ep/BsO/wTcc+a2oERCfpUN1bZiZlUiIbrUL5rGT2bTc1V4vPb3m+TX9kX1nfGwbQSf6qsb3rhqqFeOmk8T9bA72x88r6l/Z6IPbBSgAAUoQIGwKMAAlDqrvWvn0H+pQr0ntJNXfaRE1kTy65ZzqsaTrehk1XwppJHKVLpw65FeBg8R1H9oNQum1MGnCatP6FvqYhpuqYt/vESK6DoD6n8qy6pczqQ64IT1aqhtTVR3P2laOv0bC0Bhu2+joWg5ht+heHjkyLZLbfXq1ZI9e3Zdt8naJ2QqoeXOnVsPw8NrBJ0mTJggyLhKlCgRJulhdDlz5tSvly9fLl9//bVgm6aZINKcOXP0sD8UNUfh8ilTpkjHjh31XfwKFixoFuczBShAAQpQgALhQKDjzL2CH8d25c5jSdl2qX0y/t2Hn8zJYsupa/fVcDkVJVJt9+nbusB4GpVJdfTSPT2t1ZRd+hkPu9T8rJ1X6BqeGGGHQJJp+Xr8ZV7q50K919jfn1b7yN5lpS5Cjonmj6H2BfiCAhSgAAUoEIYEwmUACtlGaInjRJV30sST3OrnoSpCPvi3Q3r6+L9OyCcl0uli4JhwQ/0Va9z/8stj9RczFB5HU/eUk3zp4gkKV566apuWW9Vzwt1OKuVNJnUK24aMxY4eSS/v6qFC7qQysnFembTmpBTJmFAvevBiwHWjXG3LcZ4JyDhOD+p7bMfVtsw863Ko87Ro0SJdXBzFwdeuXSvIROrSpYvelnWd9OnTC+o8jRkzRtdwyp8/v74j3pIlSwTrJk6cWA/nQ5FzFB3HkDzUkkIwCVlWqCGFhsLlWPbcuXMycuRIHbxCRtXp06f1fNSCMvvVE/hAAQpQgAIUoAAFHASOX/FxmCL634om+ORvpu8EBLSC0xh4Co4a16EABShAAW8TCFcBKBN4wPh60zBmH8Pgmqtb7d5Tw+fQzqggU4+5+2SAKjw57OM8etp19Zes9tP32Ifk7TlzRxennNKikGTuuFy2HLshJbMllr3fVdQp2ytUQfEP8iZXhcuTy7qD19R6ejP6wfbS9jh1/WmpWyS1NHg3jTRUKd1o+CvaqOXH9Gtve7AOrUNh8CFDhshXX32l70oXO3Zsadeunb5TnrPj+vHHHwUFxj/55BM9G8GladOm6YASJuDOdi1atND1nfC+du3a0rNnT7zUtZ5QtBzvr1+/roNcu3btkkqVKun52PfUqVPt29IT+UABClCAAhSgAAUoQAEKUIACFKBAqAhEUEEZS2gkVPYZrJ1Y06ODtYFgroQUbPxVCllQjg3ZTo+ePrcHrlALKou6i8nB83ftgSrHdQJ6j3Xzpo0ve9WdVB4/fVWbIKDl3Zn+bZEbUqdOHXcWDdFlUEz88uXLkjx5cokU6VVG2N69e3XW0z///CPW4uX379+XR48e2YfdOXYOQ/MQ6DL1pKzzMQ/BJrMfHx8fuXv3rqRIkUKvY102uK+R1YU7+rFRgAIUoAAFKPD2BXDTkR7bbEP1335v2AMKvL4A/g3Pf2u+viO3QAEKeJ5AuMqACg6/sxRssx3r+H5MQ+AI2VTBaVh32wnbMLLgrO/J6yAYZO5iZ/q5f/9+mT17tn6bNGlSM1k/4655+AmoYchdQM1xHoJR+GGjAAUoQAEKUIACFKAABShAAQpQ4O0JMAD19uxDZc+emuA2b948XTwcNZ+QGeWp/QyVk8SdUIACFKAABShAAQpQgAIUoAAFwrgAA1Bh/AR76uH169dP8MNGAQpQgAIUoAAFKEABClCAAhSgQNgXiBj2DzF8H6HJLOKzb+l335Jnr+sRvq8qHj0FKEABClCAAhSgAAUoQAEKUCBoAgxABc3L65a23pUOnef7CH7O4et6+NkY31CAAhSgAAUoQAEKUIACFKAABSjgVIBD8JyyhJ2JL1680EEna8YPgi58/yojKqgeYefq4JFQgAIUoAAFKEABClCAAhSgAAVCR4ABqNBxfmt7MRk+js+mQ47TzXvOtwkYD8dn48NnClCAAhSgAAXevsC6L7K8/U6wBxR4QwJbt954Q1viZihAAQp4lgADUJ51Pt54b0ymk7MNu5qH5TnfliXlzI7TKEABClCAAhTwHIFs2bJ5TmfYEwq8psDWrVtfcwtcnQIUoIBnCrAGlGeeF/aKAhSgAAUoQAEKUIACFKAABShAAQqEGQFmQIWZU+n8QALLYnK+FqdSgAIUoAAFKEABClCAAhSgAAUoQIE3J8AMqDdnyS1RgAIUoAAFKEABClCAAhSgAAUoQAEKOBFgBpQTlLAyqce2RNJj26awcjgedBxwXepB/WFXKEABClCAAp4rcHFcNc/tHHtGAQpQgAIUoECoCTADKtSouSMKUIACFKAABShAAQpQgAIUoAAFKBA+BRiACp/nnUdNAQpQgAIUoAAFKEABClCAAhSgAAVCTYABqFCj5o4oQAEKUIACFKAABShAAQpQgAIUoED4FGAAKnyedx41BShAAQpQgAIUoAAFKEABClCAAhQINQGvKUK+oFHCUEPhjihAAQpQgAIUoAAFwpZAw4YNZd68ef4OqnDhwrJt2zZ/0z///HOZMmWKnDlzRpYsWSLt2rWTpUuXStWqVeX8+fMyZswYGTJkiL/1OIECFKAABShAAecCXhOAQvdz5Mjh/Cg4lQIUoAAFKEABClDA4wQOHTrkBlFy1QAAQABJREFUMX16+fKl7gsCSUmSJLH3K2XKlPbXzl5gvTx58kjnzp0lffr0epEyZcqIj48PA1DOwDiNAhSgAAUoEICAVwWgAjgGTqYABShAAQpQgAIUoIBbAm3btpXs2bP7W/bmzZvSunVrWb58uRQtWlSePn1qX+bs2bM6C6p69erSt29fOXnypJ6XLVs22bdvn0SNGtW+LF9QgAIUoAAFKOBcgAEo5y6cSgEKUIACFKAABSgQBgU+/fRTiRMnjv3IWrRoIRie1717dz1ED9lODx48kE2bNtmXuX37thw9elRnPSVKlMg+PUuWLBIhQgT7e76gAAUoQAEKUCBgAQagArbhHApQgAIUoAAFKECBMCawfft2P0dUo0YN/f7XX3/Vz1u2bJEYMWJI8uTJ5erVq36WxZv27dvLqFGjdDAKNaHYKEABClCAAhRwT4B3wXPPiUtRgAIUoAAFKEABCoQBAdSlQl0n8/Pll1/K/fv35d69e1KgQAGJGTOmzmp69913w8DR8hAoQAEKUIACniPAAJTnnAv2hAIUoAAFKEABClDgLQgg6IR27Ngx+94PHDhgf80XFKAABShAAQq8vgCH4L2+IbdAAQpQgAIUoAAFKOAlAn369BFrHafIkSPL6NGjpXbt2rJ48WKpU6eOvtudKTTu7LCiR4+uC5GPHDlS2rRpI9GiRXO2GKdRgAIUoAAFKGARYADKgsGXFKAABShAAQpQgAJhU8AUC583b56/A0QAasSIEXLixAkdhEqaNKlUrVpVli1b5rTIeK1ateTgwYPSqVMnadCggaRKlcrfNjmBAhSgAAUoQAG/AhHU+PeXfid55rvNmzdLjhw5PLNz7BUFKEABClCAAhSggD8B1FsqXry4v+lvcsL06dOlSZMmb2yT165dk8SJEzsNPFl3cuPGDYkVK5YgG4qNAm9S4E1f02+yb9wWBShAgdcRYAbU6+hxXQpQgAIUoAAFKECBMCWQJEkSt47HOozPrRW4EAUoQAEKUCCcC7AIeTi/AHj4FKAABShAAQpQgAIUoAAFKEABClAgpAUYgAppYW6fAhSgAAUoQAEKUIACFKAABShAAQqEcwEGoML5BcDDpwAFKEABClCAAhSgAAUoQAEKUIACIS3AAFRIC3P7FKAABShAAQpQgAIUoAAFKEABClAgnAswABXOLwAePgUoQAEKUIACFKAABShAAQpQgAIUCGkBBqBCWpjbpwAFKEABClCAAhSgAAUoQAEKUIAC4VyAAahwfgHw8ClAAQpQgAIUoAAFKEABClCAAhSgQEgLRA7pHXjq9p8/fy4LFi7W3StbprQkS5bUU7sq9+/fl6XLlkuiRImkwnvlQqSf23fslDVr10mbVi1lwz8b5eDBQ9K1S0eJECGC2/tb9/d6uXPnrtSsUc3PetjWvv0HpFatGhItalS3t+e44N279yROnNh+to1lLly4KDt27tL7ffHihcxfsMhxVfv7d3Lnkpw5c9jfu/vi2bNn8uTJU4kZM4a7q/hb7q/Va+XmzZv+pmNCbWUT1dfm9JkzsmPHLkmTOpUULlxIIkZ8FSe+efOWbNq8RWLEiCFF3y0ssWPHtm/v0aNH8u+27eoc3JEiar3kyZO7Nc8sdPToMbl85YqULlXSTOKzr8C//26TA4cOqfN3S94tUliKqB93r+XDR47I3r37JH++vJI1axZ/psdPnJCdO3dLcK9Nxw2ijwkTJnCcHOber9l1ReLHjiIFsyb0d2wHTt+Rk5fuS/ViKf3NC8qE2z5P9T7MOicu+sjWgzckXbKYUixXYokU0e/vxxcvX8rs1WekRvFUEi9WFLManylAAQpQgAIUoAAFKEABJRBuA1Cbt2yVb4cM0xcBvnR/2b6tx14QCOqgr/ny5g2xANRff62ReQsWStfOHeWXufPk4cOH/gI9gQHFiRNHOnbuJgjW1KtbWy9+7dp1ad6yjTRsUN/tL+zO9nP27Dn5qNGn8vfaVRIlyqsvdthXtx695NKlSzoAhXWXr1hl38SevXt1cDFF8hR6WuzYsYIcgHqpvlQ2+OgT6dm9mxQqWMC+7aC+mDlrtpy/cEHSpknrb9VqVT/QAajZv8yVYcO/l5Ilisvu3XukXLkyMrB/X738gQMHpdGn/5Mc2bPJA3V+xk+MJNOmTJa4ceOIj4+P1KhdTy+XOVMmGTJ0xP/Zuws4qcouDOCHLulOWSQEJAT96O7uRkBB6e7u7g5pJCSluySVEJASpFNCuut7n7PccXZ3ZnaBLXae19/O3Lnx3nv/d2Zlzp73XJn64yRd19Uy60CuXbsujZo2l5w5sjMAZaG8fR4wcIh+NqzZP82dL1EiR5YZ03+U1KlSWrOdPv/xx2EZPHS4dGzf1mEA6siRP/Xz3aJ5k3d+b9rvFIEn/J6IESO6dO3c0X5RiJyeu/mCpEoc1WEACkGiJTsuf1AAqvfsYxpEalUptfpNX3tWes06JgUyx5N9f/0rRb9KIKOafmmzNb8mZOSiUzJ66SnJaYJTDEDZaDhBAQpQgAIUoAAFKEABFXDbANSyX1bY3gILFy6WRg2//6AAia2zAJhANsPQwQP1i6V/d4/gxLPnzwWBGgQ28CUWgY6iRQrrfL9meeC4EJz5rl5d6TdgkGbgJE6cSDp37S6ffZZCmjT+4YMO/d87/8qjx4999DF1+kw9XivjA9lCM6dPsa2XOWs2afhDA6lYvpxt3rtOIAB19uy5d93M4fqlS5aUNq1bOFx269YtDT7hWhcpXFD3WbFKdalZvZoGJnr37a/TyEx79uyZlKtYRVasXCW1a9WQH6fNkPjx4smMaVMkYsSIxr2HTJr8o4weOczlMhzImrXrpP+AwQ59HR6oG81EABWBWby/+vftLTFjxpDxEybLjp27ZPqMmTJoQL8P1kCWG655ypQpPqivEydPysZNm6VK5Yof1E9I2PjbEh5St5jHB53KqUsP5OvPPbOrbtx9qsGnSa2/kpLZEsrpyw+kULtt8p3ZT8YUMeTm3WfSfvJh2fLHPx+0T25MAQpQgAIUoAAFKECBkCzw39iekHyW3s4NXyq3bN2mWQxZvsysX7x//XWHl7UwLKZJs5aCAEbV6rVk/MTJgmF7aK6WXb9+XVq1ba/blS5bURAgsbY7/fcZ6dNvoBQsUlyXt2zdTnAsaBheNnrseEHAAftEpsuBg3/osgcPHsrEyVNk+YqV+hoPCBJhP7nyFBDsB8eHoAQaptHP0mW/6LGjv/Ydu+g+dAW7hx69+kqhIiXk1Om/5cTJv6RI8VK6dMPGTbJhwyZZ8PMi7QtfuP3SGjVsoIEs9ItzP3HipAwe2F/ChvWMdSKLadacubbzxHHdu39fu4ZFtx69bD5YF+cJm46du+k6lavV1CF3eHHkz6MaZGncyO/BLQR5OnTqqm64DgjSIIsK7fDhIzYvBHcWLlqs89u098wm6dq9p/mCv8XperryBzzg/YFW0GQ9oaVI4aGWe8zwr8ePn+g1Kl26pGamIchUskRx2blrt66LIYilS5XU4BNmlCpZXLab9zTee66WYd3JP07TAGzFCuXxks1O4K4Zzoj27OkzHQqZKmVK6dyxvf4UK1pEl+E9gc+bFdRGUBev8fm0b38cOqxZfPg8Nm/ZRvC7Au3kyVP6+T506Ii+dvU7BNdz2oxZ+pnHZx+fH7xvb92+bX63DNDt16xZZ9s3ApE4Frzvg2tDcOebgXslWfWVkqXhBuk586g8eeb5uxZBngOn/hu2OnDeCc0wss7l6Ll7UqbrDt32u6G/y7V/n+qiX3ZekRbjDur08xevZfCCk9p3um/XSouxB+X2/edWF7J81xXtA8tajf9DLvzzSCYs/1t2/HlTpqw6I9jnyYsPdH1kPaGlShJVvvCILjuO3NTX2w7fMAH7VzKva3Z9zQcKUIACFKAABShAAQpQwKeAWwagkPGBVrFieZMtUEmnfzZZUFZDwKNuvQaCYXr58uaRMGHCyI9Tp2swxtUyfDls0ryVbNv2qw6VQ72iceMnmkDGEu26R8/eGhSqUa2qZikgQIBsIbTpM2fJjJmzTRZRVkFABYGX9h07a3DsxYsXmg1z+fJVXRcBsB8aNdX9pE37udy5c0ePr5/JYkH7558buj6CXVmyfKlD0JAZseyX5brc/qFihXJSo3pVnVXJeBQpXEinf2hQX774Ip1mRCH75+HDR/abOZ1GHaMB/ftoRtXESVM0ayRhQs8vbdgIQa5Zs+doranJE8bK7t17ZNFbn9FjxwnqEI0ZNVxmz5ymQ+2GDh9l6hxFkRbNmug+hw4aIPHixVWXLubLdc/uXSX5pz6HtDk6QNSHatOuo37xxz7atGqp2S1zfpqnq3ft3ku9flm6UDONBgwaKqjH1Nash9a0cUOt/+NsPV3JlwcEzebOW+DlB7Wz0K5evSafmnPB+81qCRMm1OCBFayIFzeOtUgSxI8v194GMc6fO29c/qtjFi9uXF3vzt274moZVlq0YK58U7umhLXbr20nbj6RwiO5Dn1F9l3Dxs0kb/7CMmnKVEmWLKkUyO8ZKHzw4L5+3u7cvaNar8z7DJ+Zc+aa2DcEdeMniK/D9hDQRSAU2XX22/v2OwTv1bHjJpghmI91eCY+163bddDgMzLg0D4xv3cSvR1yeuXKFT0WK8hqfzzBZXrUklPy6Okr2TAkn4xrkUVmrDsny3df0cNDppEVjMKMf+48lRt3PAPteI0gUWlT5+nnHjk1C6np6AOYLXcePJfz1z1/Z6H/n7delL7ffiFT2nwl58z8VuM9g1M7zfbNTUAKWU2LeuYU1HzqMeOoVMmXVDJ9FkMq5kki3xb3kMs3H0uKhFHMZ+S/mk9J4kSSGybzCa2cqfk0v3sOSWmGBLJRgAIUoAAFKEABClCAAo4F3G4IHr7wWUWqkUFiBS+QJYJgQ/JPP9Uiz/jCmT9/Xhk1fKjcNoWjlyxdphkpKADtbNlRU2gbXzwxlK1Ht66CYWPlK1aVBQsXSfVqVXRIGy7DpctXJEf2bFLcZFBkypRRr8zzZ55/kb948aKk/MxDxo0ZKVlN8AjFpu/d9czCsC7hapPhoF+Iv6+vwaoHDx5IHvPFeOWq1dKsSSNrNVNEvI3UqlFNixsjaHLFBDi8N9QaQsAKDUO5liz9Rafrf1dXIkSIIPXr1zPBiRp6HLrADw/RokXT7DIcYxQTPPLeGjf8wVbLKpfZ/5WrnoG1qlUqS4zo0SVRooRy7vwF9d6z9zfNPMFwPjQPj+QamBowaIgO7Stfrozgi71f2hlzbRAA6tu7pxboRpFuDDXEOX9br46ECRtGr99lc33Klikl+fLlkbhx4thqYSVKlEjrLTlbzy/HcPHSRR2+Zb9uhgxfaDAD2TaRzfW2byh6/ujRY7lvghxoyHyyGqZx7RFYg3XEiBGsRbb1HpnAobNlT0xWlcQWW/Fz28acsAkgGDh+3CgTMJwvK1as1hpeGPaIn1Ytmkm9ut/Y1vVtIk/uXPr7BENes+XIo+/F69e9Dtly9TsEgWLUZ0ObMG60fJ4mjdbsQnYchspiqGlTEwBHEfkO7dvoepMnjtMMv08++URfB8eHsGbY7BUT4Dl+4b7kzRhX9k8qYuonhffToX6VJpY0LP2ZrtukXEppOGK/XLll3td2beb6cxpIwlA5NASUkOl03WRLrf39umYyNS6bUpcN+j6jHDx9R2JGDS/RIoeTONEjSIJYETWgFTmi1/9d4vXDJ57Zk+HDueXfctSMDxSgAAUoQAEKUIACFPCrgNd/Uft1q494vYOmsDMKQaNZ2UfW6SxfsUqLkV+95hmoSfv557oodqxYgowgNAx/QXO0bN36jboMWT55CxTWaTxcuHBRp1Hgu3HTFvrlFV9g0ZBV832D7zQAsm7DBtlrhlvhBw0FoRGI8t4wrA0t69uC2Cj+jQLlqONknRuWJ0uaBE+mfk0sfXaUBTF0+Ej55W09rFZt2tuOtUbtuibrqKnkN0GYd6kDhWBI1249NdMjkcne6WgKhC9dtMDUr/L88ocDQQaT1ZAlhrvLob0x22IIHoJEKPIcxy7bx1ofz7/v26/DnZo1baxBt8OmiDNqV8G0YIH8Xu4MZ7+dlUU06G3xeftlCEwOHthPBg0eLs1atNZFKAyO4VYIAto3Z+tFieIz2Ga/HaZd1YBCfSEMt7RveJ0mdWqJbgJzaAhGWcEEBJ+SJE6sATp4YZnVMAwMDXd3dLYsrhNfqw8+i2afXTAF8EsUL6a/A/D5WrVqjWZBISuyzje1bEzmLaTt1UvP4WO2BW8n0r+9+yI+TxlN0BHvcwyds2/X3gakHP0OQXaUFSxO4eFZ3whBdKv9ZbIHvTfv713vy4PD69aVU8ut+880KITjQVBpaMNM8lkin0Gz16/fIr898GxpTQT1bbMCTMiSstr9Ry80SDR7w3lZaoqSW+2TSGE1m+qvS/fFvg8Em5AN5b3FihZB0Jd9u//4haT/1PNzaT+f0xSgQPAUmDx5sjRq1EiaN28uY8aMsR1kx44dZciQITJ16lRp3bq1pEqVytyZ1DOb0rYSJyhAAQpQgAIU8BcBtwtA/bJ8pcLhS7lVFwUFhhHAsIqRx43j+aUGRX3RMOxuyLDhGnRytQwBI7T06dOZ4sR9NfPgr79O67AqBGYwRAbDzp6bIXX79h2Q2eauaKjXhDvEPTdZEShyjKwj1IpB/SEMAfzt933yaTKvQ8xSpvxMg1S4vfv/vv7KVkQc+8awLKtZXz5Dh/pv2Ii1zHrGsC1kyMDgsxQpNACFYWC4k1pUB9lL1nbOnqebYYQIoC36eZ4WbC5XvrL0MsWzRw4bYsskQqFw7w0+qLlVqFBBGdi/r2ZBIdg3b/4C76uqFWp3YfgeGjLU0HBt4WEFaHSm3UOsmDH11URzDRAAQENQ6t87d7VW0tOnT2X82JGCIY+/7tgpqGOVPl06c30q67p4QBDP2XrWUEbbyu84kdBkZCHA8ejRI0EwC0ExXGMM9bKG1CFLD0EltDNnz+pQMEwn90gu58+fx6S2c2Ya1xRZUq6WWevz2bHAH6YuE4bCIsCL4vYI+KFWFobh4XODumtWfTO8L9AwJNZRQ501NASSzpw5q9NxYseW06f/CxylSZ1K5zv6HYJsLOt31dlz5zQDCnWn8D4oW6a0BiKxsaNAs3YaTB+um4BRl5ppZXijzLLn+C3pY+4+h7pLU9t9rUf8xNRWstrV208kjclMsto189pqJ0wGFVr8mP9lCX4S2fN/cZ1N/1aWE7KWEHhKkzSqxI0RUY6f/y/DFFlRP206Lz+U8syqsvpObIbbXbzxWINZCF4h2HjM1J8q9rYmlLUenylAgeArULZsWQ1AzZw5U0aMGKG/u/H/2XnzPIfhlylTxmRBn5XY5vcyGwUoQAEKUIACASPgMxIQMPsJFr0ikIRhamjLliyU9WtW6s/mDWs1SIQvlNtMPZ4c2T0DSajl1L1nH1OrpYusWr3WfOF85HKZh0dyDQ6gftNyEwyZN/9n6dSlm8w2Rbcfm74bNGwsDZs0FwzxQoFpBMHwhTJ8+HAmwDVCs6MwnCyxGeplBUuQFeO95c+XV2eNGDlG+vYfKPW+baCvMcTHGqrmfRtnr6tWrqiLypUtY7tTXf1v68qQQf01wwpBIBQ73rxlq7MubPNRNB01r7p07iCpTJAMX64HmawiOC5essy2nqOJF28LgSdJkkhQM+pv8wUdwScUf0aLHCmyPh8/fkKyZ/ufTJ862fbTxNTMgiPmYVids5YyVUq9PlNM0e1Lly5r8AnXY5G5yxn+Edqte2+ZYOpWhUOGSsYMen0imGFtVsDs77/PaC0sZ+s526/9/Ov//KOZL8h+sf9BNhPuIojzGDZilNy4YQogmwybhyYDKlfOHBqQQhbO+AmTzPDE81oMHcEHzEOrZGp54W5tGLJ43GTIYdsK5cr6ukxX4INTgUIF8+vvBmQXojA9hrJWr+U57A7DVxHkxecVDcN0UUuuR++++tr7A2580K5DJ61Dht81GKprBROtdT08nP8OwTrIoENr176zDB85WoaZDMZly5ab4HZcDV5jGYLbqCmHhmw+fH7xfgqubfrac6Zg+B+CjKLMKWNqAClyhDB6uMniRZaVu6/KPZN9tG7fdfn9pGew2TqXDfuvyzETQLpkgkPT1pzVuk2JYv+XsYjgO+o4zTR1pfb/9a/20236n9J24iENiBfOEt8EvW4L+sE+Riz6S/aa19GihJMoEc2Q3KsP5da9Z5IjXWwdjofgGIJUo5eekgcmkJU/839116xj4jMFKBA8BVBTsUiRIjp0fefOnXqQBw8eNP8muywlSpTQOoobN240f9zarcvwx4Q6deqYoffRzB8W08vcuXN1PjKm8PquqbGIPzxgulChQrrs6NGjksYMjx41apS+5gMFLIFQLv4YbK3DZwpQgALuIOBWAahNW7boNUWmkv0wMPxPoerbYuSoB4ShSRPHj9FgAAJWf5pgATIM6tSu5XIZOkemDzKIcAc41JpCEfMundoLhsmNGDZYkLkzeOhw6dWnn9Z/wm3ckaXSvVtnrTmFu84haIWGQA7qvHj/nxYCFSOHD9FsDBwvhuugllG/Pj11u9ChQ+mz56OZdPE/PevOa+nSfi5//XVKt8M+rYYAEL4sv3jhWevEmu/9GXeyQ6YI6mZVqeQZ1MI6CIqh/lX/gYO1xpb37RDcwflhWFLbNi210HuWr3OYgs9NNYCCfePLc+IkifV86373vWaI2fdjBYjs51nTCPKFMv+hYR+jRw4TDLEsU76SFC9VTrO+WrdsoXWlunftpHeVwxd21O7Ka65diWJFdVsEegYNGSY/m8w0V+vpyk4eQocOo/Wq6tSrL95/EFgLF84EIk2Rddx9sGiJ0rJy5Wrp17eXvufQZcsWTTU7q0KlatLLBDkaNfxeg1NYVsrcAQ/vawzxrGmGTyIAiKGdvi3TFfjgVADvrT49u2vAGENpV69Zq9mSKNbfv19v3S5z5kxSvFgRnT9w8FDJ+uWXOt++mDxmoMj/nj2/6d0J8TsCGY/oH9k0aNb71NnvEKyDa16mdCnNlENB8uQeybUfDNFMkya1fkaQRTdt2kysbrI37+vn9/Wb1/o6OD5gCB5+ZX3deKNk/n69PDZ3wGtfzXP4c7dv0ssvu65IhvrrpN+cY4K70Fm/zhBcymDuRFei06+Sq8Vm+dcUHh/bPIttuXWuPeqklwym/lPFnru0H2QyjTHrRTB1m8rnTiyNynwmDYbt02UIZPX9LoNumi9TPN13o5H7JVzY0DK+ZVZZtfeq/K/JRlm8/ZKMbGJu8GCXbWXtD8/W72D7eZymAAWCXqBmzZp6EEuWLNHnFStW6LM1f9++feYGEud0XsuWLWXOnDnm3wJ5NbO0du3asn//fvnclGc4fvy47Nq1SxDAwvQW8+/La+bfFps2bTI3UzklGTJ4/h7RjvhAgbcC3v89TxgKUIAC7igQymR+vP36E7xPH3+RSps2baAfJGq0xDT1i7x/mcSBuFqGgAwCHvZFo62DR1AFXzZRYNp7w/AZ1O+xr5nkfR371/gLXWQTZMHQvfdp+OvdzZu3NCCHYYB3TcFzZFG5Cuq8z378ug2G4v1rzgl1t7z/jxrLnjx5otlAfu3P2Xr3TMFvXBtHbgh4RY8ezccyDI1Dxotl42w9Z/v063zLABlkjhquOQKa1tAv+3VwjKFChXb43nK1zL4PTjsWwOfyofHFcEjrPWC/JjIsI0QI7+N9Y7+O92uLPidO/lHvititSyepXKmCbXVXv0Mw9A+fXas2mLUR+r99+18zhCSWw2O01guOz7hzHQI30U32kX17+eqNFgGPG8Px7zgsv/vwuWYoWdshQ2nHkZuyuFcua5YGtl68fO2jf6zw/IUp5P/0pRYft21gJnAHvjDmmKwi46/N/y5v33tuhu45Phb7bTlNAQp4Cpw4cUJy5swZoByzZs2SunXr+roP/P8TdTHx/9B/zfB9ZCth2B3m499d+HdHlixZZMeOHfpvjdSmBuOff/4phw4dkmzZskmrVq2kXbt2kiRJEmnTpo1mXXfo0EH3u2zZMpkyZYqsXbtWfz87+veFrwfIFUKsgP2/af3y1cuv7+kQC8YTowAFQqyA29WAetcr6SwIgH5cLYtuUradNWTlOGsIKvg1+IQ+Yr6ta+SsP9/mIwiT9G2xcvxjCf8oC8qGL/bOXLHML4W+/XL83r+4229jnx1nP9/7vu3XQx2qvWb4m7OGmj7JzR0W/dJcGWB7V9fc+zHa78/VMvv1OO1YALXFnNUXwxbRovn+2fF+bTt16a5Zd9g+qcnys2+ufofgs+royw36/1iLy+POc45a2DChXAZ8sBx3q7PaapOltGbvNcluhs3ZNx3W93Zon/18TCPAFD6cz/1H8rY+sq4YfPKux9cU+HgE8P/PcuXKmTIJy2X8+PEafKpSpYqPf3ddfXt3XmQz2f+uvWDqMCY2tQARpFq3bp14eHjoNGr5bd68WYNPVatW9bLNx6PDIw0sAQSj/BKECqzj4X4oQAEKBKYAA1CBqc19hVgB1PhCwXlnTWtz+TEA5awPzg95ArihALLqUNcsm/lh+3CBA6fuSCFT2+nb4h4f3hl7oAAFQpxAjRo1NACFbCa06tWr+zjHZG9v/oIMKBQpR9bpP6aGYzpzYxI0BLF69uypw++6dOkin5kbt4wbN06XoZg5GwVcCTD45EqHyyhAgZAuwABUSL/CPL9AEUiKdPzWLQJlX9xJyBFo1aJZyDmZYHImqPnERgEKUMCZQKlSpbwsKl68uJfXeBHelFBAIGnlypValByZUAgwIWsKw/aKFSumASismydPHh2St2jRIrzUQuc6wQcKOBBg8MkBCmdRgAJuJcAAlFtdbp4sBShAAQpQgAIUcF8BDKVG0XFkNqFuFOpoOmpDhgwRDLlr0cLzj0v16tWThg0b6qpfffWVlizAHWyzmzsnY1geGqbjx4+v03yggHcBBp+8i/A1BSjgjgIMQLnjVec5U4ACFKAABShAATcVmDt3ruDHe7MPEOBud4cPH9YC5d5v9oIb0+Auo1ZD7U77ba35fKaAJcD3hyXBZwpQwN0FGIBy93cAz58CFKAABShAAQpQwKGAqxt/ONyAMylAAQpQgAIUcCoQ2ukSLqAABShAAQpQgAIUoAAFKEABClCAAhSggD8IMADlD4jsggIUoAAFKEABClCAAhSgAAUoQAEKUMC5AANQzm24hAIUoAAFKEABClCAAhSgAAUoQAEKUMAfBFgDyh8Q2QUFKBCyBV69eiWHj/wpJ06clFu3b0uWLzNL1ixZzN2TIgXIiWMfmzdvNXdWSiS5c+UMkH2wUwpQgAIUoAAFKEABClCAAoEpEKaXaYG5w/fd16VLlyRu3Ljvu7ltu9/37Zedu3bLsWPH9ef8+Qtyz9zJJGGCBBIqVCjber5N/PvvHYkU6f2/fG7ctEX27z+gd02JHy+ey90dN196t2zdJhEiRJDYsWL5WNe35T42sJvxIdvadWObxF0+jh8/ITt37xYU7sTtju3beXNL403mizVuXZwoUUIv5rgOW7Zs1S/4uB6hQ/tM0Lty5aps3bZdPk+T2r5bH9Ou9oN9b9q8xdzB5oEkSBDfyzF47+j169dyxAQeduzcJWHChJY4ceJ4X0Vfr1u/UfuJFSumw+W+uVy+ckU2mXPHe9DZPqyOXa17+u8zsm3br+rrzNDq5+8zZ2Tzlm3y7NkzHw43b96Sbdu3y7lz5yVhwoQSPlw4azMfzzdu3JT5Py/SoIyPhS5mnDlzVvbs3SupU6VysZbPRadOnZZ9+w9KypSf+VxoN+fgH4fk6LFj8lmKFHZz333y5cuX0rlrDxk5aozs3rNXDh06LGvXrZdpM2ZKtmz/098d796r6y3+NjZt23eUly9fSZHChVyvzKUUoAAFgrHArVu3JGnSpAF6hLhbXebMmQN0H+ycAoEpwPd0YGpzXxSgQGAK+PyGH5h7D4J9rd+wUQYOHmr76dajl3zfsIl816CRBj58OyQEJMaNnyjfNvjBt1WdLr97966079hZj2HAwMFO17MW7DNBMxzz4cNHrFlenn1b7mVlby8+ZFtvXcnz58+lfKWq8kOjprJ163YpXrKsDB463Lba3Pk/S/mKVU1g41dp066j9OjVx7ZsxcpVkq9AEVm6bLkMGjJMp8+dP29bjgkEAjp07iqjx47zMt/7C1f72bP3N8mTv7AsX7FKevXuJyVKl5OnT59678L2uo0JAtT97nvZtWePVK9ZR5b9ssK2zJrYtn2HdOrSTf48esya5eXZN5fefftL6bIV1ay+eR9WrV5LkHHjqLlad+myX6RKtZry646dJmDSXSpWqe60n/7mfVe3XgM9r+8aNJQ+/QbYdofgbPmKVWTR4mUybfpMyZWngCDw56xNnDxF4sSO7Wyx0/nwmjJ1utPlzhb8YQJA003wx7eW8rPPZNiIUXLv3j3fVnW5vHvPPrJx02YTKEsp48eOkhnTpkjpUiV0m779B+r70mUHXEgBClCAAhSgAAUoQAEKUIAC4nYBKOuaf1uvjkwcP0b69+0lKVJ4yCHz1zMElnxrT0ywYqr5Uv7KZCa8b0O2jNVOnPxL8BMSGrKKbpnMmS2b1snY0SPkx8kTZP6ChYK/fuJn6LARMnTwQBk3ZqTMmTVdVq1eq9lSCOpN+XG6tG3dUqZOmSi/LFkoaUyG05Klv3hhgTuCI66aq/1guxkzZ0uliuVlyqTxsmTxAnn44KEJLmxx2CUCOcgmWrdmhYwaPlR6dOssw4aP1IwhawMMlerarYf10uGzKxcEdhDUmjt7hpphX6dO/61BJO+duVr34cOHMnzEaOnSuYOMHjlMVi5f6nktTCDQe0NW06LFS2XypHF6Xvgc4Biu//OPrjp67HjJmTOHzJw+RX6e/5NkN1k+c+bO896NvkYWFbKCypQu6XB5QMysWqWSHpdvfUeLFlWv9bTps3xb1enyR48eabYTVhjYv6/kMi5fZs4kvXp0k3p1v5FqVSoL1kG7fv26tGrbXjJnzaYBRf098TaQOH7iZA0IIkiIACPWad+xi2bhYdsnT57IgIFDNNiHYCQ+G/bNVd8I8iLYOGLkGN1+1JhxGqzGvElTptp3w2kKUIACFKAABShAAQpQgAJBJuC2AaiUn6WQHNmzSamSJWSCyWpA+2X5StuXSQSJkMmDL4rIABlqAg8vXryQtiZzBw3DoPAFD8PGkEGDTIuCRYrruj169bV9sdSVvT0sXLxE5xQskF+fvWfVINDQpFlL3XetOt+aYURegy6+LcfQI2yHY8eXXQRRrObbtgvMUCqcF4acvWuLbbJg+pmAHoYKoiVNklifMdQKQ8PQChbIp88I+qX9PI3s+e13efjwkdSuVUNKliyuyzAMLXny5Dr0TWeYhyN/HpVJk3+Uxo1cZ5652g/6ss92Cm32EyFiBPn3zh1rN16eMfQuX948kiB+fJ1ftEhhefT4sQkYntTXGFbXu09/KVWqpCRJ7HmuXjp4+8KVC7KjOndsL+nTp9O1MWQRfZ044RmUnDBxig7/wkJX6yKzC8dWpVJFfe+FMcMX169dafO27yde/Hgya/qP8kX69LpPBD/QXr96LRh6h2Gq9b+rK8/Msd037+9RI4ZK61YtdB3vD7gmJUsUN8MTw+giBM8aNWmunwO8/xCQuf3vv7oM/SHzCp+ncibDatfuPbbuVq9ZazLi+krX7r10Od6/CMwiQxHrt2zdTjCsEg3D3zp06qrTCL7gGBr80Nj2ecExWA3D12b/NFcwTPB9mvXZwzX5zPzOQMNnHlmMtWtWl0IF80vEiBE106xJ81b6WStcqIBEjfqJBrQXLvL8rP/zzw05e/acyTQbKFmyfCnxzTVAVtWyX5Zrn5N/nCb4vYD3Y6ZMGWXhosU6Hw/IhnPV9zUT+ELfOM84ceOYz10SfZ9j3s2b73fetp1zggIUoAAFKEABClCAAhSggD8JuG0Ayt4vgak3ZAUQrly9pnVvMKTqwsWLUqd2LfnEfJmcO2+B/Pb7PlMPJ4Ft0+Sffir4oo+Mg5/mztdaOagJg+FkPXr3sa1nP4FACr4YYjhP+7atdRG+bCJ4gIZsoHYdOmlWCQI0sUwdJXxRtZpvy6+a48eQKmQKlS1TWocVIgiAL/O+bYt9oLYVjg9BoXdt2f73tRTI7xlgwrYYChclcmRJmzat4Lg+/TSZLVCB5agthIwlZKpUr1bFVt8KmTjIFMmXLy9WU5supgZPz+5dJbnpw1VztR9s17JFM1m3boMGLCpUqqZDx0oWL+awSwQZ7a+3Vc/q1i3PgMriJcv0vdK6ZTOH21szXbl4eCSXalUrW6vK9l93anAzR45sOg/Lv/jCM1CEaWfrIsCB93CrNu0lb4HCkj1XPs1+seqa2feDa4Igxx0TeMOQvu49ess3tWtqTS4rYIFgbLYceSRfwaLa59O3QSrx1vbs+U2ym+uOhkBJ85atTQ2r2DJ75jTNdNv3+37NtsJy1FDC+oMG9pPv6tWV3XYBKNTjwucG204YN1pemGBVjVp1JHr06DJp4jh9H1uBWqx74W0wCsEXZPkg0PTT7OnYjWap6YR58DCBTNTlOnbcaxDXWu7bMwJyaOnSpbWt2rxFaylcrJTtBxl0R81wQnxu8Jnt0a2rDBzQV9dfsHCRbTtMtG/XRjp1aCctmjXR+fh9g4ZzR8O59+/by0ug1a99t2ndQpYvNQHkCuXkq6+yyo5tm6SD2R8bBShAAQpQgAIUoAAFKECB4CDAu+C9vQrIWEBDZkOmjBlkwbzZEiF8BM0AuXj5kuALPrKH2pmgEb4I48v+iGGD9Us3sobQhpnhZVGiRJEzZ89qJgS+vMY1GQn2beWq1fqyXLmyGtzA8Ka9Jgto48bNUr5cGd0HgkUIEvxkhmUhswQBJWQ1vXnzxtfla9dv0P4RUPi+/nfytfki2r1nb1PzaKXUqlFdA1HO+saG9evXM8GIGh9UYB39zJw1R+b8NE+HgyHAdNfU4YnsrWg77iD26JFn4A3boF27dl0aNW0umTNlkm9MVhQahr0h+wQ+GzZu0nl4QEDNGv6E18i88m0/mzdv1YBW0qRJsImcPXfOBMeuSuzYsXz2dfeeBsl0xbcPCGY8fvxIs3GQzYOgx7sUo/fuYt83Mo9atWknGB6KYV5oJYoXtV/FNu19XQwXRMAMgatVK5bKwYN/aEZRurSfa4aSo34eP34iMWPE1KwZFMSHvZUNdvLkKVloht/BE8HY0WMn6BBE2wGYCby/ETiNbwq5oyEA1adndw04hg0bVpclS5ZUs3Dw3l25crV83+A7yZM7l65/wBzj4SNe65q1MgFCBM2KFi2iQxGbN22sGUbINELBdEcNmWlWYK6C+Vz9OM0zEGWtm8LDw3wmz3kJjlrLfHvGUFA0DDW0WjFzbBnN7whkCV64cFFnX7vuOXwRn10EAK2G5Th3qyV7+76L9fZmAqhrBjcEftFSpUypz7huVvNr31ZGG/zweyNq1KhWF3ymAAUoQAEKUIACFKAABSgQ5AIMQL29BP/cuKFTGG6FL4zz5i+0ZSUgYIOGL4ve261bt22zUNDavt0wfdoHoPBlHbV30Oab7KA1a9fJeVOPB+1nkymBAMtNkxGEhiFZ1rAmfNlFAArNt+WoFYOG4A9+rIbgmW/bYt0I4cPrj7Xduz4jKDTE1HpCUA61nqxbyMeMGcPcme2hl+7wOk1qzy/4WOA5fKuZpE+XztSKGiDhzbEg0IKAXzMTiEDw7rAZFocv68gYSZ06lRYGtzpF8MLVfrDdvAU/y7AhgwTDpNAQXBlran8hu6pM+UpWV+LZV0yTCeb1mNEH7lrYq3d/zXY5awIb+EE2EQIqGHaYNWsWWz/WhDMXazneC1269dTMl4bf17dmO3x2tG4MkymEBqfo0aJpgBQZWvDDEDlHLXHiRNKieRNp1LCBFChUTFauXm3qPXlmXmEIHnzRKlWsYOpxLfMRgELgDi1WzFj6jOt11QSx+vYfpMEwDDPDsNXPTVYQArt4/6e1C6wgyGYfgMKwTCtj6xMTyEWWIIa3oUWI4PmsL7w9WEMkMRsBYOzTviGr6vLly/az/DydwiO5BoNxjVGXCcXHa5mhdxgOiXlWACrNWyt8bgeZ7Cf8rvjrr9Oa9WedE3ZqBSsx/NNq+JwjsIn3FjL4EBy1H0bo174jvh36avXLZwpQgAIUoAAFKEABClCAAsFJgAEoczV27tqtX/7wJTBRooQmGLRYAxxlSpeSVi09h2yhBlRoM9wulPkP7cVLzy+5CDBZXx4XL5ynWTjIHsGXXu+3id9sinRbDdtj+NknUT/RL+bInMAP+kJDxsWbN2/0C/lJM99qvi3HECC0mtWrSY0aVU1g5K7cNoWyU5kv81YAzVnf1j7e9xmZHKjjs23bdh2ClTHDF7auEpphjsjQQcYSggQ4t5N//WXLSsHQxMamdlChQgU10IEMGjR80c/yZWbbcC2rnhCGiPXu2U0z1aydxIkTR06b+j/O9nPp0iVd9Yv0/w2nwtAqZCUhWIKsN6uhr4emgPr+A39Ys2x3gkPGT5w4sfQ9g+NAQ3DlDxMkTJrUZwDKlQu2Re0fFKDu1qWTVK5UAbOcNmfrJnibhWQfhHhlgoHWsEH7DvcfOGjqna0wft01yInAUXKP5HLx4iUpX7asrmqfrfbG9BMjRgz7LnQ6UaJE+nzj5g0dRomgCYb0oaZVsaKFdRvUUcO1xlA6BHJxfTAkEc2q6aQvzAOCn67aa/P+ctRCh3E9kvj69RuSO3dOR5v6Og/BodGjhuuQTdSjWrV6jcmWiy179u7V648OIkWKKB4eyfU9hKGvy817AnWiEGwuYYZ3DuzveDgutrUasrgQtG3QsLFgeqldAX4PD7/1be9wwFzjFq3aSkVTcB/F/dkoQAEKUIACFKAABShAAQoEtYDbBqBmzf5JNpqA0N079/QOeLgQHdq1FQQ+EGhCQ9bGXlPcGcV90RA8iRDB80syhuSNMcOS6tatrYWqkaUzeco0rdeDWjcYordwged2urF5QEYKGrJ7ULPGaoOGDNMvn8uWLZeOHdrqXfmQXfFt/Ybmi+2nOkTPWhcFhpEp4my5lcGybsMGHeK31QSDkD2FO7iVK1vG5bbYx7QZs2T69JnSp3cPU2DZM0vI2rdvzzg/LSZt9oWGoBLap2YY1lcmKwjBMxRrb9zwB1lmAiC4Ax3uKoahYBh6hiBIJVO/5vgJzyLf4cOH0wwqK4sKfa3fsFFQeHr61Ml46aMh+8fZfiJHiaxBkB+nzTBfylvJxUsX9U57Nc3QRARhPk/jGbyzOkXmEO5khhpdeXLnluEjRwuCasmSJtUsKms9POPOZQ3qf6tZbPbzMe3KBTWMEHyqUrmiZhxZZjgHvIdQdwyZYsjYQsDO2bp58+TWc0M2V5NGDbXAN4IhzZo00sOx7wdD0pDNg/OtYLwRGMW6dcywzXjx4uoQubHjJ+kQU63HZQplVyxfzvtpaXYfjhOBq5SffSYv32Ye4f0ZzVyHzVu2agYWgjD4TBU076elpq//mQDU8+fPZJ0ZLmplOPno3B9nnD592lybeu/dI967kyeMlZ9MHTirOD+CaXhf1q1TW4e5ovORw4ZIZ3NHRLxn0FDAvkun9jodOrRn4Nrz0cyyy4DCCrhmly9f0WA4MhdRlB915azmqm9rHftnBJsRFLUvum+/nNMUoAAFKEABClCAAhSgAAUCW8BtA1DI1sAPvkhi2Ez1qlWkeLEi6o874yFwgy+b+KlQvqwOA8PwL2REYD3cJW/6zFnmzm3FpHnTJlojCsXC8YP+kM2CGkdWO3f+vC0gY9XAsZahWDiyH5Dd0rpVcxk8sL+0NsWkDx0+bDJGTtv2j6E82L+r5cjg6tenlwwcNEQDJjg/1IOqWKG87s7Vtljh2dNn+sX1xQufww2t43X2jOFtaLjTl32zAm5DBg2QliYrw6qh1a9vLw1iwAzDj/BT97vvbZsiAIN6RvbNCg7az7OfDhcunDjbD9YbP26UdOzcTQNPeI0gQtXK/w29wzyrIZCCQvEDBg01s4Zq8Kl3r+62AKW1nvVsP9TKmodnVy4YtoeGbBlreCZeV61SWYMXuOMbgo0IQFnZVs7WRQHrDp27auAC1711y+Z6p0f0Z98PgkaDBvST6TNmakAQyzF0D7WN0Lp37WyGA/bQuzriNQJIDX9ogEkfDcND8TnCHR2RTVbJZNx839CzwDY+B3hvox4VGjKjOprjw50Z0VD/DAE4R816r1vLMGQttHnvo3l3tn9tP411MaQNgRj7oZ6Y/64NNxfAD7LZMNwSWVDe94XzRxFwZD8hm8s+uNarRzfBj9WQBXbowG/WS80gw5DVe6bmVkRTKw3bt2vTyrbcVd+jhuP96bXhWO3797qUryhAAQpQgAIUoAAFKEABCgS+QCgzPOa/CrmBv38/73H37t1a3NjPG/jDivgiiaFICGp4b7fMsDYU+bUfNoRsg+fPX+iXSe/rv89r7AN3wXMWdHG1HJcVQ+9Q7NjR9q62fZ9j9es2qIX0r/kCH8d8gQ/I5tt+MJQPw9UwHNC3hppCyH5zNAzNt22DYjnODTWhEKz0raGQOOpmWUMe7dfH3ebChQtrq1tkv8yaxvDVHr36yNpVy3X4Keb79jl48OCBZpyhaHxAN2QpYqgfbhjARgEKUIACgS9w4sQJyZnz/YZB+/VoZ82aZTLS6/p1da5HgWAvwPd0sL9EPEAKUOA9BVwXT3nPTkPKZhjO5Sj4hPNDAMU++IR5yHjAHd/8q2EfjoJHVv+uliM7A3WMnG3valur/4B4xvFg3wHdfNtPbBOY80vwCceJ98DHEnzC8eLc/BJ8wrqoYeYo+IRleC9bRbPx2lFDBlm6tGlltSmibjXfPgcauA2E4BMCaCjuj0wwNgpQgAIUoEDVqlU1exX/RsIPhovXqVPH3AX2WqDhYJ9Zs2b11/01aNBAz+fixYv+2i87owAFKEABCvi3gNsOwfNvSPZHAXcVQJFr++GDwcXhz6NHpYmpgYW7yrFRgAIUoAAFLIFmzZppFvupU6dkzpw58ttvv5nh4gf9/Icpq5/3eUYWcEC1j2RQQ0CdPvulAAUoQIGPQIAZUB/BReIhUiA4C3h4JJcO7dsEu0NEgftaNaoFu+PiAVGAAhSgQNAKIAA1YMAAWbx4sTRq1EgQiFq61LPm5GNTN7Bp06bmjxdJ9adTp046tHzRokWSxty8Y+vWrXrwyJzC68uXL+tdhpHVVKOGuYHETz/p/AkTJkimTJk0y6pzZ8+bszg66xEjRmhGFDKjqlWrZmoXXtXVMPy/ZcuW2lf8+PGldOnS5m68V3TZv2aoPdbFNkWLFpUz5s7JbMFbwHvdyOB9tDw6ClCAAgEnwABUwNmyZwpQgAIUoAAFKECBYCyQK1cuPbpz587pc+3atQXBo8jmZh5ogwcPlrZt20rmzJk1ULVu3Tp59uyZZk4hcLV37145bG4agwwqBKRQfxPzEcTKnj279jFo0CA5cuSITts/jBs3TvvGDWdSpUolCxculCJFimhAa9KkSTJmzBitf/r111/L6tWrZfTo0bo5gmJY18Pc1RYBs23bttl3y+lgKsAgVDC9MDwsClAgUAUYgApUbu6MAhSgAAUoQAEKUCC4CFg1Hm/evKnZR8uWLZOMGTPK8ePH9U7EqFuIgFTChAklRYoUggDUH3943t0V54Cb5FhZUSVKlLCdFoJOkydPljZtPDOEL126ZFtmTYwdO1YnEbA6cOCAlCtXTve7ZcsWqVy5sqxfv16mTJkiqF2FdvbsWX1esGCBPu/Zs0d27Ngh8eLF09d8CP4CDEIF/2vEI6QABQJWgAGogPVl7xSgAAUoQAEKUIACwVTgxo0bemSJEyfW4A9eFCpUSG/mgZtqFC5cWJefP39eg0LIZMLQPbSCBQvK9u3bZcOGDVpT6quvvtL5eEiZMqVOx40bV59fvnypz9YDMpcQeEqXLp0kSJBAZyP7CQ3ZWLj77rBhwwTD76w7/D1//lzno45UlixZNEsLAY1s2bLpdnz4OAQYhPo4rhOPkgIUCBgBBqACxpW9UoACFKAABShAAQoEcwGr9lOGDBkkefLkerRHzU0srIbhdWgIEhUvXlynhw8fLhgWV6lSJR16t3HjRs1Ssr8DrTWEz36ebvz2AcuRuYRMq6dPn+pca7/YV4sWLQT9YqjdP//8o8txh1+rXwzbs9qxY8esST5/BAIsFv8RXCQeIgUoEGACvAtegNGyYwpQ4GMXePLkiaxYuVoiRYooZcuUtp3O4cNH5ORfp+TLzJkkdepUtvn+NbFw0WIJGy6cVCxf7p27/JBt33ln3IACFKDARyjQo0cPzVhCNtO+ffu0VlPJkiUFgQEMs0Pgp3nz5nLv3j0d9oahdXHixJGcOXPazhaZUXny5LG9RpHwd21lypSRadOmScWKFbVgOeo+Ychfvnz5BEEutAgRImgdKkwjawrZMxUqVBAMFcR2CJpZQ/OwDlvwFmDwKXhfHx4dBSgQ8AIMQAW8MfdAAQp8pAIPHjyUgYOHSqxYMb0EoLb/ulOmz5wlHdu3DZAA1IBBQyWK+ev4+wSgPmTbj/Qy8bApQAEKvJMAsorQkIFUs2ZN6d+/vwZ2ENxBPSfMQ4FwNASfECRCQzCoSpUqgjviIfiUPn16DRhhSByG46EhS8lRczTsCvvAsLo5c+bI2rVrzf9PUsvs2bMFdam6desm9evX17pQKGaOwBgKnmMoH4JTuPMdglA4h1KlSmmRckf7cHQsnBc0Agw+BY0790oBCgQvAQaggtf14NFQgAIUoAAFKEABCgSAgBV4ctV1smTJZOfOnYKgEgI6n3zyiZfVvfdx//59L8uROYUfqzVq1EjwYzX7IARqTCHghAAX+okdO7a1mhQtWlQuXLggd+7c8TIfK+DudxgaiMLpyMxi4MnGFmwn7K97sD1IHhgFKECBQBBw/GeaQNgxd0EBClAgpAhgmEavPv2kWMkykjlrNqlavZYc+dOzhsi2bb9KxSrVZdacudKoSXNdXqvOt3L67zO205+/YKFumytPARk7boJtPiZQG2TYiFFSsEhxwfIevfqaLyoPbOu42tYv+168ZJmULltRjwvHd+aM512WsIOf5s6X7xo01GVYZ9Hipbb9/rpjp7Rp11GX4bgGDRkmr1690uUYoohznjRlqm19TlCAAhT4mAQwFM578Cmgjj+cGXJtH3yy9oNsKkfzreUocM7gk6XBZwpQgAIU+BgEGID6GK4Sj5ECFAhSgX//vaPBIwRo8LPaDJWwb8NGjJZflq+ULF9+KSWKF5NTp/+WgYOG6CoPHj409TnOychRY/SLRJYvM8uxY8dl9BjP4R07du6SwUOHmyKzN6RAgXyy4OdF9l3LKLMeAkG4BXi2bP8zNalWSY/efXQd37b1bd8bN22WfgMGyeMnj3WI4d7ffpfvGzXRoBf6RuALf6Fv1aKZ7q//wMGmYO4JuXX7trRo1VbOmFuCY1mGDF/ocVvHjqAZzhl/nWejAAUoQAEKUIACFKAABSgAAQ7B4/uAAhSggB8E/nyb0YRVH5lCsPatWZNGUr5saUmcOJEc/OOQrF23Xk6c/Mt+FcmfP6/079tLrl69JiXLlJfz5y/o8g0bN+sz6knVqF5V9u0/IN83bKLzkFFkBXWGDR4oUaJE0aAPMptu3rwlrra137mzfS9Z+ouu1qVTR/nf119JuHBhBfMQfLLqmFy5elVemuNo07qFZDSBJgz3QLAM7ZY5hjt370qliuWlXdtW8pmpUYL21VdZZdtfKbkAAEAASURBVMe2TRI+fHh9zQcKUIACFKAABShAAQpQgAIMQPE9QAEKUMAXARQh37JxnW2tMWMnaBFya8bfphjsQFM4/PKVK1o83Jpv/+zx9vbeKC6L9uLlC322bq/9+edp9HUaU4TWardu3bYmpURpr3fEu3Hjhu3W3I62tW1oJpzt+/LlK7pauw6d7FeX69f/kVo1q0t2k3GFrKhx4yfq8iSJE8uPkyeYbKwE0qTxDzJh4hSZNfsnXYai6YMH9ZfcuXIKbjuO4StsFKAABShAAQpQgAIUoAAFLAEGoCwJPlOAAhR4DwFkKXXo2EWzoqZNmWhupZ1RvsqWy0dPGMqGFjp0KC/L4sWLq68vXbokX2bOJGfP/VeDKW7cOHoHPgwBXLxwnt6B6eTJUyYLKbakTPmZufuR823td+Js3xg6h6AZMrMyZswgVkAqrQmGoa5Vo4YN5Pv638qZc+dk1ao1WtdqydJlUv+7epInd25zvJkFQbLtv/4q69ZvlImTf9QAlP2+OU0BClCAAhSgAAUoQAEKUAACrAHF9wEFKECBDxCwCm+jCwxXGzJ0hK03+2W2md4m8uXNq3NQXBw1l7p1721bA8Pg8uXNo68nT5kmW7Zul/YdO0v3Hr1Nwe/XZpnzbW2duJjInSuHLkWNqT179krX7j2lcdMWcsMMrVuzdr3U++4H+XHaDIkeLZokSJBA10XRW9R+qlGrjnTr0UsLjydPnlyXxTe3A0c7cOCgFkwfPnK0vuYDBShAAQpQgAIUoAAFKEABBqD4HqAABSjgRMDZ3YXMnbm1YTnqHLVv10YzlRBE+vPoUa2VhBVO2tWBst/Gc2vPx8KFCsi39eroCwSCkEGFIX9Wa960ieTMkV1QMByFzNOnTydDhwyUyJEjiW/bWn0423exokWkdq0aWq9qgBlCGDlSZM2GSp0qpdajQk2qU6dPS8fO3eTwkSO6bsUK5eSL9OmlR7fOWpMKQag55g5/KL7etnVL3eXLly81IwzFyNkoQAEKUIACFKAABShAAQpAINQb0z4Git27d0vatGk/hkPlMVKAAm4ogGyn+/fvS8yY/wWP3oUBwZoXL144rZ2E5c+fv5Bo0XzWVvJtW9+OA8eOYuJxYsf2sSr+F3Hb3PUOxccdtTt37phjiqZ1nxwt5zwKUMC9BU6cOCE5c+YMUIRZs2ZJ3bp1A3Qf7JwCgSnA93RganNfFKBAYAqwBlRganNfFKBAiBVA4e33DT4BBXWarFpNjpBcLXe1zFFf3ufh2B0Fn7AesrycBZ+w/EPOGduzUYACFKAABShAAQpQgALuIcAheO5xnXmWFKAABShAAQpQgAIUoAAFKEABClAgyAQYgAoyeu6YAhSgAAUoQAEKUIACFKAABShAAQq4hwADUO5xnXmWFKAABShAAQpQgAIUoAAFKEABClAgyAQYgAoyeu6YAhSgAAUoQAEKUIACFKAABShAAQq4hwADUO5xnXmWFKAABShAAQpQgAIUoAAFKEABClAgyAQYgAoyeu6YAhSgAAUoQAEKUIACFKAABShAAQq4hwADUO5xnXmWFKAABShAAQpQgAIUoAAFKEABClAgyAQYgAoyeu6YAhSgAAUoQAEKUCCwBKpVqyahQoXy8fO///3P3w5h/Pjx2v/q1au1z2jRoknWrFn9rX92RAEKUIACFPiYBcJ+zAfPY6cABSgQWAJH/jwqJ06clNixY0vhQgUCa7fcDwUoQAEK+JPAmzdvtKdmzZpJ3Lhxbb0mSpTINv2hExkzZpS2bdtK8uTJtasHDx58aJfcngIUoAAFKBBiBBiACjGXkidCAQoEpMDAQUPkxMm/dBfbNq+XGDFiBOTu2DcFKEABCgSQQNOmTeXzzz/30XvlypXl+fPnkjJlSpk6daogmDRs2DDp2rWr7Nu3T2rVqiXjxo2TMGHCyJYtW3TZzp07JVKkSNKtWzdp3ry5XLx4UVauXCllypTx0T9nUIACFKAABdxdgEPw3P0dwPOnAAV8FTj511+24BNWXr12va/bcAUKUIACFAieAnXq1JFChQrZfn7++Wc90NOnT2vwaPv27ZI3b17ZtWuX5MiRQ6JEiSLRo0eXSZMmyYYNG+Thw4dSo0YNOXDggNStW1e3bdGihdy5c0fu3r0rp06d0nWC59nzqChAAQpQgAJBJ8AMqKCz554pQIGPRGDFCs9aHgUL5JctW7fJwkWLpWb1qlrnA6fw9OlTGTVmnPnislpixowp1apWlmXLV0ie3LmkdcvmunzchEmyZu06efb0mfnSU1DatWkl0aJFlWfPnkmN2nUlQfz4MmHc6I9EhIdJAQpQ4OMVQDaTfStbtqz9S1mxYoW8fv1akiVLJkmSJJFly5bJrFmzpH79+prhFCFCBFmzZo2EDx9eXr58KcePH9eMqEuXLnnphy8oQAEKUIACFPAqwACUVw++ogAFKOBFAMGl5StW6rwunTuYv2yflgsXLsrBPw5J1ixf6vzJP06TBT8vklixYkrmzBll+EjPQFLqVCl1OYJTWJ4+fTqJHy+erFi5Su4/uC+jhg8V1CQ5e/acPHr0yMt++YICFKAABQJG4MSJEw6H4Fl7Q00oZDKhpU+fXofcxTO/u9EQcAoXLpxs2rRJ+vfvL/Y1nl68eKHr8IECFKAABShAAccCHILn2IVzKUABCqjAtu075NHjx5I/f16JYwqQV6hQTucv+2W5TcgKUCGDqV+fXtKsaWPbslevXmnwCTOGDR4ovXp0k08/TSbbtv0qN2/ekogRI8qObZtk6WLPISC2Dd1kArb4AocfBPvwY73GMBc2ClCAAoEtgDvlhQ7t+U9k/I5Gwzyr7d27Vzp16iS5c+cWDNvr3LmzLrJfx1qXzxSgAAUoQAEK/CfADKj/LDhFAQpQwIfA4iVLdd6RI39KrTrfyr279/T1qtVrdRhd1KhR5d9/7+i8FB4e+vx5mtT6jIdbt27bpkuU9gxeWTNu3Lhh7sQUR9CHu7Yy5Sra/HLmyK53GVy5ynPII0wOHfjNXWl43hSgQAAJ9OzZU3/XWN2HDRtWxowZY7309RmBcjQMwTt79qxMmzZNXz958kSf+UABClCAAhSggGMBBqAcu3AuBShAAbl06bLsP3BQJTDk4tatW15UUIy8Vo1qkjlTJjl0+LCc/OuUZMzwhRw6dNi2HgJMGJqHINXihfMEtUNOnjwlceLENnda+sy2nrtOTJ44Xl69eqmnHyVyFB3qUqtmNXfl4HlTgAIBKGBlKC1cuNDHXqwAlPc/CFiZUPYboEB5hQoVtDbU8uXLpVKlSrJkyRLzu/+Q/WqcpgAFKEABClDAmwADUN5A+JICFKCAJbBy1RqdrF6tinTq0M6aLRs3bZH2HTvbipHnyZNLA1CNmzSXDCYAtfe3323r4stLvrx5ZNkvK2TylGnyxRfpZeSoMZIkcWJZuGCuDjkrVKSEKXabVObPnW3bzl0mUjkIwiWShO5y+jxPClAgEAVwtzvrjneOdnvY/CHBarjrHWr0Wa1UqVJeXi9dulTrROEOefgDhX1r2rSp7aV9H7aZnKAABShAAQq4qQBrQLnphedpU4ACrgVwB6TF5gsGWoliRb2snDdvbokSObIWIz90+IjUqV1TqlaprOvcuHlTGv3QQKfDh4+gz82bNhEML9u4abMGn1CMfOiQgRI5ciRd7lkHifWOFIMPFKAABT4SgRgxYvgIPn0kh87DpAAFKEABCgSJADOggoSdO6UABYK7ADKXtmxc5/AwI5i6H7t2bLUtmzp9pkSJElkmTxonX5g7Jq1es1aXxY/vedckDMFDgXLUDXn+/IVEi/ZfzScUuGWdIxslJyhAAQpQgAIUoAAFKECBECrAAFQIvbA8LQpQIPAE4pk6Tz3GT5QZM2frHe4uXLioO8+TO5eXg0CwybqjkpcFfEEBClCAAhSgAAUoQAEKUCCECzAAFcIvME+PAhQIeIFSJUto8ew9e3+Tx4+f6HC7ggXya0HygN8790ABClCAAhSgAAUoQAEKUCD4CzAAFfyvEY+QAhQI5gJhwoQRBKHww0YBClCAAhSgAAUoQAEKUIACPgVYhNynCedQgAIUoAAFKEABClCAAhSgAAUoQAEK+KMAA1D+iMmuKEABClCAAhSgAAUoQAEKUIACFKAABXwKMADl04RzKEABClCAAhSgAAUoQAEKUIACFKAABfxRgAEof8RkVxSgAAUoQAEKUIACFKAABShAAQpQgAI+BRiA8mnCORSgAAUoQAEKUIACFKAABShAAQpQgAL+KMAAlD9isisKUIACFKAABShAAQpQgAIUoAAFKEABnwIMQPk04RwKUIACFKAABShAAQpQgAIUoAAFKEABfxRgAMofMdkVBShAAQpQgAIUoAAFKEABClCAAhSggE8BBqB8mnAOBShAAQpQgAIUoAAFKEABClCAAhSggD8KMADlj5jsigIUoAAFKEABClAgeApUrFhRQoUKpT/nz5/Xgzxz5oxtHpYH51arVi3bsVrngecVK1bI+PHjddnq1av1FKJFiyZZs2YNzqfDY6MABShAATcUCOuG58xTpgAFKEABClCAAhRwM4HXr1/bzvjXX3+V5MmTy44dO2zz7JfbZgajCev4mjRpIvHjx7cdWapUqSRmzJjStm1bPScsePDggW05JyhAAQpQgALBRYAZUMHlSvA4KEABClCAAhSgAAUCRWDTpk26ny1btvjYH7KjkG2EIA8yiRo0aCDPnj3T9ZBV1LhxY2nYsKEuw+tjx47pMlfbHT16VHLnzq3bIIBUuXJlKV68uG53584dqVOnji5Lnz69zJ0718cx2c/A9j169LD9pE2bVi5evCgrV66UW7du2a/qa/8LFizQ40AmFfa9bt06H9tzBgUoQAEKUMC/BBiA8i9J9kMBClCAAhSgAAUoEOwFSpQoIevXr5dXr17pM17bt1atWsm8efOkUqVK4uHhIdOmTZONGzfqKgcPHpRJkyZp0AkBJbzu2bOnLnO23cuXL7WvXbt2Sd68eTVQtGTJEjl9+rRu17JlS5kzZ44uw7q1a9eW/fv32x+Sl+nevXtrEAyBsBEjRuiyu3fvyqlTp+Thw4de1sULZ/0jaFWjRg3dpk+fPhq8qlq1qty7d89HH5xBAQpQgAIU8A8BBqD8Q5F9UIACFKAABShAAQp8FAIIAt24cUMWLVqkz/ny5fNy3IMHD5adO3dK+/btpVChQrrswoULXtbZsGGDIIiEdu7cOX12tt3x48c1OFSwYEFZtWqVbN26VdfHw+PHjzX4lDp1alm6dKlOY76rLCgcN4Jg+EHWk6vmqv8nT57opjdv3tTsq1mzZsnZs2clevTorrrkMgpQgAIUoMB7C3xUNaBOnDjx3ifKDSlAAQpQgAIUoAAFKJArVy5FQIAJzXqtL8wDgjDNmjXTZ2veixcvrElBsChy5Mi210+fPtVpZ9sh2IWWOXNmfU6ZMqU+4+Hq1as6jeylCBEi2OZ7D3jZFpiJzZs3y+eff66z7LexX8eadtV/mjRp5JtvvtGgF7K30EqVKqVFzUOH5t+oLUM+U4ACFKCA/wl8NAGonDlz+t9ZsycKUIACFKAABShAAbcUsAJBly9f1vPPlCmTzeH58+dSsmRJiRcvnuzZs0du374tpUuX1jvMWSvZZwhFjRpVZ7vaLl26dLrOoUOH9Pnvv/+2upJkyZLpNIJaGPaHWlP//POPWNvYVrSbQG2qRIkS2c1xPumqfwz3Qy0pDMPDkL8pU6YI7qKHAu358+d33imXUIACFKAABd5TgH/eeE84bkYBClCAAhSgAAUo8PEJIGsIw+HQihQpIuHDh7edhFVs/JNPPtHhcaNHj9ZlGMrmqrnaDsEiBJhQ8BzFx4sVK2brCvsuU6aMDtHbvXu3zJ8/XypWrKhZTraVPmDCVf84HtxBb/z48ZInTx6x/tgbMWLED9gjN6UABShAAQo4F2AAyrkNl1CAAhSgAAUoQAEKhEABq+6T9YxTxLAzZDQNGjRIh9+h/lPMmDH17A8cOOBUIWzYsL5uh7vNZcmSRVA7ChlV2A+2QxsyZIhkzJhRWrRoIePGjZN69erpXfa879AaFoc71r1Lc9Z/0aJFBQXN9+3bJwUKFNAsqP79+0v27NnfpXuuSwEKUIACFPCzQKg3pvl5ba5IAQpQgAIUoAAFKECBYCSA4tl169b11yNCgW4MUbOG2Pm1c0fbIXuqUaNGkiJFCunSpYvcv39f4saNq9lXCEhZ7c6dO1pbyre6Ttb67/rsqn8UIscxsQUPgYB4TwePM+NRUIAC7i7ADCh3fwfw/ClAAQpQgAIUoAAFvAhEihTpnYNP6MDRdihYjiLmyDZCcMkK9KAAuH1DtlVABZ+wH1f9W8dkfzycpgAFKEABCvi3wEdThNy/T5z9UYACFKAABShAAQpQIDAEZsyYIVWqVBEUII8SJYp89dVXki1btsDYNfdBAQpQgAIUCDYCDEAFm0vBA6EABShAAQpQgAIUCIkCKOyN4uJsFKAABShAAXcW4BA8d776PHcKUIACFKAABShAAQpQgAIUoAAFKBAIAgxABQIyd0EBClCAAhSgAAUoQAEKUIACFKAABdxZgAEod776PHcKUIACFKAABShAAQpQgAIUoAAFKBAIAgxABQIyd0EBClCAAhSgAAUoQAEKUIACFKAABdxZgAEod776PHcKUIACFKAABShAAQpQgAIUoAAFKBAIAgxABQIyd0EBClCAAhSgAAUoQAEKUIACFKAABdxZgAEod776PHcKUIACFKAABShAAQpQgAIUoAAFKBAIAgxABQIyd0EBClCAAhSgAAUoQAEKUIACFKAABdxZgAEod776PHcKUIACFKAABShAAQpQgAIUoAAFKBAIAgxABQIyd0EBClCAAhSgAAUoQAEKUIACFKAABdxZgAEod776PHcKUIACFKAABShAAQpQgAIUoAAFKBAIAgxABQIyd0EBClCAAhSgAAUoELQCVatWlVChQtl+okWLJnXq1JFr1675emDjx4/X7VavXu1y3Tdv3siCBQtk7dq1LtfjQgpQgAIUoIA7CoR1x5PmOVOAAhSgAAUoQAEKuKdAs2bNJGrUqHLq1CmZM2eO/Pbbb3Lw4EGJEiXKB4MsXrxYatSoITNmzPjgvtgBBShAAQpQIKQJMAMqpF1Rng8FKEABClCAAhSggFMBBKAGDBggCBY1atRIA1FLly7V9Y8fPy4FChQQZEflzp1bA1OOOnK03tWrVwV9o3Xs2FGQNfXq1Svp16+fxI8fX5ImTSpdunSRFy9eOOqS8yhAAQpQgAIhXoABqBB/iXmCFKAABShAAQpQgAKOBHLlyqWzz507J8+ePZNixYrJtm3bpFSpUnLkyBHJnz+/PH782MumztZDYClOnDi6Lp6jR48us2bNku7du0uCBAkkderUMnDgQBkzZoyX/viCAhSgAAUo4C4CDEC5y5XmeVKAAhSgAAUoQAEKeBGIESOGvr5586bs3LlTLl++LI0bN9bAUe/eveXBgweyfv16L9s4Ww/D+BBsQmvfvr3Url1bpk+frq9Xrlwp+MHQP2ueLuADBShAAQpQwI0EWAPKjS42T5UCFKAABShAAQpQ4D+BGzdu6IvEiRPLpUuXdHrixImCH6thaJ19c7Ve7Nix7VeV06dP6+tPP/3UNh/D99goQAEKUIAC7ijAAJQ7XnWeMwUoQAEKUIACFKCAWLWfMmTIYBs+980330jLli3l9u3bKoRl1nqYkTZtWp3vaL3t27frMtwNDy1r1qx6R7ytW7dq9tPZs2clWbJkuowPFKAABShAAXcTYADK3a44z5cCFKAABShAAQq4sUCPHj00GIQaT/v27ZPs2bNLyZIltWA4WDDkDrWgJk+eLDt27JBDhw550UJQydl6ESJE0GWrV6/WQFORIkU0ADV//nzJkiWLFj2vUqWKLFy40EuffEEBClCAAhRwBwEGoNzhKvMcKUABClCAAhSgAAVUwAr+xIsXT2rWrCn9+/eXUKFCSdiwYWX58uVauwn1m7AcBcMzZcqk9aEsPlfrxYoVS4NbS5YskYQJE+od8BDEmjJlim6eJ08eGT16tNUVnylAAQpQgAJuJRDKpAh75gi71WnzZClAAQpQgAIUoAAFQoIA7jRXt25dfz0V1IaKGzeuBqZcdexoPdwN786dOxrAsrZ98uSJYH60aNGsWXymgFOBgHhPO90ZF1CAAhQIRAFmQAUiNndFAQpQgAIUoAAFKBD8BZD95JfmaL1w4cJ5CT6hn0iRIumPX/rkOhSgAAUoQIGQKhA6pJ4Yz4sCFKAABShAAQpQgAIUoAAFKEABClAgeAgwABU8rgOPggIUoAAFKEABClCAAhSgAAUoQAEKhFgBBqBC7KXliVGAAhSgAAUoQAEKUIACFKAABShAgeAhwABU8LgOPAoKUIACFKAABShAAQpQgAIUoAAFKBBiBRiACrGXlidGAQpQgAIUoAAFKEABClCAAhSgAAWChwADUMHjOvAoKEABClCAAhSgAAUoQAEKUIACFKBAiBVgACrEXlqeGAUoQAEKUIACFKAABShAAQpQgAIUCB4CDEAFj+vAo6AABShAAQpQgAIUoAAFKEABClCAAiFWIGyIPTOeGAUoQAEKUIACFKCAWwjMmjXLLc6TJ0kBClCAAhT4mAUYgPqYrx6PnQIUoAAFKEABClBA6tatSwUKhBgBBlRDzKXkiVCAAt4EOATPGwhfUoACFKAABShAAQpQgAIUoAAFKEABCvivAANQ/uvJ3ihAAQpQgAIUoAAFKEABClCAAhSgAAW8CTAA5Q2ELylAAQpQgAIUoAAFKEABClCAAhSgAAX8V4ABKP/1ZG8UoAAFKEABClCAAhSgAAUoQAEKUIAC3gQYgPIGwpcUoAAFKEABClCAAhSgAAUoQAEKUIAC/ivAAJT/erI3ClCAAhSgAAUoQAEKUIACFKAABShAAW8CDEB5A+FLClCAAhSgAAUoQAEKUIACFKAABShAAf8VYADKfz3ZGwUoQAEKUIACFKAABWwCd+7ckSdPnthec4ICFKAABSjgrgIMQLnrled5U4ACFKAABShAATcSqFGjhoQKFcrLT9KkSWXKlCkBojB79myJHz++xIoVSyJHjix58+aVEydOfPC+Hj9+LH369JHLly/72le0aNEka9asvq7HFShAAQpQgAKBIRA2MHbCfVCAAhSgAAUoQAEKUCAoBV6/fq27b9KkiQaGEMiZMWOGNGzYUDJmzCjZs2f3t8NDUAv9JkmSRDp27CjXr1+XWbNmSenSpeXPP//UgNT77qx9+/YyYcIEqVmzpq9dNG/eXGLHju3relyBAhSgAAUoEBgCzIAKDGXugwIUoAAFKEABClAgWAg0a9ZMevToIYMGDdIgEQ7q77//1mNLnz69fPPNN7bjzJQpkyBzCg3BnP/9738yduxYQeYUfhYvXmxb15p49eqVtGvXTqJGjSpHjx7V/cycOVN69uwp3377rdy7d09XXbt2rRQqVEiQpZQ7d27Zu3ev1YVmLTVu3FiPz8piOnbsmKxatUrmzJmj6xUrVkx+++03OX/+vNSqVUuDali3QYMG8uzZM11n48aNsnv3bp12dfw45n79+mkfOK8uXbrIixcvdLt69epJgQIFpGrVqroc+1ywYIEUL15cs8lgtm7dOl2XD44FkHnHRgEKUIACIgxA8V1AAQpQgAIUoAAFKOA2AshEGjVqlA5jwzNakSJF9Pn48eNy7tw5ncbDkSNH5MyZM/r60qVLsm/fPhkyZIgg+IMhcN99951YmVXWRleuXJEHDx7I119/LdGjR7dmS69evaRbt26SMGFC+f3336VkyZKyZcsWyZw5s+zatUty5Mhh2/fBgwdl0qRJgqATglN4jQBWlChRJFKkSNpn4sSJJWLEiNKqVSuZN2+eVKpUSTw8PGTatGmCwBMajtc6H1fHD5Pu3btLggQJJHXq1DJw4EAZM2aM9nH27FnZtm2bLciE4YQIyj18+FANb926pcEpK7CmG/HBhwCDUD5IOIMCFHBDAQag3PCi85QpQAEKUIACFKCAuwoMHjxYWrdurQEdBHOQxYRaTX5tP//8s0ydOlVy5cqlgab79+972fTmzZv62j745GUF88LKYlq6dKn8+uuvGhDDOtOnT/ey6oYNG2TJkiU6D4EkZCJVrFhRX2NdZGjhfHbu3CkYmoeMKrQLFy7os6MHR8dv7XflypWCH2RvWfOsPpB9dfXqVQkfPrzOwnki4wrBKwSpXJ2v1Ye7PzMI5e7vAJ4/BSjAGlB8D1CAAhSgAAUoQAEKuI3AokWLNKupU6dOEiNGDM08sj95DEdz1VKkSKGL48WLp88vX770snqiRIn0tfci4chyQvbQl19+KX/88Yeuky9fPn3Onz+/Pp86dUqf8YBMJKxvtadPn1qTXp4R/MGwQjxbzRo+Z722f3Z0/KdPn9ZVPv30U9uqyAazbzjuMGHCSJo0aXSYIoJoyL5CK1WqlKxYsUJCh+bftu3NHE0jCPXmzRtHiziPAhSgQIgX4P8lQvwl5glSgAIUoAAFKEABClgCqFmEwuCobYSAD4qS2zcUJ0fDMDpHzQoKhQsXztFiHcaG4BSGv1mBJgSEqlevLlmyZNFaT6lSpdJtT548qc/W3fEwrM5q9hlFyEjy3hDEeP78uQ7lw3C4PXv2aI0orOcq08bR8Vt3ytu6davs379fFi5c6KUmFfq0hv4h4IYaWmvWrNEheCi0vnr1as3kwnpsrgUYfHLtw6UUoEDIFmAAKmRfX54dBShAAQpQgAIUoIADgWHDhulQs+XLl8uyZct0DWQdoe4TioY3bdrUwVa+z0LwB8Pi0BBwQoFw1HlCRhTutpctWzbbUDkUJe/fv7+0bNlS10ehb98a6j6hodYTipyjffLJJ4LA2ejRo/W1FUTTF354sGpgzZ8/XwNQOI7hw4d72RLZT2ioW4UA2vjx4yVPnjySM2dOnW8dl77gg0MBBp8csnAmBSjgRgIMQLnRxeapUoACFKAABShAAQp4CsSOHVuDOHjVqFEjDeAgswcNgSEEcZDJZAVedIGDB0fZRnXr1pUpU6ZogAsFwlEA/Pvvv9f6Sli/du3aMnToULl27ZoWJn/y5InMmDFDsmfP7mAPnrPChvWsnFG4cGGdgSAXht3hbn54Rv2nmDFj6rIDBw447cf7AhwPiqlXqFBBjxkWCCxZwSzv51+0aFHp3bu3ZnihJhUyphBEc3Xs3vfpjq8ZfHLHq85zpgAFvAuEMr8MOQjZuwpfU4ACFKAABShAAQp8FAIogo2Aj381DGtDQMh+CNyH9H3jxg1BsMt7IAd94p/hWI5Al6NAlrP9YsgdalVZx4jjxdA4R0P1nPXhaD76wXBBFBf3S0Mh8rhx4/plVa7zDgL+/Z5+h11zVQpQgAIBKsAi5AHKy84pQAEKUIACFKAABT4mAdzlzbrTm38ct1Ws3FFfCDq9yx34rD4w5M6+WfWZ7Oe9zzT6eZe+GHx6H2VuQwEKUMB9BTgEz32vPc+cAhSgAAUoQAEKUIACFKAABShAAQoEigADUIHCzJ1QgAIUoAAFKEABClCAAhSgAAUoQAH3FWAAyn2vPc+cAhSgAAUoQAEKUIACFKAABShAAQoEigADUIHCzJ1QgAIUoAAFKEABClCAAhSgAAUoQAH3FWAAyn2vPc+cAhSgAAUoQAEKUIACFKAABShAAQoEigADUIHCzJ1QgAIUoAAFKEABClCAAhSgAAUoQAH3FWAAyn2vPc+cAhSgAAUoQAEKUIACFKAABShAAQoEigADUIHCzJ1QgAIUoAAFKEABClCAAhSgAAUoQAH3FQjrvqfOM6cABShAAQpQgAIUCAkCs2bNCgmnwXOgAAUoQAEKhGiBUG9MC9FnyJOjAAUoQAEKUIACFKAABShAAQpQgAIUCFIBDsELUn7unAIUoAAFKEABClCAAhSgAAUoQAEKhHwBBqBC/jXmGVKAAhSgAAUoQAEKUIACFKAABShAgSAVYAAqSPm5cwpQgAIUoAAFKEABClCAAhSgAAUoEPIFGIAK+deYZ0gBClCAAhSgAAUoQAEKUIACFKAABYJUgAGoIOXnzilAAQpQgAIUoAAFKEABClCAAhSgQMgXYAAq5F9jniEFKEABClCAAhSgAAUoQAEKUIACFAhSAQaggpSfO6cABShAAQpQgAIUoAAFKEABClCAAiFfgAGokH+NeYYUoAAFKEABClCAAhSgAAUoQAEKUCBIBRiAClJ+7pwCFKAABShAAQpQgAIUoAAFKEABCoR8AQagQv415hlSgAIUoAAFKEABClCAAhSgAAUoQIEgFWAAKkj5uXMKUIACFKAABShAAQpQgAIUoAAFKBDyBRiACvnXmGdIAQpQgAIUoAAFKEABClCAAhSgAAWCVIABqCDl584pQAEKUIACFKAABShAAQpQgAIUoEDIF2AAKuRfY54hBShAAQpQgAIUoAAFKEABClCAAhQIUgEGoIKUnzunAAUoQAEKUIACFKAABShAAQpQgAIhX4ABqJB/jXmGFKAABShAAQpQgAIUoAAFKEABClAgSAUYgApSfu6cAhSgAAUoQAEKUIACFKAABShAAQqEfAEGoEL+NeYZUoACFKAABShAAQpQgAIUoAAFKECBIBVgACpI+blzClCAAhSgAAUoQAEKUIACFKAABSgQ8gUYgAr515hnSAEKUIACFKAABShAAQpQgAIUoAAFglSAAagg5efOKUABClCAAhSgAAUoQAEKUIACFKBAyBdgACrkX2OeIQUoQAEKUIACFKAABShAAQpQgAIUCFIBBqCClJ87pwAFKEABClCAAhSgAAUoQAEKUIACIV+AAaiQf415hhSgAAUoQAEKUIACFKAABShAAQpQIEgFGIAKUn7unAIUoAAFKEABClCAAhSgAAUoQAEKhHwBBqBC/jXmGVKAAhSgAAUoQAEKUIACFKAABShAgSAVYAAqSPm5cwpQgAIUoAAFKEABClCAAhSgAAUoEPIFGIAK+deYZ0gBClCAAhSgAAUoQAEKUIACFKAABYJUgAGoIOXnzilAAQpQgAIUoAAFKEABClCAAhSgQMgXYAAq5F9jniEFKEABClCAAhSgAAUoQAEKUIACFAhSAQaggpSfO6cABShAAQpQgAIUoAAFKEABClCAAiFfgAGokH+NeYYUoAAFKEABClCAAhSgAAUoQAEKUCBIBRiAClJ+7vz/7N0HYBRFF8DxlxCQroB06VKkF6mKgiAgRaoI+imKFRQRsSEIIoIKKCBFpKqI9CJN6Si9izQVpPfeO+SbN2GPJFxCQrvN8h+9u72tM79ZNnfvZmYRQAABBBBAAAEEEEAAAQQQQAAB7wsQgPJ+HVNCBBBAAAEEEEAAAQQQQAABBBBAIKACBKACys/BEUAAAQQQQAABBBBAAAEEEEAAAe8LEIDyfh1TQgQQQAABBBBAAAEEEEAAAQQQQCCgAgSgAsrPwRFAAAEEEEAAAQQQQAABBBBAAAHvCxCA8n4dU0IEEEAAAQQQQAABBBBAAAEEEEAgoAIEoALKz8ERQAABBBBAAAEEEEAAAQQQQAAB7wsQgPJ+HVNCBBBAAAEEEEAAAQQQQAABBBBAIKACBKACys/BEUAAAQQQQAABBBBAAAEEEEAAAe8LEIDyfh1TQgQQQAABBBBAAAEEEEAAAQQQQCCgAgSgAsrPwRFAAAEEEEAAAQQQQAABBBBAAAHvCxCA8n4dU0IEEEAAAQQQQAABBBBAAAEEEEAgoAIEoALKz8ERQAABBBBAAAEEEEAAAQQQQAAB7wsQgPJ+HVNCBBBAAAEEEEAAAQQQQAABBBBAIKACBKACys/BEUAAAQQQQAABBBBAAAEEEEAAAe8LEIDyfh1TQgQQQAABBBBAAAEEEEAAAQQQQCCgAgSgAsrPwRFAAAEEEEAAAQQQQAABBBBAAAHvCxCA8n4dU0IEEEAAAQQQQAABBBBAAAEEEEAgoAIEoALKz8ERQAABBBBAAAEEEEAAAQQQQAAB7wsQgPJ+HVNCBBBAAAEEEEAAAQQQQAABBBBAIKACBKACys/BEUAAAQQQQAABBBBAAAEEEEAAAe8LEIDyfh1TQgQQQAABBBBAAAEEEEAAAQQQQCCgAgSgAsrPwRFAAAEEEEAAAQQQQAABBBBAAAHvCxCA8n4dU0IEEEAAAQQQQAABBBBAAAEEEEAgoAIEoALKz8ERQAABBBBAAAEEEEAAAQQQQAAB7wsQgPJ+HVNCBBBAAAEEEEAAAQQQQAABBBBAIKACBKACys/BEUAAAQQQQAABBBBAAAEEEEAAAe8LEIDyfh1TQgQQQAABBBBAAAEEEEAAAQQQQCCgAgSgAsrPwRFAAAEEEEAAAQQQQAABBBBAAAHvCxCA8n4dU0IEEEAAAQQQQAABBBBAAAEEEEAgoAIEoALKz8ERQAABBBBAAAEEEEAAAQQQQAAB7wsQgPJ+HVNCBBBAAAEEEEAAAQQQQAABBBBAIKACBKACys/BEUAAAQQQQAABBBBAAAEEEEAAAe8LEIDyfh1TQgQQQAABBBBAAAEEEEAAAQQQQCCgAgSgAsrPwRFAAAEEEEAAAQQQQAABBBBAAAHvCxCA8n4dU0IEEEAAAQQQQAABBBBAAAEEEEAgoAIEoALKz8ERQAABBBBAAAEEEEAAAQQQQAAB7wsQgPJ+HVNCBBBAAAEEEEAAAQQQQAABBBBAIKACBKACys/BEUAAAQQQQAABBBBAAAEEEEAAAe8LEIDyfh1TQgQQQAABBBBAAAEEEEAAAQQQQCCgAgSgAsrPwRFAAAEEEEAAAQQQQAABBBBAAAHvCxCA8n4dU0IEEEAAAQQQQAABBBBAAAEEEEAgoAIEoALKz8ERQAABBBBAAAEEEEAAAQQQQAAB7wsQgPJ+HVNCBBBAAAEEEEAAAQQQQAABBBBAIKACBKACys/BEUAAAQQQQAABBBBAAAEEEEAAAe8LEIDyfh1TQgQQQAABBBBAAAEEEEAAAQQQQCCgAgSgAsrPwRFAAAEEEEAAAQQQQAABBBBAAAHvCxCA8n4dU0IEEEAAAQQQQAABBBBAAAEEEEAgoAIEoALKz8ERQAABBBBAAAEEEEAAAQQQQAAB7wsQgPJ+HVNCBBBAAAEEEEAAAQQQQAABBBBAIKACBKACys/BEUAAAQQQQAABBBBAAAEEEEAAAe8LEIDyfh1TQgQQQAABBBBAAAEEEEAAAQQQQCCgAgSgAsrPwRFAAAEEEEAAAQQQQAABBBBAAAHvCxCA8n4dU0IEEEAAAQQQQAABBBBAAAEEEEAgoAIEoALKz8ERQAABBBBAAAEEEEAAAQQQQAAB7wsQgPJ+HVNCBBBAAAEEEEAAAQQQQAABBBBAIKACBKACys/BEUAAAQQQQAABBBBAAAEEEEAAAe8LEIDyfh1TQgQQQAABBBBAAAEEEEAAAQQQQCCgAgSgAsrPwRFAAAEEEEAAAQQQQAABBBBAAAHvCxCA8n4dU0IEEEAAAQQQQAABBBBAAAEEEEAgoAIEoALKz8ERQAABBBBAAAEEEEAAAQQQQAAB7wsQgPJ+HVNCBBBAAAEEEEAAAQQQQAABBBBAIKACBKACys/BEUAAAQQQQAABBBBAAAEEEEAAAe8LEIDyfh1TQgQQQAABBBBAAAEEEEAAAQQQQCCgAgSgAsrPwRFAAAEEEEAAAQQQQAABBBBAAAHvCxCA8n4dU0IEEEAAAQQQQAABBBBAAAEEEEAgoAIEoALKz8ERQAABBBBAAAEEEEAAAQQQQAAB7wsQgPJ+HVNCBBBAAAEEEEAAAQQQQAABBBBAIKACBKACys/BEUAAAQQQQAABBBBAAAEEEEAAAe8LEIDyfh1TQgQQQAABBBBAAAEEEEAAAQQQQCCgAgSgAsrPwRFAAAEEEEAAAQQQQAABBBBAAAHvCxCA8n4dU0IEEEAAAQQQQAABBBBAAAEEEEAgoAIEoALKz8ERQAABBBBAAAEEEEAAAQQQQAAB7wsQgPJ+HVNCBBBAAAEEEEAAAQQQQAABBBBAIKACBKACys/BEUAAAQQQQAABBBBAAAEEEEAAAe8LEIDyfh1TQgQQQAABBBBAAAEEEEAAAQQQQCCgAgSgAsrPwRFAAAEEEEAAAQQQQAABBBBAAAHvCxCA8n4dU0IEEEAAAQQQQAABBBBAAAEEEEAgoAIEoALKz8ERQAABBBBAAAEEEEAAAQQQQAAB7wsQgPJ+HVNCBBBAAAEEEEAAAQQQQAABBBBAIKACBKACys/BEUAAAQQQQAABBBBAAAEEEEAAAe8LEIDyfh1TQgQQQAABBBBAAAEEEEAAAQQQQCCgAgSgAsrPwRFAAAEEEEAAAQQQQAABBBBAAAHvCxCA8n4dU0IEEEAAAQQQQAABBBBAAAEEEEAgoAIEoALKz8ERQAABBBBAAAEEEEAAAQQQQAAB7wsQgPJ+HVNCBBBAAAEEEEAAAQQQQAABBBBAIKACBKACys/BEUAAAQQQQAABBBBAAAEEEEAAAe8LEIDyfh1TQgQQQAABBBBAAAEEEEAAAQQQQCCgAgSgAsrPwRFAAAEEEEAAAQQQQAABBBBAAAHvCxCA8n4dU0IEEEAAAQQQQAABBBBAAAEEEEAgoAIEoALKz8ERQAABBBBAAAEEEEAAAQQQQAAB7wsQgPJ+HVNCBBBAAAEEEEAAAQQQQAABBBBAIKACBKACys/BEUAAAQQQQAABBBBAAAEEEEAAAe8LEIDyfh1TQgQQQAABBBBAAAEEEEAAAQQQQCCgAgSgAsrPwRFAAAEEEEAAAQQQQAABBBBAAAHvCxCA8n4dU0IEEEAAAQQQQAABBBBAAAEEEEAgoAIEoALKz8ERQAABBBBAAAEEEEAAAQQQQAAB7wsQgPJ+HVNCBBBAAAEEEEAAAQQQQAABBBBAIKACBKACys/BEUAAAQQQQAABBBBAAAEEEEAAAe8LEIDyfh1TQgQQQAABBBBAAAEEEEAAAQQQQCCgAgSgAsrPwRFAAAEEEEAAAQQQQAABBBBAAAHvCxCA8n4dU0IEEEAAAQQQQAABBBBAAAEEEEAgoAIEoALKz8ERQAABBBBAAAEEEEAAAQQQQAAB7wsQgPJ+HVNCBBBAAAEEEEAAAQQQQAABBBBAIKACBKACys/BEUAAAQQQQAABBBBAAAEEEEAAAe8LxKkA1MGDB2Xt2nWyd+8+79cMJUQAAQQQQAABBBBAAAEEEEAAAQQ8IhDi9nKcOXNGvujcVSZMnCwagHJSkiRJ5J0Wb8kLzz8nISGuL4aTbV4RQAABBBBAAAEEEEAAAQQQQACBO04gKNQkt5b64sWLUrtufVn11+oos/hCo+ekfbuPo1zOAgQQQAABBBBAAAEEEEAAAQQQQACBwAq4ugve4iVLfcGnJ2tUk2FDf5TpUydLzx7dRFtAafr+hyGyc+fOwCpydAQQQAABBBBAAAEEEEAAAQQQQACBKAVc3Xdt69ZtvoynT59eSpQoLiHx4kmunDkl1Pw3b94CE4hKLCdOnvStd+nSJfl52AiZOHmKrF69RhImTChFCheSN5u+LkWKFPatt/7vf6Rbj2/kr1WrZfeePZIqVSrJ+0Aeaf3Rh/JAntx2veUrVkinzzvb6S5ffi7DR46SWbPnyK5du6V0qZLSutUHkj17Nt8+p8+YKQMGfS8bNmy03QXTp0sn1as9IU1ef9Xu37ciEwgggAACCCCAAAIIIIAAAggggMAdJODqLng64HjVGrV81aEBnWpVn5BHHy0rxR8sJokSJfItcybeaPa2TDLBp8hJW0zNmTlN0qRJLadPn5byFSrbwJO/9ab/NkkyZswoM2fNlsYvv2ZX0QBV+DGodKbOWzhvjtx1113ylwl21ahZJ/Lu7PtKj1eU/t/18buMmQgggAACCCCAAAIIIIAAAggggIDXBVzdBS9fvryiYzw5SVsqDRg0WJ5r1Fjy5CskbT/51AaTnOVzfv/DF3zKni2rdOn8uXzwfku7+KRpJdWhYyc73a//QF/w6dNP2srokcOkTu2wQJeut2TpMmeXvlcNPrX7uLUMN90Add+adN7KP1fZ6R7f9LKvmTNnkikTx8vcOTPlf882tPPmL1goK1f+aad5QgABBBBAAAEEEEAAAQQQQAABBO40AVd3wdPK0KBP0aJFpOtX3WTbtu0R6ueHH3+S9ev/lu8HD5AkiRPL1GnTfcsHD+ovWbNkse9PHD9hXzWgpemNN5pIjerVZN/+/VKqZAnRoFPhQgVl7Ljxdvnxy+vbN5efXmr8gjR+sZF991azN+Ttd96z04cPH7avp06dsq+ax+9MgKtChfLy2isvy5vmWNpyi4QAAggggAACCCCAAAIIIIAAAgjcqQKuD0AFBwdLzRrV7ePfDRtkwYJFNtC0YOEiW2faWmnWrDkmoFRVNm78z87T7nZO8ElnvP9eWCsou9A86ThS5y+ct+M5dej4uaxZs9ZZZF91HKnIqUD+fL5ZKVKk8E2fPXvWTteqWUOcPP0yYaLoQ1OhggXk7ebN5LHy5ex7nhBAAAEEEEAAAQQQQAABBBBAAIE7TcDVAaj+AwbJlq1bTQulU9K1yxd28HEdgFy75Y0aPVbeff9DW19LzN3yNAB1yoztpElbNEWX/pg7z3bjc9bJmfN+yZ0rl6/7nga9IicdzNxJ8ePHdyZ9r0/Xf0ouXrwk/QcMlE2bt/jmr/prtbz40qvy25SJvsHNfQuZQAABBBBAAAEEEEAAAQQQQAABBO4AAVcHoObOmy+//zHXVoO2IHqyRjVflSRPntw3feHiBTudI3t2X2smHS/K6frWuctXsnHTJsmbJ4+88nJj6dnryoDgU3+dJHly55LVa9b4AlC+HYebCA66OigVbrFcuHDBdufTLn2hoaF2HKkJEyf5WkWNMHfQ+6Rtm/CbMI0AAggggAACCCCAAAIIIIAAAgjcEQKuDkBVeKy8LwD14UdtZMPGjfbud3rHuZ9++tlXQY8+UtZOlyxR3Nf17b33W0nLFs3l+IkT0vvb7+zyv1atFh2/ae269fa9dtXLYgYN1+DRkJ+G+fbnjOfkm3GNiZNm/KfiJR+yLa/0zngzpk2Rhg3qS6lSJaTcY5Xs1ufPn7/GXliMAAIIIIAAAggggAACCCCAAAIIeFPA1QGoZxo+LWPGjhPtxqbd6r7p2fuqWnggT24p+/BDdv7T9evJgIGDbBc4bT2lj/Cp5Ttvi3ave/jhMjJ16nS7z2IlythVwnfb27//QPjNrjmtA6B3+bKTNH2zub0zXpFiJUXvhhd+0PSmr796zf2wAgIIIIAAAggggAACCCCAAAIIIOBFgej7lQW4xDrW0o/fD5ImfoI32tLo+f89K+PGjBRtyaQpJCRExoweITWfrBEh57r8844d5Kl6dez8T9u1FR2zSedr4EkfbT76UPJfHmh88pRf7XpBQUG+/QQFh5sONz84OJ5dp1rVJ6RD+3ZSpnQp+94JPmkgamD/vpIxY0bfvphAAAEEEEAAAQQQQAABBBBAAAEE7iSBIDNeUWhcKLDemU5bJh06fFgyZkgv4ceA8pd/7fK2ffsOSWxaJ6VOfa/EM3e+i5z0Dna7du+WTJky2TvjRV5+ve9Pm8HQt+/YIWlSp5F77rn7enfDdggggAACCCCAAAIIIIAAAggggIAnBOJMAMoT2hQCAQQQQAABBBBAAAEEEEAAAQQQuAMFXN0F7w6sD4qMAAIIIIAAAggggAACCCCAAAIIeE6AAJTnqpQCIYAAAggggAACCCCAAAIIIIAAAu4SIADlrvogNwgggAACCCCAAAIIIIAAAggggIDnBAhAea5KKRACCCCAAAIIIIAAAggggAACCCDgLgECUO6qD3KDAAIIIIAAAggggAACCCCAAAIIeE6AAJTnqpQCIYAAAggggAACCCCAAAIIIIAAAu4SIADlrvogNwgggAACCCCAAAIIIIAAAggggIDnBAhAea5KKRACCCCAAAIIIIAAAggggAACCCDgLoEQd2UnYm4mTZoUcQbvEEAAAQQQQAABBBBAAAEEEEAAAQ8KVK9e3YOlulIkWkBdsWAKAQQQQAABBBBAAAEEEEAAAQQQQOAWCBCAugWo7BIBBBBAAAEEEEAAAQQQQAABBBBA4IqAq7vgXckmU24VCA4OFn2Ehoa6NYuuyVdQUJBcunTJPlyTKTKCAAIIIIAAAggggAACCCCAwG0QIAB1G5C9eoh48eLJXXfdJUmTJrVBKK+W82aVS4NPJ06ckLNnz8rFixdv1m7ZDwIIIIAAAggggAACCCCAAAKuF6ALnuuryJ0ZdFo8EXyKef1oSzH10uT4xXxr1kQAAQQQQAABBBBAAAEEEEAg7goQgIq7deeKnGtQhRRzAbxibsWaCCCAAAIIIIAAAggggAAC3hEgeuCduqQkCCCAAAIIIIAAAggggAACCCCAgCsFCEC5slrIFAIIIIAAAggggAACCCCAAAIIIOAdAQJQ3qlLSoIAAggggAACCCCAAAIIIIAAAgi4UoAAlCurhUwhgAACCCCAAAIIIIAAAggggAAC3hEI8U5RIpZk0PdDZPmKlRFmpkmTWurWqin58+eNMN/fm4GDf5AVK1dJly86ytx582XCpCnyztvNJEf2bP5WjzBv0eKlMmToMEmWLKl0/LSdxIsXL8Jyf2/0rmgrVv4pCRMmlHx5H5Df586TkaPGSpPXXpb8+a6dX3/7dMu8JUuWyMSJE33ZSZAggdx3331SuXJlyZAhg2/+rZ7o0KGDpEqVSpo2bXpTDzV+/HhZvny5tGzZUu65556bum92hgACCCCAAAIIIIAAAggggIAXBDzbAsq5zX25R8vKk9WrSqWKj8mxo8fk234D5OSpU9esu4sXL/nWCb085ezTtyCKifkLF9klx4+fkPXr/4lirYizV/75l2jQTLfRlNEEZio8Vk5SpUxp38flJ8ctd+7cUq5cOSlYsKDs2LFDvv32W9m7d+9tK9q5c+du27E4EAIIIIAAAggggAACCCCAAAIIXBHwbAsop4hlHy4j6dKmtW937tota9etl4sXLtr3n3X6UjJluk8aPfesfd/pi66SLl1aafzCc87mV71u3rJVhv48XJImSyZNXn1J7rrrrgjr7N23TzZt2iy5c+WUf/7dIBqMCt/iSpeNHT9Bdu/eIzlz3i8VHysnqVOnlpGjx9j9jJ8wUc6eOyuJEyWS1WvWSoH8+ez8ffv3y0TTCmvdur8lRYp7pGKFx6RUyeJ22cjRY2XLlm1SokQxmT5jtp1Xr05NKVK4kBw7dlymzZgpGuBKkCC+PJAnt9SpXVNCTKusNWvWyZjxv0idWk/6jmM3vkVPefPmlaJFi9q9Z8uWTUaNGiULFiyQ2rVr23n//vuvzJ8/3wan0qVLJ1WqVDH1k0mmTp0q//zzj7z66qsSEhIiffr0Ma3LksmLL75oA1jDhg0zZS8hSZIkkdmzZ0vp0qVl2bJlcujQISlZsqRUqlTJb4kOHjwo06dPlw0bNsjdd98tZcuWlSJFith1jxw5Ypf9999/cv78eSlQoIBUr17dHv/06dMyYcIE0fxq/i5duhKs9HsgZiKAAAIIIIAAAggggAACCCBwhwt4tgWUU6+jxoyTfgMGS+eu3W3w6aEypSR58mR28e49e+XAwUPOqrJz1y45cOCg733kCQ1KfNd/oOh2dWrWuCr4pOsvW7bCbla5UkXJbrrr/bV6jRw1La80HT9+XL7q3lM0iJU3bx4T+NgoA0xXvwsXzktSEzzRpK+JEiaSUybIsW/ffjl79qycOnVaevT81nYJzJAxgz2+dvHTLoKaDh8+Ilu3bbPBp7zhZf4UAABAAElEQVQP5BbN509Dh4u2PJrz+x8ye84fUrpUCbkvY0b5/Y95Mse81+Qc4/TpM/b97XzKnDmzPZwGgTRpi6ghQ4aY4N0mSZ8+vWwz5enXr58p22EboNtvAnA6b5epI53W9dRTA0S6j7QmyHjKtGzT6UmTJtkufrrfuXPnyp49e3QyQtIg0qBBg2Tt2rUm6JjO7nPs2LEmKLfGrjd58mT566+/JF++fJLStELTLnZ6LE3Tpk2z6+l8DU5t3rzZzucJAQQQQAABBBBAAAEEEEAAAQT8C3i+BdTff/8boeQaeDhz5owdaynCghi8GfzDT3atRs89I5kzZ7pqC20JM3f+AkloWkXlvD+HFC9W1LaGWrpsuWmxVN62aNKNapgugVVMgGrVX6ttACwkfnx5okol2wVPWzaVKF7MjgHlHODvf/61QaXy5R6RenVqyfbtO+SLLl/LrNlzpGiRQs5q8tKLz0v2bFllz96wVlhazsNHjtrlJ06csPutUrmipDcBF03aQuqBPLmMRSL7/nY+OS3HNF+a/vzzT/vasGFDE5zLKwsXLpQpU6bIihUrpHjxsJZeGgDSlk9O0qDVxo0b7dssWbKYgN0+O60tnrQ1k66rLaKOHTtmg0zOdvqq+9L52lqqatWqNrClXQK1BVb+/Pnt+FQPP/ywCVYml0WLFtkglgb2NGlgSpPTIuvLL7+UkydP2nk8IYAAAggggAACCCCAAAIIIIDA1QKeD0C1bvWe7YJ35sxZGffLBFmwcLEJuuSRMqVLWo3Q6+g+pS2g/KV/TYsmHcNJA1C9+/YzQYmwsabmzltgx3PSlkqaMpgWPpoKFSxgX6/1tHv3brtKrpz329f77stoj6Hd+MKne80A25qSJU1qXy+aslWsUE6WLF1mBlJfYB86SPbz/2touwjGjx8i8eNfCejYjW7TkxOwcQbtdsqoXfM0Oa8HDhywQSBtFaVd5VKkSGFbSGlLJw0i6TwNGGnXPCdpyyRN2iVP08WLYV0u7ZvLT87YU85xdP86OLoTxNLue9qSSltgOUn3oy2edCwpXT++CRxq0gHVtYsgCQEEEEAAAQQQQAABBBBAAAEE/At4vgtecHCw6CNx4kSmdVBYcGN3uC5Z586dtzJnTFe3ayUdcym9GSNq2vSZtkVS5PUXLV7i25e2vNKWSpoO2GDJJkl6OTDkBDm0ZdOvv00z3b8O2PX0yRmw2zfDTOid2zTtuRz4Onr0qGh+dSyo8EnHeNIU/q57Ke5JIS3N3ft0XKtiRYvYfE/5dWr4zQIy7QRsnLvgOWXU7nWaHCNtgaTpgQcesN3kdNylXLlymfGzcsrixYvtsjwmoBg+OYEhrfeokhOkco6n3fk0sKRjQWmgSbsD6ntt5fTcc2FjggUFBfkCXU7XQd2/k9eojsV8BBBAAAEEEEAAAQQQQAABBO50gSvNRjwqMXnKb7YljI6ltGTpcltK7aamKU2a1Hbcp0WLl9oBw+3MaJ5KlyophQsVlL79BspkE8R5tuHTvrV1nKalZvynZMmSSqcOn9igly7UY/4wZKgsNMGpCuXL2fVnzJptB66ev2CRDU49/FAZX2Bjzbp1ZsyhFHY95yl79qx2cuq0GXLBBEfWrVtv35cqWcJZJcrXPqYllo45pQOtFytaWJavWOnb/5q162T8LxOl1pM1IgyUHuXObnCBjqOk3eY0gKaBJE1lypSxrzly5JCVK1eKjsNUuHBh2+1NF2jrJk0acJo1a5ad1u52GpjS8Zs06baxTc4YVL///rsNODn50UHSL1y4YHenLaK0xZMOlK5JpzUIpV0E15l60sHPtQVX+FZSdkWeEEAAAQQQQAABBBBAAAEEEEAggkDUTUQirBZ33+hA3dr9TANBGhyq+kRlO/aRlqiqGXdJkw7ofe78Obs8ODjIzgu6/KpvwubY2ZI/X17JljWL7cq314y15KQ/V4WNC1Si+IO+4JMuK1gwLICiQS7tPvZMg/q2m94vEydLcLxgGxjSfGU2d1PTrnt/mrvV6dhQ4VMac5e8Zm+8bltQaUBNA0qPlX9UypkxoaJLmu/nTHe7nKbrngbBdDB2vatelcqP2810PCztTqiDkd+OpIOIL1261Nyxb4sNGr322mu+VmGFChWy4y5pS6SZM2faYE+dOnXsXeY0b9pSSgNCmvTOcxqE0qTd35yWZRoc8pf8zdcWVy+88IINTmpgSwNjGgzTMaF0fCodR0oDS4MHD5ZE5o6Emnbu3Glf9e58OnC5BqFWrVplW2TZBTwhgAACCCCAAAIIIIAAAggggIBfgSDT5SvU7xIXzNQxeG510hZF5003vESJEt7qQ/n2r4OV6x3bnMCJs0C7fmlLKg1IRZV07KSECRNG6GYX1brh52t3Mk1OECf8suuZ1tNGx11KbYJjNzPpfrWMOn6Tv8DRzTyWsy+tCzWN3GVPWzxpXTkDpjvrO6+az8SJE8c6n9rtT1tZ3a7yOfnlFQEEEEAAAQQQQAABBBBAwL0C1atXd2/mbkLOPN8F71pGIfHiSUiieNda7aYu10BH5OCTHkDHboou+KTrOANr63Rs0s0KPMXmmNezrgZl/Nlcz75iuo0GkfwlZywpf8t03vXWRVT7Yz4CCCCAAAIIIIAAAggggAACXhXwfBc8r1Yc5UIAAQQQQAABBBBAAAEEEEAAAQTiigABqLhSU+QTAQQQQAABBBBAAAEEEEAAAQQQiKMCBKDiaMWRbQQQQAABBBBAAAEEEEAAAQQQQCCuCBCAiis1RT4RQAABBBBAAAEEEEAAAQQQQACBOCpAACqOVpxbsq13iSPFXACvmFuxJgIIIIAAAggggAACCCCAgHcECEB5py5ve0kuXrwoJ06cEIIqMaNXJ/VSNxICCCCAAAIIIIAAAggggAACd5JAyJ1UWMp6cwXOnz8vJ0+elLNnz97cHXt4bxcuXBB9hITwT8/D1UzREEAAAQQQQAABBBBAAAEEIgnwLTgSCG9jJhAUFGSDKBpMOXfunISGhsZswzt4LTULDg62bjpNQgABBBBAAAEEEEAAAQQQQOBOESAAdafU9C0opxOEugW79vQuCT55unopHAIIIIAAAggggAACCCCAgB8BAlB+UJgVcwGCKTG3Yk0EEEAAAQQQQAABBBBAAAEE7lQBVwegUqZMeafWC+VGAAEEEEAAAQQQQAABBBBAAAEEPCPg6gCUKpcsWdIz2BQEAQQQQAABBBBAAAEEEEAAAQQQiCywePHiyLM89z7YcyWiQAgggAACCCCAAAIIIIAAAggggAACrhIgAOWq6iAzCCCAAAIIIIAAAggggAACCCCAgPcECEB5r04pEQIIIIAAAggggAACCCCAAAIIIOAqAQJQrqoOMoMAAggggAACCCCAAAIIIIAAAgh4T4AAlPfqlBIhgAACCCCAAAIIIIAAAggggAACrhIgAOWq6iAzCCCAAAIIIIAAAggggAACCCCAgPcEQtxepEuXLrk9i+QPAQQQQAABBBBAAAEEEEAAAQQQQCAaAdcHoEJDQ6PJPosQQAABBBBAAAEEEEAAAQQQQAABBNwu4PkA1N69e2X06NGyadOma9ZF9uzZpV69epI2bdprrssKCCCAAAIIIIAAAggggAACCCCAAAIxE/B8AEqDT8WLF5d33nnnmiJz5861waqmTZtec91bscLFixfl6NFjkjJliluxe/aJAAIIeErg0KHDcvfdySVevHieKheFQQABBBBAAAEEEEDAiwKuD0Dd6BhQ2vIpJsEnrdyyZcvKiBEj5EaPGdsT5eTJk9Lx8y9l3PgJdtMkSZJIo+f/J02bvCbxghknPraerH/jAmfPnpXCxUr63VGqlCll3h+z/C5jJgK3Q+DnYSPk6+7fiF47NVV6vKJ0aN9WkidPHqvDv/jSq1KjejWpU7tmrLbzt3L5CpVlj2lx66R0piXts880kBcaPSchIa7/U+tkm9frFNi7b5+Ue6ySTJ86We7LmNG3lwEDB8v8BQtl8MB+vnkxnTh37pwUKlpCpk6ZKJkzZ4qw2fLlK6R5i3fttfibXn3k4MGD0rbNR5K/UDGZMmm8ZM6USfr1H2jPwdj+u4hwIN7EeYFaderLP//+e1U55s+dLS3f/cBeA9OnSycftWkrs2dOvWo9ZiBwKwQefuQxKVy4oPT6prtv92vXrZN69Z+R9Wv+9M3zN6Hn89q162/K325/+2ceAgjcWgHXfyq+3cEg5b7dxxwy9GdZuXKVDBv6o2TNklnWrFkrr7z+hukKmEbq1al9a88A9o6AHwH9wqxfenQMtk2bNkvTZs1l9MifJWmSpLa1ye3+N+Ini8y6QwVWrPxTOnT8XHr2+FqKFS0iO3bslE8+/Uw+/exz6fxFx1ipvNH0dXudvRnns45W+MF7LaV8uUfl9OnT5gvfBunc9WsblProw/djlS9WjnsCl0wLZk2XLl6K8BlCzy29jl7POeZso6/OtCOTNVtW6fhZezs/1CzXFtSavun+laS+9145duyYaGCqXt3aV21rV+TpjhEIlVB501zrqlerGqHMyZIlE+cauHXLVrPW7f/8GyFDvLmjBPR8mzlrjkye8ps8UaWSLbtePzVFvt7ZmeGexv8yUS5cuGDWqxFuLpMIIBBXBAhA+ampa134/GxyQ7P27z8gKVOllFw575cECRJIqVIlZcB3fSTBXXfZi7D+Cvpll69kxszZkjVrFnnR/KJe7tFHZPv2HfYLztJly+zxq1V9QpwvOjXrPCVP1a0jGtzSpB8+atV80k7zhEBMBDJkSG9XO3HyhH3NmCGDJE2aVEaOGiMr/1wln3f81M4/cOCgvPxqExnQ/1t5ofErUuGx8qIfDrKYX+zffKOJlCj+oF1vwcJF8lW3HrJz504zr7i0af2hpEmd2i7jCYGYCuj1UlP+fPlEv0A98EAe6WTOxf/+22Svl/plf8hPP8uwESPl1KnT5tf9qvLWm03ttVV/4b/n7ntk7Pjx8nLjF2XL1m3y6CNlRX/937Z9u3T6vLP8uWqVZMuaVVp98J4ULFjABrh0Oz3nc5hxApu/9aYJMj3iJ7uhkipVKsmYMYNddv/9OUz+ksobzd6W1197Re42rbOiyte8eQuk4xdfyuHDhyV37tzyycetJVu2rBLVtd/PwZkVYIFLl8JumBI5WKTnoyadr8FSf+eStjjt8U1vmTZjhpw4cUKKFCks7dt9bM7Vu+22/QYMlN//mCcp7rlHPvzgXSlVsoTZ1w7pN2CQPFSmtA1w6XH0C5nuJ3eunNKh0xd222eee0Hq1KopmzZvueqaPXhQP7tPuyJPnhZIaVouO9em8AUdPWacvQYmSZLYzA4LlEZ3DY3qWhV+n0wjEFMB/cGmXftPpUSJB+216FJoxADUjJmzpPs3veTAgQP2c6N+x9m0ebOMGj3GHuIu8z3pbfM3mc+XMRVnPQTcIUAAyk893O4AVM0a1eWXCa/J41WqyeMVK0jZhx4y41YVk4QJE9oPrV2/7i7LTHP7Th3ay9bt2+TDj9rIb5MnSpevusnFSxdN0/7+stlckD9o1UYeK1dOHnywqGw1X6x+nTpNPv2krSxfsVI+bvepVKzwmCROrB8ySAjEXCDyFyv9Uq4tUFq2aG7HK5s953dJljyZJDPBKT3v5s2bL926fim/z50nb739jkyeME7OnDkjrzV5034RL1WyuHzXb6D0/a6/tPnow5hnhDURMAIlzLUxe/ZsUr5iZdv17uGHysgjZR+y1ze9dk+bPtNeGzuZ1iHanblL126S1wSpqlSuJNtNAGDW7DnSvNmbktME/OeboOjx48fk/Pnz0qz5O5I9Wzbp26eXTPn1N3s9nTxxnPT+9jtJbQKlY0cNNz8CzJJWrdvInJnTbEArcoWEmg/P4f9+5Lz/frvK1q1bZffuvVHmq3XbdvLcs8+Ycjxsj9fl627Sq0c3ieran9z8eyO5S8Cpd/0C5UxrDvXLvD50XlTn0qjRY23wqfMXneT8ufO2Rd+IEaPklZcb20KuXbvOBo/mzp0vr7zWVP6YPcMGV7ds2WL3G/4Y/23aZK63Z+X1V1821+IFJpjZRpIkTWxbQ0W+ZmtQNHxe3SVKbm6agDn/li1fLsHhhnTInz+v6PVp565d9hqYOFEiezg9H6K7hkZ1rbppeWVHd5BAqO1Cp58Pv+z8lejf7PCfN/VHpRYt35dXX3lJSpofMvX62fK9D6RPrx7mR6ByNuD+9FP17I+afL68g04biuoJAdcHoPSD1e1Ot/uYuXPnkuFDh5hWIxNkxqzZMmLkaDuGRK+e3UyXvCwyddp0afZGU9MyqoR9JEmcRM6ePSMN6tczLaKy2iDAJROI0sHLDx46aD/sqpn+KlD8wWLyQJ48diyIg4cOSaLLHzJutynHi8MCl/8NOl9ycpqWHRoA+P2PuaZVXQ35zQQ6qz5R2Xfe6Zg3hQoVlLx5H5BBg38wLUpWm9Z62+35qd1BgoOC5aXGL0jzt1vaVibhPxTHYSWyfpsEtBXeD4P62wD7lClTpe0nn9oj9+jW1f6SP2HiJBNsety0Egkbw6xOnZoy5/e5UrnS4/oDvzzbsKHUf6puWG7Nua2n9/r1f9uupp+1byfpTGuol15sJBMmTLLz9Lzft2+/ubYesmPzVa1axXZD9fd3QvcVfn4q07JV05EjRyWqfOn4VZq0BdZF8+Xvk7Zt5Nz5c3Y/UV37Q0OT2m14co+AU+/66kxr7rT7k329PN/fufRgsaJStGhh0wo6p20llSNHdtlvfvF39tP4xRekZIniZryUQvLTz8Nk4aJFcu+9917Zr526cu7pMTOZMaA0ZcueVXTcvuiu2Zc358XDAosWL5GNG//zlVDHGb0/Rw49afT/COfp9VyrfDtmAoFYCmirphq16tq/23qt0qTXPv2xSMfTa/r6q3be282byfMvvGRaCh+RlClS2ABUmjSpbcti/f7D50vLxBMCcULA9QEoZ1yD26l5u4+pXZj0w6QOOq6PLaYvvn6p6vpVd+nY4RPROz3lyZPbN8aD01c6XkiIvPv+h7LajBmlLZtOnTpl1rkyFoReyLUsd92VwPLpr/y3u2y3s9441q0R0C/FmvTccc4f7e6pX45Lm+6iS5Yuk88+bedblveBB+y0BpY0ELV1m7b+2GPP44qVIo5B8e+GDfZX2FuTc/bqRYFjx49LkPmvbu1a9nHkyBHp2etbOyDz4gV/yLZt2805t80ERqf7iq/XRz139Yt52nRpfOeqhgb0F/9du3fbdZ8x3ZXCp8VLlsqrphVK2/YdbMsT3Y92gdYgqxMc8K1vdqb7cv6N6HwdmFqTds2LKl+6jQadOnYKuxGFdpPRlio6vlVU1/7wx7AH4CngAgku/509fvxEhHPg1MlT5u9zIjsvqnMpaVLTUs/8vdfzTVNC062krGnVp3/PNT1w+e9/iLnbY4H8+WTv3n0moG++qJlzzp7X5hwKNV0AnfPCjkNlzndNOjaVzo/umm1X5MmzAhpgev3VV6RunVoRymjPHTNHr0H6cM6n2F6rtBszCYFYC1z+m6nDPTQzwzW0+6SDfGa+82jSc1Nb5xUrVsR3XdOuxZr0Zh+2palpbeqsp38r+XxpeXhCIE4IuD4AZf8o3mbK233Mhs8+L++YLxyVK4X9Eq53u2nw9FPSs3dfEzy6y5ZeW5Dcb34V1TRx0mTbuuQt04JEW6C0/+Rj0fF5atSqd+WDhF0z3AcL814/oN7usl3OBi9xWEAHuNWk545z/lQoX8586e9juyppECqF+TVKA5yadu3abcea0HU3bNgozzSoL/olLI9p6Tfkh0F2Hf3QsN2MYZLpvvt8+7QLeELgGgJfmS7J8ePH9413p3f4aty4kYyfMNF8Md9rW9qVe7SsHX9Md6UBqxMmKGDPXfNNLF5wvCvnnHmvgSQdS0rTzGlTfHfS0zH2Ut2bSo6YX1u7de1sxuY5LpN/nWq7ATxoWpbmz5fXbuM8mc/SZl9X/o3o/Dlz/rCL9fqsv9D6y5f+u9Gx0H4ZN0r++edfGWru8PeOuTPVvN9n2m0jX/sLFMhvW8bahTy5RiCp6e6pAUod4875W62Z03HGMpj6d66d/s6l738YYn9A+u7bXiYgn8OO+Xj+vBlg15xPmrT1nX5J0+vmf5s2y9Mm+BT+uqznsP7nHENfI0/7u2Y769iD8ORhgbDrnN/6vnwN1GV6DdPX2F6rFs6bw50+PXz23Mqi6fmmj4bmc+KkKb/abup6PJ2nXYR1CBGd1qQ/LGlKa1o9mT+2NmDqrMfnS0vDEwJxRiDY7TnVi8uNPK6nfDdyvOvZtkKF8nZw5oWLFsvRo0dlw8b/ZNjwkbbJfVBQkB1wdIr54qPLtKuI3u0pnmldoi2etIudfrmZa8bd2Wd+bddBazUPmsLnJfL78MuYvrFzzPN+l78Ead98p6zp06ezg0D36NnbjMNTwTdfzzMNkOpAujoGmZ6j2nqvqGnN8bf5cq3d9nSg3J+GDrODM+vgu84+eeU8jMk5UKZ0KRk3foLo4Lk6IPmePXtl0KAfRJvip02b1l43J0yaYgclP2POr/afdjTB/D72PNPz0wkS6bGcoJEGDDR4MPTn4Xa8spXmTnt1nmogO0wQSsdh6mPGntBWqtrV1O7Dz98l/TSs+dGudHqLaB2Iv1efvrY7n7ZC1S5U/vKl4/U0fuV106Jwhv23okEqewzzpINNR77261gtMXFindv/70nrWO88t/7vf2xXOv07ruOGFTWDimt9RHUuaSs+HadMb0Syc+cuey6cN90wdRtN2s1Zr5t6tyi9phYokM8EpzTkFPZ33gagzHtnfQ1c6TJNu0zrU902qms258ntP09ut3nYde7K3+/wx3eugWEtOsPWie216oIJjIbfJ9PeP6duRh2HPy/jmdad2hVvs7lZgibdv35u1B4e2n305MmTZuDxsfbHTh2TMdj8kKTdlPWOs3y+5Hy7Geejm/Zh/xF4/IkWUH4qWE/C25n0DnX6AVFbNDlJ7ySmd27SvGh3jFat20rFytXsxfe9li3kPtNyRAcZbf3xJ7aVVKb7MoqOI6EDkIZ9kNAvWlc+cOh+bZPV21w2pzy8xl2BK+dT2B85pyTaFXTN2rX2LkzOhVuXaQC1fMUq9gt9p88+ta07tIVHE9OP/933W9nNdeyJtm0+sgM53+5/b07+eY2bAnrXnHdbvm3vAKZ3B9Wkd8Lr2f1re72sX7+evQ42ePZ5u0yvi++1/Mgu03NZP/T6zjl9bx46WLl2I+3Q8QsZ9P2P9jqr110dN+c1MwBqxy86S5my5e3+dPwoHbfPtw87N+xJ79ajD02ZzRg8/3u2oTR67tlo86XBqQ/ff1e69ehp7gbUwW6rg/Nrdyt/137teuXv2HZDngIqoF+gPvm0gx2nRDOiQdFmbzbxXSOjOpd0PB499zRAGT9+iOhdFtet+9vXymnTps1S+uFytmxtP/7IXlN3mUCVJudc0B+rnGlt7ayByoKmtdyLL70q/UzLKm05F/mabXfAk/cFzEXPCbxfVdjL10Bnvp5DUV1Do7tWOeeesx9eEYiJgPPDpq6rrYq1a/2YcePttUx/YNfxQvUGIZr0b+o33bvaab0Zzo8/DTUD6B8XHf+Rz5eWhScE4oxAkPnwrZ/HXZkWLFjgG0jzejM4cuRIc3vPEmY8hWv3UZ87d64sWbLE/PGtf72Hu6Ht9EKsg4jrrZZDQq6ODR49dszeaSz8oM3afUPvIOF0IbmhDLAxArEQ+NHc6l5/rWpnvhBp0i4jemey4UN/tN2YkiZNan6lCoqwR+1Coq2j7r58e/EIC3mDQCwF9MOnXiv93VxBWxbp+RZ2e/GY7Vj/HOqA4ffcc7foF/rwSY+ldybV7n83kqLKl17/D5muVhpgivzvxt+1/0bywLa3VkDPOz1f7jF/y/0lf+eSnnvayjmqbY4dO27HkvL32cDfMZx5+vlAz1tNka/Zzjq8IuBP4HquVf72wzwEbkRAf6A/aVp+ape88Elb0GtLKA3aa+LzZXgdpuOygA69UKZMmbhchGvm/eooxzU3ub0r3OivKo899pjMmjVLRowYcc2MZ8uWTXT9Gz3mNQ8UzQrOHSD85UFvc68p/DJttqq/3oefF83uWYTADQscPHjIdDPpLbPN+Db9+vb2nXvOeCV6LuqgutolSb9Uh0/6pV6DpZyv4VWYvl4BvfZp8nc+JUiggaL4fpfZjaJ4uvvu5LZVVOTfZqI7VhS78js7unzp2Cv+/t34u/b73TkzXSGg1zkdm8zfeakZjOpcim6bsGuq/3M9ukInSJDAdg31d82ObjuWIXA91yrUELjZAvqju/4NjHw9dX4Mcubz+fJmy7M/BG6dgOsDUJG/BMSWQgdHrlv38i23Y7jxjR4zhodhNQTipIC2KNE73dWtU1v0riTOvxf9kNC2TSvbfcmZFycLSKYRQAABDwlEdc32UBEpCgIIIIAAAgjEEQHXd8FLly5dHKEkmwgggAACCCCAAAIIIIAAAggggEDsBfbs2UMXvNiz3dwttE8vCQEEEEAAAQQQQAABBBBAAAEEEEAg7gp4vgte3K0aco4AAggggAACCCCAAAIIIIAAAgh4Q8D1AShncDlvcFMKBBBAAAEEEEAAAQQQQAABBBBA4M4TcH0AisGM77yTkhIjgAACCCCAAAIIIIAAAggggIC3BAhAeas+KQ0CCCCAAAIIIIAAAggggAACCCDgOgECUK6rEjKEAAIIIIAAAggggAACCCCAAAIIeEuAAJS36pPSIIAAAggggAACCCCAAAIIIIAAAq4TCHZdjsgQAggggAACCCCAAAIIIIAAAggggICnBAhAeao6KQwCCCCAAAIIIIAAAggggAACCCDgPgHXd8Fbvny5+9TIEQIIIIAAAggggAACCCCAAAIIIHCTBHLmzHmT9uTe3bg+ANWoUSP36pEzBBBAAAEEEEAAAQQQQAABBBBA4AYFFixYcIN7cP/mdMFzfx2RQwQQQAABBBBAAAEEEEAAAQQQQCBOCxCAitPVR+YRQAABBBBAAAEEEEAAAQQQQAAB9wsQgHJ/HZFDBBBAAAEEEEAAAQQQQAABBBBAIE4LEICK09VH5hFAAAEEEEAAAQQQQAABBBBAAAH3CxCAcn8dkUMEEEAAAQQQQAABBBBAAAEEEEAgTgsQgIrT1UfmEUAAAQQQQAABBBBAAAEEEEAAAfcLEIByfx2RQwQQQAABBBBAAAEEEEAAAQQQQCBOCxCAitPVR+YRQAABBBBAAAEEEEAAAQQQQAAB9wuEuD+LN5bD3bt3y/Dhw+W///675o5y5MghDRo0kPTp019z3Vu1wm+Ld8h9aZJI/mwpbtUh2C8CMRY4evSoJE+eXIKCgnzbXLp0SYYOGy5PVq8md999t28+EwgggAACCCDgPoEjR47KnN9/l5QpU0qZ0qUkJOTKx/99+/bbZalSpZLSpUpJ4sSJoizA6jVrZOWfq+R+83n5wWJFJUGCBFete/r0aRk1eqzEixdPnn2mwVXLh/48XOIniC/169WVzVu2yNy5833rBAcHS/bs2aRkieJ2e9+CcBM/DxshDz9URjJnzhRubuwmJ0ycLHny5JJcOXP63XDlyj9l+oyZkjJVSkmcKLHveD/+NFQqPlZeMmTI4Hc7ZiKAAAIIXFvgyl+ga68bJ9fQ4NODDz4oLVq0uGb+586da4NVMVn3mju7jhWmL9spT7WdJX3eKUMA6jr82OTmCugHw2o1asuqFUskfvz4duehoaHSrUdP+aZnb3modGkCUDeXnL0hgAACCCBwUwU0GPTu+x9KqVIlZd/evbLXBJwmjh8jOXJkl/G/TJDmLd6VcuUekdWr15ofYNPJ8KE/SrJkya7Kw4BBg6XDZ59L/vz5ZPfuPXbd0SN+lkSJIgasjh8/IR+3a2+3L1yooOTLl9e3r7Vr18lHbdqKBrs0ALVmzTq7rgazNB06dEg2bd4ilSs/Ln179xQNSEVOrVp/LIMGfHfdASgNLDVr3kK6fNnJbwDq2LFjUqtufRtgq1K5koQ/3sdt20v2bNkIQEWuFN4jgAACsRC4+soei43jwqra8qls2bIxyqquF5OWUjHaWSxWOnfhkrQduELqtJ4Zi61YFYFbK3Dw4CE5efKk7yD79++Xxi+/ZoNPvplMIIAAAggggIArBS5evCjf9OotbVq3khE/D5FZM6ZKvrwPiLYiOnfunHzxZVdp89GH8sOgATJ7xm8mILRWZs/546qyaAsqDT690eQ1mTxhnCxe8IecMp8Pen/73VXrhp8xdfqM8G9l8pRfI7x33owygawxo4bL7JnTZMgPg2Tq1Omybt16Z3GE180b/5YKphXS9ST9HKMBt+jS3r377OLuX3eVV15uLDdyvOiOwzIEEEDgThXwfAAqLlTsjn0nZdzcrTLmswqSNf3VvzrFhTKQR28JaNe7N5u9bQtVqUo12b59h2miP1fOnDkjQ4d8H6Gw2pT96Wee883r13+gPFmrrugHX01Dhv4s733wkW85EwgggAACCCBw6wVOnDghLzd+UWrXrGEPpt3pteXT8pUrJdh0kev3XR95puHTdtmZM2ft68WLF67K2ObNm+282rVq2ldtFV2lcmX503THiyrVqV1Lxo3/xbdYu++PHfeLPFGlsm+ev4kcpguepvMXrs6Hzq9V5ylZtGixbNz4n/2s0fe7/lK0eGnJW6CIfNn5K9GW2v6Szn//w9ZS1+Qrqu57mzZtlsavvGY3f/6FxjLNBNCc40Xe56q/VkvdpxpIluy5pHyFShGCaxrgK1XmEbtMPw8tXrI08ua8RwABBO5YAQJQLqj6zGmTysqBtaRS8YwuyA1ZQEAkadKk8sH7LS1Fn17fSLp0aaXmk9VlmGmar2M/hE/5TfN6/TCoH9w0jR03XvSD2d9//2Pfjxk73jRzv99O84QAAggggAACt0dAx2ls9Pz/5N5777UH3GXGRR02fKQ8XrGChJgAVMEC+SVJkiTSpevXUu/phlKi+IN2WeTcadBK07bt232L/t2wQdat/9v3PvJE1Scqy7Zt20W73WlateovOXb8uDxS9uHIq9qWVL369JUvOneVBs8+L9WrVZUCJm/+kn6+OHnqlJw9e9Z+1pg3f4H06dldPvrwfenT9ztZumy5v81Ex57aaHpFtDLrRZXuuy+jaRHWyi7u0vkLKVWyhD2GHi98OnDggDQ0+cyePbtM/GWs1KlTW5q+2VyWr1ghu/fssd323nmnuWlVNtWMNZVHmrzxlu9HufD7YRoBBBC4EwUIQLmg1kPiBZkPAlcGeXZBlsjCHS6gg4dmypTJKtx/fw47BpS/wUZ1BR0wNHu2rDJ/4ULR5u3rTeDpgTy5ZdHiJfa9DuZ5vc3lbQZ4QgABBBBAAIEbEti5c6c8+79GdmyjV156McK+tDWUDqz9n/khSQM8kZPejKTmkzWkdZt2MnDQ99KufQeZMXOWbRUdeV3nfdq0ae2A579Nm25nafe7hk/Xl5D4Vw8/qy2p9LPC8uUrRLv/79u3zz6cfUX3+nGbVnZ8q/8929AG07SckZP+QNb643bSs0e3aAdZ1885WbJktpvrZxstt7/069RpdoiCxi82khT33CO1jI1+7hk3boIEB4V9tfpr1WrR1uTtPv5Ipv06McpB1f3tn3kIIICAlwUIQHm5dikbArdJoJr5tXKOGTdi4aIl9sOtvtdfJefOm2+DU/pBjoQAAggggAACt19AfxiqUaueZM2aVX76cfBVd69r2aK5HSPqwQeLmjGj+vjNYLu2raVChfIy1nSru2C6x7X64D3Jlcv/XeScHdQyXf90oPMLpkv+2PETTMumJ5xFEV77m66AA/v3FR0LauG8ObLHDJY+yAS6YpLSpknrWy25GTz9woWw7v++mWbivQ9a2cHTN2zYaO/Qp0Eu7RanP5RdT9q5c5fdTLvgVa5awz62maEKDh0+LGnTprGBrkVLltjBzIuXeliGjxwdZdfA6zk+2yCAAAJxWeDqnyHicmnIOwIIBESgQvly0tN8aNWm/Nq8vkzpktL1q272DjZPml8GSQgggAACCCBw+wW0ZdGzz78o2iXui06fSUhI2Ed/HWy7fYeONpCUKdN9NmM5smWXEaNGX5VJDTgtW7pcWr7ztqRMkcIu1xZF2UxAK7pU0XT103GXBn//oyQw40YVLlxINphucNEl7TaYJ3du+dcEi2KSzLBW10ypU6c2LasOysjLZdMbrCxZukyyZM5su9ldcweRVtC7+OnnneVLFvjuAqhBvsSJE9lWT2nSpJYZU6fIlq1bZcSI0baLY/lHH4lwR8BIu+QtAgggcMcI0ALqjqlqCopA7ASSJE5sN/hr9Wr7a2d0WxcsWMB+GPtlwkQpXbqUFCpY0K6uTfTpfhedHMsQQAABBBC4NQI6dtFLrzYxYzdml4YN6svq1WtsVzcdl0mDJDt27JAu5scivcudjp30w5CfpOrlQcK129qPPw21rZc0aNVvwEDp1u0bOX36tG3h/NPQYfL8/56JNuOpUqaUcuUekc86fi716tURHQTdX1r55582XxoU+q7fADv492Pmh62blfr26WlbV2kLK33oIOTN3mgibzV747oOocEkDWL16NnbZ1fFtIRasWKlHD5yRJ5u+D/b8it9unRSsGDYWFYJEya8rmOxEQIIIOA1AVpAubBGo/j77MKckiUvC+gHNH3UqddAhpvBxzWwFD4FBV/5IKljRtWu9aToB9LChQraX1grPV7RDMi5Ugrkzxd+M6YRQAABBBBA4DYIzJnzu235o61/9G+5k/Rv+9w5M6XjZ+2l69fdpVDR4naRjvP04Qfv2ulVf/0lH7dtL3XNANsh5gepNh99KG3atZc8+QqJBla0NVWRIoWdXfpenc+wzuuT1avbLvrVql7d/S748ueIyHlr9mZTee4awS3ngOGDWvETxHdmX/vVyWCkNZ3ZQXLlM06kVUTHxuz1TXf5oFVr+bZvP/sD3Guvvmw+B4XdJVDHpfrIjJfVvEWYpd7UxRnIPfK+eI8AAgjcaQJBoSa5tdALFiyQMmXK3FD23nzzTenVq1eM9xHb9WO8Y1ZEIA4K6G2TT5lfUPWueCQEEEAAAQQQ8J7A4cNH5K677op2gG6n1DrOkQ68HT7w4yy70171K9T+/QfMXQZT2SEHwpdfx73SwdTTpknDAOThYZhGAIFoBW5G/CPaA7hgoee74OUwt4yfO3dujKh1PV2fhAACYQLBwcEEnzgZEEAAAQQQ8LBAihT3xCj4pAQ6BhTBp7CTQR20K6N+VoqcQvTOgunTE3yKDMN7BBC44wU83wWvQQPTfWj4cDMI4IhrVrYGn3R9EgIIIIAAAggggAACCCCAAAIIIIDAzRPwfAAqvfn1oUWLFjdPjD0hgAACCCCAAAIIIIAAAggggAACCMRK4Oo2o7HanJURQAABBBBAAAEEEEDAbQJt27YVfWji1R0ObjtHyA8CCCBwuwU8Pwj57QbleAgggAACCCCAAAIIIIAAAggggEBsBBiEPDZarIsAAggggAACCCCAAAIIIIAAAggggIAfAbrg+UFhFgIIIIAAAggggAACCCCAAAIIIIDAzRMgAHXzLNkTAggggAACCCCAAAIIIIAAAggggIAfAQJQflCYhQACCCCAAAIIIIAAAggggAACCCBw8wQIQN08S/aEAAIIIIAAAggggAACCCCAAAIIIOBHgACUHxRmIYAAAggggAACCCCAAAIIIIAAAgjcPAECUDfPkj0hgAACCCCAAAIIIIAAAggggAACCPgRCPEzz1WzFixY4Kr8kBkEEEAAAQQQQAABBBBAAAEEEEAAgdgJBIWaFLtNWBsBBBBAAAEEEEAAAQQQQAABBBBAAIGYC9AFL+ZWrIkAAggggAACCCCAAAIIIIAAAgggcB0CBKCuA41NEEAAAQQQQAABBBBAAAEEEEAAAQRiLkAAKuZWrIkAAggggAACCCCAAAIIIIAAAgggcB0CBKCuA41NEEAAAQQQQAABBBBAAAEEEEAAAQRiLkAAKuZWrIkAAggggAACCCCAAAIIIIAAAgggcB0CBKCuA41NEEAAAQQQQAABBBBAAAEEEEAAAQRiLkAAKuZWrIkAAggggAACCCCAAAIIIIAAAgggcB0CBKCuA41NEEAAAQQQQAABBBBAAAEEEEAAAQRiLhAS81Vv75q7du+WGTNmRXnQKpUrSZo0qaNcrgsuXLwoJ46fkHvuuTva9U6cOCFjx/0iqVPfK09UqRztus7Cs2fPysKFi+Xo8WPyWLlHJVmyZM4ie9xlS5fJ5i1b5cFiRSVnzvt9yyJP7Nq1S+bNXyBJkyaVh8qUlrvv9p/XRYuXyL//bpBiRYtIvnx5I+xm7dp1snzFSilVqoTkyplTxo3/RY6bcjspWbKkZllJSZ8unTMrwuus2XNs/os/WCzC/Ni8WbpsuZw+fVoeKfuw38102ajRY2Xbtm1SzJicP39BnqxRTVavWSPbt++Qqk9U8bsdMxFAAAEEEEAAAQQQQAABBBBAIO4LuDYAtWnTZvm4XfsohQvkzxdtAGrNmrXy7vsfStMmr9tAR5Q7MguOHDlqj6XBopgEoP7591+pXfdpSWsCYPfee6+81fwd6dmjmz3OhQsX5PHKVU0w5ozkypVTPvyojXT/uovUrlXzqixo0KZe/YY2MJTq3lQmv61k8sRxki1r1qvWnfLrb/LDjz9J5cqPS79ve0dY3v2bXjJt+gzp8mUnG4D6uvs3cvLkKbOfLHLGBMo2b95i3p+U0SOHib8g0/CRoyRrlix+l0U4UBRvNIjW6MWXpXKlx6MMQPXtN0D6Dxgk1atVlXXr/5bpJr8agFqwYJH8OnUaAagobJmNAAIIIIAAAggggAACCCCAgBcEXBuA0gDTiJ+HWOMRo8aYFkrjpWGD+lLryRp23v3354jWXwM26//+J9p1rnfh4O9/lNKmRdHA/n3tLnqYANA3vXrbgMroMeNk7779snzJAkmUKJF0/bq7aEDIXwCqw2edpETxB+Xnn36Q+PHjS6vWH0uLlu/L+DEjo8za1KnTTeum474WV0ePHrXBp8gbvNT4BXmjyWt29vnz5+V/jRpLv/4D/QaZvuvTK/LmMX5/0bQya/HuBzbAFd1GmzZtssGnzl90lNDQUHnn7beiW51lCCCAAAIIIIAAAggggAACCCDgIQHXjgGlXdG025g+smbJbMm1ZZAzT7u8jf9lgjz19DOSJXsuqVK1hu16pivOmfOHfG9aC2n65NPPpE/f72zQQwNB1Z6sbdcvVeYRGWFa/vhLy1eskIqmFVP3Hj39LTbd4IpK87fe9C3LYvK3YcNGOXXqtJQ33fHGjh5hg0+6wqlTp+T8ufO+dZ2JS5cuyaq/VtvAlAafNFV+/HFZufJP24XPWS/8a7lyj0iSJElktimfk2bMnG27+aVKlcqZddWr7l9bQ507f+6qZTqjfYeOtnWSTrdr30G6mXI//cxz1unJWnWjDeQNHPS9HD1yRJ6qV0c395s6fPa5TJg4WSZNniINn31efpkwUd5o9vZV6547d046d/lKihYvLXkLFJG33m4pBw8dsuvtM0G95194yeZJl2s+tVsfCQEEEEAAAQQQQAABBBBAAAEE3C/g2gDUteh0nKPmLd6VJWasJQ3MaGunt995z44zlDhJYkmVKqXdRfr06SRVypSiLZO0pVLCu+6SF194Xnbv2SPvf9jatiaKfCztPqcBpb379kVeZN9rsKVggfx2WlsXDRr8g5R9+CFJnDiRpE2bRvLkzmWDS6+81lQ0QPNJuzZX7Sc4ONgGjrZs3epbtnHTf3Z6586dvnnhJ0LihUj9p+rKpClTfLMnTJokdWrX8r13JubNmy+9+vS1ZVYXDQC99WZTZ3GEVx1v68DBg3berl27beCtmhmT6Zdxo+28T02Ayl9ab7rSdfz8S+nR/SvjmtDfKnbeyy+/aH20i97nnTrI0aPHRFtERU5aP8NHjpYO7dtKv769ZcuWLdLC5F1Tj569bCurqb9Okl7fdJPvfxhiyjQp8i54jwACCCCAAAIIIIAAAggggAACLhRwbRe8a1kNMIEdTUOHfC8PP1RG/pg7T54z3cy0K9zcOTOlhhlrqPe338lrr7xsu8ZpV7Uxo4ZLurRpZePG/+T33/+QTWZspB07d0kyMwB4+KStrFb/uUwSJEgQfvZV02fOnLFBL93H+G+6R1iuYy5lzJjBtliaPOVXqVjhMQkJicj9VL268kGr1hISL54kMXnQYJUmHeA8qlSt6hN23CjthqcthrS111edv5CvuvWIsMkOE8QKa011QXaa/Gl+1q//x7beirCinzc6TtPzzz1rlzxd/ynp2avPVWtp66Omb74lH7dpJblz5bpqefgZOvh58uTJJWWKFHasqd9lbvjFvunBJqhU1wTTChYoYOe90Og52yVxz569Es8YaTnWr19vg1lLF803A7Yn923LBAIIIIAAAggggAACCCCAAAIIuFcgYkTEvfmMkDO9u50OMq7JGVRbx1LStG3bdtGBwCOnIyYA9WXnrrbFVPhlFy6cD//WTmtASAMm0SUNaDV++TXZt3+/jBszQjJnzhRh9TKlS4k+nqpbR6rWqCXPPtNQSpUsEWGdenVr25ZH06ZNl0yZMsknbdtIs+Yt5L6M90VYL/ybokUKm9ZdqWw3PA0qPfpIWTsQevh1dLrB0/V9Y0Dp+x+HDJXWH7eTJ56obFuE6byokrYac1JScwe9c6aVV+T0nRlUXAN4yU1XSL27nQ7MroEzbWmlg4vHNh07dswGyX78aaiMMeN9OUm7HGpLtBbN35KDBw/ZgJ8u0wHju3z5uWTPns1ZlVcEEEAAAQQQQAABBBBAAAEEEHCpQJzsgqcBopw577ekzkDj2h1Mk7a20ZZGQUFB9v3Fi2HBqE87dLLBp/btPpa/166yLZJ0heCg2BMcOHBAnm74P3uHuTEjh0uWzGFjVOn+NICiLa+cdN99Ge3ktu3bnVm+12XmLniVH68oE8aPkd49w1pQaXBJu/JFlbQlUJ3aNW03vPFmLKVaNcMGZY9qfWe+Bq40bdu6zZkV5ase41opxIwrpUE/DT6NHDVa/jN3Ldz43yaZOGnytTb1uzzp5VZorT54T9atXmkfSxfNkyE/DDQtrHLKnr17RZdp3Q0e2E8OmbGhPv+yi999MRMBBBBAAAEEEEAAAQQQQAABBNwlECdbQClhTXM3vK5fdbOtkGpUr2oCH2HjIjV+sZEVTmjuQKdJgzTxzNhJOuaSpr1798mw4SNlxsxZ9v1JM0i4DngePi1avMTu9xlz1702rVuFX2SnPzItibZt3yF9+/Q03cJ22ocuyG/u3Jf5vkzSqPHLtoWOBsl0XCNNpUqEtX7Su/npYOpFTEBo/sJFtivg94MH2LGounz1tbz+6st2/eiedHymWnXr21X6m7GS/KUdO3bYLniXQi/JkSNHpY8Jimlrojx5cvtbPdbz3mz6uujDSW0+/kTUsttXnZ1ZsXrV+tGxrHRspwcfLCY5zV0O27X/TFatWiW/TZlox9nScaP69PpGChcuJGlMV0q9yyAJAQQQQAABBBBAAAEEEEAAAQTcLxBnA1Aa/Lhoutr1GzDIBi2U+p2335LGjV+w6to1TQNUOkbS3cnvlqZNXpPNZlBrvSOetjLSsZR0bCa9E13GDOntNs6TduHT7m2nzRhPkZMOXj516nQ7W8ecCp+WLJwnjz5a1t4hr8kb2mXsoD2Wtthxuuh17vK11K1TywagdDB07UpYpFhJGxzSLnkvXc5/+P3qtNOiS6cLFSpoW3ppICaqroI/Dxsh+tCkgSdtATX85yExCtqEP1aQBNl9XOsp/Db+1tXllxulRShL+O10PKkPzMDwdZ9qYHeh3ex6dP9a7jIDx7d4u5k0f7ullCj9sF1WqGABea9lC3+HYh4CCCCAAAIIIIAAAggggAACCLhMICjUJJflKVbZ0ezv27ffjIOUyg5UHX5jHZNIxxZKnTq1b/Z+M2aTBqCcFlG+BTd54qIZp+rAgYOSJk3qCAEXf4fRAcW1NU/kQcr9rXsnzDt16rScP3/uqpZpWvbDh4+Yugvyu+xOsKGMCCCAAAIIIIAAAggggAACCMRFgTgfgIqL6OQZAQQQQAABBBBAAAEEEEAAAQQQuJMEYj8C952kQ1kRQAABBBBAAAEEEEAAAQQQQAABBG5YgADUDROyAwQQQAABBBBAAAEEEEAAAQQQQACB6AQIQEWnE8Wytm3b2iW8usMhimpiNgIIIIAAAggggAACCCCAAAIIuESAMaBcUhFkAwEEEEAAAQQQQAABBBBAAAEEEPCqAC2gvFqzlAsBBBBAAAEEEEAAAQQQQAABBBBwiQABKJdUBNlAAAEEEEAAAQQQQAABBBBAAAEEvCpAAMqrNUu5EEAAAQQQQAABBBBAAAEEEEAAAZcIEIBySUWQDQQQQAABBBBAAAEEEEAAAQQQQMCrAgSgvFqzlAsBBBBAAAEEEEAAAQQQQAABBBBwiQABKJdUBNlAAAEEEEAAAQQQQAABBBBAAAEEvCpAAMqrNUu5EEAAAQQQQAABBBBAAAEEEEAAAZcIEIBySUWQDQQQQAABBBBAAAEEEEAAAQQQQMCrAgSgvFqzlAsBBBBAAAEEEEAAAQQQQAABBBBwiQABKJdUBNlAAAEEEEAAAQQQQAABBBBAAAEEvCpAAMqrNUu5EEAAAQQQQAABBBBAAAEEEEAAAZcIEIBySUWQDQQQQAABBBBAAAEEEEAAAQQQQMCrAgSgvFqzlAsBBBBAAAEEEEAAAQQQQAABBBBwiQABKJdUBNlAAAEEEEAAAQQQQAABBBBAAAEEvCpAAMqrNUu5EEAAAQQQQAABBBBAAAEEEEAAAZcIEIBySUWQDQQQQAABBBBAAAEEEEAAAQQQQMCrAgSgvFqzlAsBBBBAAAEEEEAAAQQQQAABBBBwiQABKJdUBNlAAAEEEEAAAQQQQAABBBBAAAEEvCpAAMqrNUu5EEAAAQQQQAABBBBAAAEEEEAAAZcIEIBySUWQDQQQQAABBBBAAAEEEEAAAQQQQMCrAgSgvFqzlAsBBBBAAAEEEEAAAQQQQAABBBBwiQABKJdUBNlAAAEEEEAAAQQQQAABBBBAAAEEvCpAAMqrNUu5EEAAAQQQQAABBBBAAAEEEEAAAZcIEIBySUWQDQQQQAABBBBAAAEEEEAAAQQQQMCrAgSgvFqzlAsBBBBAAAEEEEAAAQQQQAABBBBwiQABKJdUBNlAAAEEEEAAAQQQQAABBBBAAAEEvCpAAMqrNUu5EEAAAQQQQAABBBBAAAEEEEAAAZcIEIBySUWQDQQQQAABBBBAAAEEEEAAAQQQQMCrAgSgvFqzlAsBBBBAAAEEEEAAAQQQQAABBBBwiQABKJdUBNlAAAEEEEAAAQQQQAABBBBAAAEEvCpAAMqrNUu5EEAAAQQQQAABBBBAAAEEEEAAAZcIEIBySUWQDQQQQAABBBBAAAEEEEAAAQQQQMCrAgSgvFqzlAsBBBBAAAEEEEAAAQQQQAABBBBwiQABKJdUBNlAAAEEEEAAAQQQQAABBBBAAAEEvCpAAMqrNUu5EEAAAQQQQAABBBBAAAEEEEAAAZcIEIBySUWQDQQQQAABBBBAAAEEEEAAAQQQQMCrAgSgvFqzlAsBBBBAAAEEEEAAAQQQQAABBBBwiQABKJdUBNlAAAEEEEAAAQQQQAABBBBAAAEEvCpAAMqrNUu5EEAAAQQQQAABBBBAAAEEEEAAAZcIEIBySUWQDQQQQAABBBBAAAEEEEAAAQQQQMCrAgSgvFqzlAsBBBBAAAEEEEAA8bV40wAAQABJREFUAQQQQAABBBBwiQABKJdUBNlAAAEEEEAAAQQQQAABBBBAAAEEvCpAAMqrNUu5EEAAAQQQQAABBBBAAAEEEEAAAZcIEIBySUWQDQQQQAABBBBAAAEEEEAAAQQQQMCrAgSgvFqzlAsBBBBAAAEEEEAAAQQQQAABBBBwiQABKJdUBNlAAAEEEEAAAQQQQAABBBBAAAEEvCpAAMqrNUu5EEAAAQQQQAABBBBAAAEEEEAAAZcIEIBySUWQDQQQQAABBBBAAAEEEEAAAQQQQMCrAgSgvFqzlAsBBBBAAAEEEEAAAQQQQAABBBBwiQABKJdUBNlAAAEEEEAAAQQQQAABBBBAAAEEvCpAAMqrNUu5EEAAAQQQQAABBBBAAAEEEEAAAZcIEIBySUWQDQQQQAABBBBAAAEEEEAAAQQQQMCrAgSgvFqzlAsBBBBAAAEEEEAAAQQQQAABBBBwiQABKJdUBNlAAAEEEEAAAQQQQAABBBBAAAEEvCpAAMqrNUu5EEAAAQQQQAABBBBAAAEEEEAAAZcIEIBySUWQDQQQQAABBBBAAAEEEEAAAQQQQMCrAgSgvFqzlAsBBBBAAAEEEEAAAQQQQAABBBBwiQABKJdUBNlAAAEEEEAAAQQQQAABBBBAAAEEvCpAAMqrNUu5EEAAAQQQQAABBBBAAAEEEEAAAZcIEIBySUWQDQQQQAABBBBAAAEEEEAAAQQQQMCrAgSgvFqzlAsBBBBAAAEEEEAAAQQQQAABBBBwiYCrA1CLFi2WLNlz2UfP3t9eRdbpi86+5WvXrrPL/5g7zzdvyq+/XbVNTGbMX7BQZs6aHZNVWQcBBBBAAAEEEEAAAQQQQAABBBBA4BoCrg5AXQoN9WU/9NIl37QzceniRWdSLoWGLb908cp6oeG2960YzcSxY8fk1SZvyDP/ayT//bcpmjVZhAACCCCAAAIIIIAAAggggAACCCAQU4GQmK4YV9Z74IE80rNHN5vdIoULxSrbu3bvkalTp8dqG1ZGAAEEEEAAAQQQQAABBBBAAAEEEIhewHMBqF27d8sPPw6xpU59byrJkCGDnZ4+Y6YMGPS9bNiwUQ4ePCjp06WT6tWekCavvyqpUqWS5StWSOs27Xxagwb/IFOnTTfBrK99+5gz5w+ZOn26zJu/QE6ePCWFChaQZ59pIBUrPObbbtbsOdK7T1/7vvlbb8qnn3WSE8dPyEMPlZYtW7ba+Y2ef06erFHNt82QoT/L+PET7PsvOn0mOXPe71vGBAIIIIAAAggggAACCCCAAAIIIBDXBeJMAGr3nj3ijPPkoO/bf8CZ9L0ePXJUli1fYd8fOnzYvv61eo28/GoT3zo6ofvrP3CwbN22Xfp/10cOHz4i6//+x7eOLtfH6dNn7Lxx43+Rt995z7dcJzTYpI9XXm4sbT760C478H/2zgJAquoL4wd26e4uaUFCGkS6GyREQUJppERSQgVECZHuUlr+ktKh0ggSAkq3dDcL//vd2Tu8GXZnA3Z3Zva7MPvqvnvv+707b9773jnnXr1qr7/JRy3s+ePHi2df7xstmoMANU0JYydOntJCWKY3Mtn34QwJkAAJkAAJkAAJkAAJkAAJkAAJkAAJeAMBjxGg5sydL/iEJo36YYzeLX36dDJh7GiJp8SgiZOnyI8/zRUEHN+79y/Jni2btoYaP2GSzgurplLvlpSkyorqr337HcSnT1o2l+jRo8uMWT8qS6h7MnnKNClTupSUKF7spebVf6+unD59RhrUf0/Onb8ga9auEwRXv3LliiRLlkxOnDipxSfsWLdOLfH18XmpDK4gARIgARIgARIgARIgARIgARIgARIgAU8m4NZByF8X2Pv37+uizihrp4mTp8reffuk9Scfy/atv8mhA3slf/58ki5dWqldq6a9yiKFC0nTJh9IggQJZOOmzfb1iC/Vt08v+bx7Nxk3epR9/U9z5tnnzcx79erIsG+/kYXz5whiU71Xr67ZpEbZ26Tn163fYF9Xs0Z1+zxnSIAESIAESIAESIAESIAESIAESIAESMBbCHiMBVTDBvXl/Yb1HbgjptPyFSsd1gW0ULtWDdm6bbvetGTpMsEHCTGcOnfqKGXLlNbLgf3ZqqykTCr5TgkzK0WLFrbPHzh40D5vZt5VFlTWVLpUSYkTJ462mkK7G6njMe1/I1NGyfNWbmt2zpMACZAACZAACZAACZAACZAACZAACZCAVxDwGAuotGlSa0slWCuZT6qUKYJ1EiBeDRn0lUDksaZ9+w9I85atHGI/Wbeb+WfPnplZiR07ln0+morlBEEJCUHJnVOihAkdVsWIEUPgkof0+x9b5ODBvwVtQKpnsY7SK/iHBEiABEiABEiABEiABEiABEiABEiABLyEgMcIUK/C++nTp1K0SGGZOnmibFi7SjDSXPFiRe1Fzl+w0D5vZp4/f25mteBlFnbt/tPMysG/D2lrJqyANZVzQpwo51Sndi37qo6dutjna1Svap/nDAmQAAmQAAmQAAmQAAmQAAmQAAmQAAl4EwGPccELLfR7Kv5ToSIltFCUJEkSWbdmpbzfqIF2nytdtqIu9smTJ3pqDQB+8tQpHSA8hbKyyp8vr736rwcNkZ6fd5do0aPJd8NH2tdXqWwry75Czfj6vow3X9482hILo97hgwSLrgzp0+t5/iEBEiABEiABEiABEiABEiABEiABEiABbyPg9RZQcWLHlu+GDtbn7dq1a5K/QBEpWbqcGPEJG9q1aaW3J0uWVE/xZ+68BVKmfCU5cuSIVKpU0e46d/jIP/JRi4+l8Ycf6dHzkLdo0SIOAcaxzlVq1LCBw+b6dL9z4MEFEiABEiABEiABEiABEiABEiABEiAB7yLg1gJU1ChR7LSjRH25qVF9fOzbo0axbY/q8yJfFP/9q1WtIl8N7G93u8NoeEjp06dTbnkTJE2aNHoZI961a9Naz5s/d+7cFVhGDR0ySDp92kHvY7Zh2qFdG5k9Y6pE9W9fFP92YJul+Vi0pxo1qtnnMVM5AOsphwxcIAESIAESIAESIAESIAESIAESIAESIAEPJhBFxTp6EezIgw8kuE1/8OCBnD13TpInSy4JEyYIcLdbt27JtWvXJV26tIJA487pypUr8vDhIyVcpbYLT855XC3v3LVb6jdsrLNUrFBeJk8c5yo7t5EACZAACZAACZAACZAACZAACZAACZCARxOIdAJURJ6t//2yRE6fPiOzfpyjBK5ruinTp06SsmVKR2SzWDcJkAAJkAAJkAAJkAAJkAAJkAAJkAAJhCmBl6Nkh2l1kbvwH3+aK7v/3GOHgNhRZUqXsi9zhgRIgARIgARIgARIgARIgARIgARIgAS8kQAFqHA8q4hFFStWLP3Jp0bWa9b0QxUn6kWcq3BsCqsiARIgARIgARIgARIgARIgARIgARIggXAjQBe8cEPNikiABEiABEiABEiABEiABEiABEiABEggchJ4MWRc5Dx+HjUJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkEAYE6AAFcaAWTwJkAAJkAAJkAAJkAAJkAAJkAAJkAAJRHYCFKAiew/g8ZMACZAACZAACZAACZAACZAACZAACZBAGBOgABXGgFk8CZAACZAACZAACZAACZAACZAACZAACUR2AhSgInsP4PGTAAmQAAmQAAmQAAmQAAmQAAmQAAmQQBgT8A3j8l+p+OXLl7/S/tyZBEiABEiABEiABEiABEiABEiABEjA8wlUr17d8w8ikh8BLaAieQfg4ZMACZAACZAACZAACZAACZAACZAACZBAWBOgABXWhFk+CZAACZAACZAACZAACZAACZAACZAACURyAm7tghfJz81Lh3/r1i25d++e+Pn5vbTN01f4+PhInDhxJEGCBPpQvPlYw+JcOfMLizpYJgmQAAmQAAmQAAmQAAmQAAmQAAmElgAFqNCSC+f9IMikSpVKihUrJjFjxpQoUaLI8+fP7a3w9OWHDx/Ktm3b5OLFi/qYzLHGihXLfoycCZzAgwcP7PyMiBd4bm4hARIgARIgARIgARIgARIgARIggfAlQBe88OUdqtogNMHyyYhPKMQqPnnDMkQ1HB+OE5+iRYtqoQ3Hic+zZ8/0lMsB84gRI4adn3PfCFWn404kQAIkQAIkQAIkQAIkQAIkQAIk8BoJ0ALqNcIMy6LgdgeRwZvFBRyfcS+EIGWOFdZdSFy2WbwFxsPKLyz7IssmARIgARIgARIgARIgARIgARIggZASoAAVUmIRkN8ILxFQdYRVaT1m6zwaxOUXrpeB8TAiVYSdQFZMAiRAAiRAAiRAAiRAAiRAAiRAAhYCFKAsMNx91ll4cff2sn0kQAIkQAIkQAIkQAIkQAIkQAIkQAIkAAIUoNgP3JIAxTa3PC1sFAmQAAmQAAmQAAmQAAmQAAmQAAmEigAFqFBhi5idEIg7siQIUGZkv+BOEbw8evTo+hOa/YNbjzvniyz9g8dJAiRAAiRAAiRAAiRAAiRAAiTgWQS8fhS87Tt2SftPu0rPPv3sAa6DOkUQL/7cs1f+PnRYZ938+x+6jIN/H3K5q3O+mzdvyi9Ll7vcJyQbna2CAlpeuHChXYQxYkz27Nmld+/e8uTJE4fqAtp/4MCB0q5dO50voO3WAoK7vXjx4oJ2BTc/6kDe4I58t2DBAkEdiRIlkpQpU0qTJk3k2LFjQe5/9+5dzer06dMhqg9tC0n7wjO/9fxwngRIgARIgARIgARIgARIgARIgATchYDXC1Bbtm3XrO/cuSuHD/8TLO57/9ov02bMFuyDlCZ1ailXtrQkSZxYLwf2xznfyFFjZfuOnYFlD/F6I3pYhRnMW5cxilyyZMnkwoUL+nPixAkZNGiQDBs2TGbPnq3zWvM774/lp0+faoElOPUFtL9z+ThQsy6o/AFBQTusybo8c+ZM+eCDD6R9+/Zy/vx52b59u8SNG1fq1asn9+/f17tZ82OFWTZTtMmazHqzztOWTbs5JQESIAESIAESIAESIAESIAESIAF3IeDVAtSly5flxImTkj1bVs3biFEGPiyUJk2ZLt2695Lh34+WrUqsunXrtixY9LPO8svSZQKrphs3bsiBg3/LXeXitXzlKhn49RA5e/acznPr9m29PG/BIod8K35dLVevXdMiFvKb/U6eOq33u3btut7v5/8tMc0J0TQoUSSxEsvwSa3Es7p160rBggXl3Dlbm7Hv999/Lzlz5pR06dJJz5495eHDhw71Iw+Ou0WLFlrQypEjh0yZMsWe5/jx41rkgdiFT4cOHbRwhQzYD1ZIWF+/fn25pjgE1d6AtmNdUJ/vvvtOH8v7778vSZIkkcyZM8vw4cOladOmgvOL/Q8ePCgVKlSQpEmTSokSJWTr1q32ctFe5Nm2bZtUrVrVvn7Lli1SvXp1vbxz505p0KCBtG3bVpeBfPv375eyZctK2rRpBW1AGbAwy507t4wcOVLeeOMN/YFAhm0PHjyQZs2a6f2x7euvv7aLctj+uj44HiYSIAESIAESIAESIAESIAESIAEScDcCXi1A7d69R/OuVLG8EgMyyf4DB7XAhJV44J80ZYbs239AMqltt5Xw9NPcBfLff/9J3Dhx9H6YxooZS+4r8eDy5Svy6NEjyazyYn7P3r90nv37D+rlTBkzOuSLEye23o4/yZUQkyF9Op1vv6oPCe59KCedEjCCm4IjUqAsiEnr16/Xn6VLl8pnn30mu3fvlpo1a+rjXrx4sfTo0UO++OILGTdunCxZskR/TPkoA/MTJ06UvXv3yo8//qjFF4hMq1ev1tuwPyyH1q1bJ2PHjpXJkyfLxo0b9bauXbsKBCq4xiVPnlxOnjyJIvU2U0dgU53RP6+ZxxT5rQnLELqOHj0qRYsWddgeI0YM6dy5s6RKlUrv0q1bN0mYMKE+xrx580qZMmXk0qVL1uKUUHhHjhw5Yl+HZbjxIUE8AiMfHx/tSoh8hQoVkg8//FCLX3379tVtAQ+0Z9GiRTJp0iT56KOPpFWrVgJXv3nz5ulzsGbNGvnhhx/kq6++kj///NNenzk+CFgxY8Z86VOrVi17XsyY/Gal87JZzykJkAAJkAAJkAAJkAAJkAAJkAAJuAMBrxWgIAb8vmWrxFRiRNYsmaVQgbc17127bQ/9EH9OnzmjraM6tG0lrVu1kGpVK0tsJTpVqVxR5y1frqwULlTA4TzBmipevLiyU4lbeOjf6V9e3jy5HfKVfrekJFUWOcjbtvXHytooh27Lnr37dL79yqIK6a3cb+rp6/wD8aRRo0ZSrVo1bbkDoQOuaW+99ZauBoISLJPKly8vRYoU0VZOK1ascGgC3PAgLCF2VMWKFaVjx45SqVIlLcAgY5s2bWT06NECy6hs2bJpa6crV67oOFtz586V7t27S+nSpWXo0KEO5QZ3AWzxwXk0887LRkSKHz++PY9zfohFmzZtkhEjRkixYsW0KyLasGrVKr0P5k35mDf7Yx7JujxkyBB59913pXLlylK4cGFt0VSnTh11juPJvn377OXBugkiF5ghXVaWeCgHFlkQ5kqWLCmHDh3S1lKmfNOGOXPmaEsuvaP/nyxZsuhz4Xz8AS1b9+M8CZAACZAACZAACZAACZAACZAACbgLAa8VoP49eswew2nshEmydfsOzfz3P2zuVzeUGICUNk1qPU2trGWqKuEpXdo0ejmwP1GjRpXixYpqMQGxok6cOKlEqoLaYiWwfbDeV1nPFClSSLvlnTh5SsWjOiJ587wlsWLFcrWbwzYjUgQ1hesbxBkIUX369NHuZdGiRbMLLbDsQVDw9OnT6w8soVauXGkXUFApAnNDUHr77bft+8HS6IwS7VA/Apw3btxYEiRIoN3bkBdiysWLF3WbYcmDfLFjx5Z8+fLZywiq7dYDRl6kwKYZldUZktXCCsvIv2fPHsGoeLt27dLiGFwRsR7WURDGEC/KuVzsi4T1ZptZhsiEY0GC4GW4mGXE3jL7IBA6kskPMQ8ufHADhNUUrMIGDx5sd3s0+2EKbr/++qtdhIL4BLHMtB/lWvMHtIx1TCRAAiRAAiRAAiRAAiRAAiRAAiTgTgS8VoAywb8fKre5I0f+tcdsQlym48dPSBx/N7v/Ll3W5+O6cudaokasO3rsuP38mAd9+wr/GWMV9dOceXpNkcIFnbMEuFzw7fx6/Zy58/W0gP9ygJlfw0q4jPXq1UvHPYJFFFwIkSCAwC0NQbrxQcDyHTtsAp2pFvGSkGCxYxKsiRC/CIIK4krBeurAgQNadEqTJo0WRiB+ISH4ORJEKWsZemUw/oB9UB+IahC3INhY88K66J133tHrcRwQx26rWF3IA6EI7ogZMmTQy2gK1kNYvHXrlr0c7GO2YQq3OGsdZhvWmWTmo0SJYs9r8oHzgAEDtPAF18ZffvlFpk2bZs9nLTtXrlxaECxXrpw+BrgSWre7mjdt4ZQESIAESIAESIAESIAESIAESIAE3ImAVwpQ9+8/kF3KRQ7ub6O/HyZjfxihPx81+UCz36ZGpkuZIoXejlhMS5atkHnzF8madRu0uOLr66vzHVRCxj//Hn3pfGHfDMp6COIW6siWNctLebAiWjRfbYW1YeNmXW6mTBl1LKKL/13CZsmVK6eeBvePK+HBug3lmWWIIWPGjNGxieAyh/VwvZs1a5aywjqsrXAQpwhWUGYfTGHxU6BAAS2SXL9+XVsUwU0PsY8gpsC6CkG4IUhBAIJF0ePHj9UxR5NSpUoJgm9D0Pn55591XmvZruaDy8Lkg1scjg8B0hETCgHDu3TpIhDE4CoHSyUkiD6I5TR//nwdkwnClTUhYDtiNUFQwxR8XmeCax1EO/QtjNAHyyZXCZZQiN8FyycmEiABEiABEiABEiABEiABEiABEvB0Al4pQP21b78+L3CNg2WLSXn84zRt37FLC0KtPm6hBaE1a9drq6jy5cpIzhzZJb0aGQ6xo/5SLnYIUh5QKl68iF5dvGgRhzqsefMoFzskjHSHEfQgBhlrqbfz59N1WPMHNQ9rImsKaBl1wD0OyWxHjCZYQvXr109Zgp2V9u3bazc0CEwQXiAmIVYT8mN/wwyiDayeMNIbLIqaN2+uR5eDODVAWfNgpLuMyg0O8ZUgOsHyCAkByWH1BMsdBEDPlCmTLte0R2dSf1wtYxuEKuepEa/MerRrwoQJMn36dN3OGjVqaFFs2bJl2r0Rx4cA4BipDtZQ4DB16lQdt8q0A1MIPhCI4GaYQgmMJoC5tY2mbuQ382a7mWIbGJr2YRkJ7MARZaMdcF2EO57JZ6bWcjFv1ptpUNtttfEvCZAACZAACZAACZAACZAACZAACbgXgSjqgfaFD5F7tU2WL18eLi2CxQtc8iAcmARXLVhSwcLpVRLiEEWPHkNbQz158kRmzP5JC1ttWrVUAchzBatoiA+wMIJgYRLaaj11oVmGJRPc6SAoudofFlCIe2Qsw9AG5Mdoe7AqwghzAe1/Tbk7YhsErYC2B9R+BEhHgrhlUnD3hZsdYmpBgHMuG+fz6tWrOh4U2uO83SzDagvudogVZVJw6w9OfvBCW+LGfdGvXmf5s2fP1tZfRkQ0beKUBEiABEiABEiABEiABEiABDyZQPXq1T25+Wy7IuBLCuIgBhgeiJ/0quITyjKxpuDK98OY8br4VClTSK43Q+Z+Z9plpkYweZVlawB0V+XBisg5IT9EGiPUBLS/db+AtlvLdLXd1TaUYbZDSEOCYGdN2A6Rx8SnCmi7yQ+hDcmU6Tz/qssQt5zLsNblvC00y7oC/iEBEiABEiABEiABEiABEiABEiABNyJAASqcTkaa1KmkTq0a2romX748dje3kFTvLFSEZF/mJQESIAESIAESIAESIAESIAESIAESIIGIIkABKpzIw+UKMaaYgkeAYlvwODEXCZAACZAACZAACZAACZAACZAACXgCAQpQnnCW/NsYmUQZHKuJjcSpLd5XcDh4UHdmU0mABEiABEiABEiABEiABEiABCIRAQpQkehke9KhQoAyghuntnECgsvBk84z20oCJEACJEACJEACJEACJEACJBA5CFCA8pDzjKDoGHXOBP32kGaHqJmPHj0SHCcS5r35WEMEJpiZrfyCuQuzkQAJkAAJkAAJkAAJkAAJkAAJkEC4EIgaLrWwklciANcriDF79+7VwowpzFjEeMMyxBMcX/To0e3HCsENx8hP0AzACvzQT9BfmEiABEiABEiABEiABEiABEiABEjAnQhEUQ/3Nv8ed2qVf1uWL1/uhq0K/ybhFEGguXfvnp76+fmFfyPCuEZYPkE8iR07tq7p/v37XnusYYHS8IsTJw5FqLAAzDJJgARIgARIgARIgARIgAQilED16tUjtH5W/uoE6IL36gzDvARYtMAyCAkijRtrhqFmgWP09fW1H6ex+vLGYw01JBc7WvlhnokESIAESIAESIAESIAESIAESIAE3IkABSh3Ohsu2hI1alQtPnmzAIXDN+IJjtNbj9XFaQ71JsPNTENdEHckARIgARIgARIgARIgARIgARIggTAgQAEqDKCGVZFGXDDTsKrHHco1x2im7tAmtoEESIAESIAESIAESIAESIAESIAESCB0BNxagEqcOHHojop7kQAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJuA0BtxagQKlIkSJuA4sNIQESIAESIAESIAESIAESIAESIAESCBmBS5cuSdKkSUO2k8p969YtOXr0aIj34w7uSSCqezaLrSIBEiABEiABEiABEiABEiABEiABEiABEvAWAhSgvOVM8jhIgARIgARIgARIgARIgARIgARIgARIwE0JUIBy0xPDZpEACZAACZAACZAACZAACZAACZAACZCAtxCgAOUtZ5LHQQIkQAIkQAIkQAIkQAIkQAIkQAIkQAJuSoAClJueGDaLBEiABEiABEiABEiABEiABEiABEiABLyFAAUobzmTPA4SIAESIAESIAESIAESIAESIAESIAEScFMCvm7aLnuznj17Zp/nDAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgOcRcHsB6vnz555HNQJafPv2HYkWPZrEihkzAmpnlSRAAiRAAiRAAiTgPQQePHggsWLFsh+Qn98zuXbtqiRPnty+jjMkQAIkQAIkQAIhI+D2LngQoPgJnMHOXbulbIXKUqBwMcmTr6DUrltf/j16VDN7+vSpjBk3QW7euuWSYXDzvep5WL58uct2vGr53D/wfuItbE6fPiNZc+SWGTNnO/Sl6TNnSctWbRzWReQxs697Zl+cN3+hVK9VN0L70YdNm8vPi38Jsg1Hjvwji37+n843bvxE6f55ryD3eZ3fCfbxgPt4ydLl9DUK1yl8sDxx8lR58uRJkOfHek5dnasmzVrqc39fCSSo4/z580GW7ao8bnM8lxcv/if1GzaWajXr6Hsow2epuocZPnIUWQfzvrzPFwMcvgvoq/idPnnqFBkGk6Hpe5y++I7imeeXJcsc+tCfe/bqvobnmfBkxd/BF+cluNxDJlMwt7cSoAWUB59ZvJ37oEkz6dypo9SrU1sePHwgEyZOlqYftZTfN6+Xu3fvyqgfxkiD+vX0BTmwQ71z506w8gW2f3DWr1ixQmfDxbpatWrB2YV5SOAlAuqnTq8bNGSolC79rqRPl04vP3/2XOCuix/AiE7s6xF9BkJf/7PnNpfviOxHfn5+gnYE1Yb/LVkqT5/YbrYrVigv9+/fD3Kf0JNx3JN93JGH81KvHt2lbNnS8uD+A/nn33/lm6HD5NJ/l6Rvn57OWR2WrefUYYPTwqcd2knKFCnkuX+Igmfq+hdUf3EqgosuCKxY+avkz59POn/aUYqXLC1NP2wsMZV1+egx42TqpAlk7YKddRN+k6tUriRdu3yqmd29c1dGjPpBun3WUxYtmGPNynkSCBGB586/kf73frgOhte1kL+DITplzEwCDgTcXoBiDCiH8+WwAOEIKWeO7JI0aRI936N7NylYoIB+GPlMvRFHavR+E5kxbbLAemSk+vE/cPBvSZI4sXTo0FYaNagv1nwTx4+Vdh0/lZnTpigz82Ty8OFDqfNeQ5k1farEjx9P+vX/UtZv3CTx4saV+u/VlbZtWkmUKFF0PYH9WblypcMmiFBVq1Z1WMcFEggOAXM9KFe2tHzRb6BMmzJR9z99w6G0J2x/+OiRjPz+B1mzZp3cUSJsgbfzy1cD+0uSJIm1dUudWjVl1uyfJGGihPLlgH7KkmCxrFm7XipXrKAfEPGgcebMWflq0BDZ+9c+eSNTRunTq4fkzZsnyCayrweJyK0zQMiExmn6mbWxZ86e1UICrE6RalSrqvvLE/XGtU69BgFeM9dt2CDnz51XIsRR3ZfQFwcP+lJffx8/fixDvvlO1q5bLxkzZZSWzT+SMqVLaYl169ZtMnXaDPlPiRaNGrwn3bp2drjOblHb5y9YpNsRI2YMSZ06lbKCuSBvvplTevX5QtKlTSsrV62Wmzdu6n1v3rypy8uZM4f06tld9elM+jdi6HfDZcXKVZI4USJp3fpj/SJDF+riD/u4CzjYpPoPfo/TpkmjM2bNmkXixYsnbdp1lHZtW0uCBPFl5qwfZc7c+foc1KxZXQkdHWTX7j8dzinyBnQdw+/ywkU/S+lS70rJd0roOtBfT585Iz179ZU9e/+SzJnfkK6dP5WyZUrr7fwTcgIxY8QQH5+ocu/ePYEovGTpcnVv9bakS5c2wOtDyGvw/j3wu5wgfnz7dwFHjN/fbt17aovA3n37S8KECbTFZ6uPW0ijhvVl0JBvZf2Gjfqa1LJFM2morn9Ihw8fkWEjvpd9+w9I7Vo1ZL+aDvv2G/ljy1Y5dvy4bNy4WbJnzybjx/4Q4PcrevTo8tvvf8jXg76R6zduSA513/zlgC/0tTCw9bpi/nE/AviZVn3L+jv9zF+Awjr8tgb2rILfzu+GjZRzymq0aJFC0q9vH/2sg+uxtR9NGDfa5XHzd9AlHm4kgSAJuL0LHi4m/ATMILESkWrWqCat23aQZi0+0W5JV65elVrqhhZxCyAOIeFHNm68uNKxc1cpVrSo/O/nBVK3bm0Z+OUgQewoa75EiRLIqVOn5dHjR5o73AawjOmy5Stl/4GDWsz6om8vGT12vBxQy67OD94Q4IfC+YP1rvbjtoDPeWTnogUC1ac/69pFC6lwQQIT078wP3/BQlmtxKfh330jY0aNkBMnT8rcefMFptnoy2vXb5CRI76T1KlSaQvC2LFjy7gxo2Tj5t9kx85duq+369hJf4cmTxwnefK8JZ/16BVkf2Vf9/w+q/uRUhAC+p4N/Xa4Xj97xlQZ0L+vzFP9bNu27eLn368CumZev3Zdpk6fKUXUjS4ejCBEzZu3QJfz7bARsuvPP+WbwV9JlUoVpXuP3gKhSHVm2bjpN+nWpZN80aeX3n+Pci+wtil37lwCEbZUyXfkffXQdv36Dbl8+bLOc/bsOZk2Y5b0VC8j6tSpJb379pPNv/0uI4Z/q78ni/+3ROcbNvx7gdvCqJHD5KOmH0pf5S5z4cJFh3qsdWKefTzoPq6ejZQFm2MfyqZEKKRTp0/LqtVrBMJf+3ZtZKD6bYYAuUZ9nM9pYNcxnIdzSmzEbzfmkWAxN0b9HkOcWvK/hbo/fd6zj36B5HwOuRz0OSxapLDMX/iz9FUvOUoULyYQL8ZNmCitPm7p8vtBto5socbiH7hAxDvyz7+yQHGtqqyi8OLy7LlzWnzq0rmjtjj7SYkAfx86JCOGDZXG7zeUAV9+rUUjWHe27dBJx94aO/p7OXbsuP79f/jooVy7fl39vi+Qhg3fk+rVqgT6/UIbevXpJ+/VqyM/zZ4uiZTw9e13I3TbAlvP8+l4Pt2Fh61POV5jX1iDPgv0WeWcehn0cau2Uq5cGYHA9ODBQ/29xnE59yNXx8rfwVfrF/pHi38iPQFaQHl4F4BlR+lSpdRb7F/1TS1ubNu0/kTaKfEJb8GRMqm33VHUdPDXA/Ub00fq7cBbuXPrbTdv3nDI5+Pjo9fjYm67AON22mYRgOXbd+4o65Az6qasuKxasVSSJUuq8+lMTn9+/fVXpzWOi7iIV6lSxXEll0jABQH0QSRYEfTr21u+/HqQ6otF9QMf1mM73lK/nT+/ZM+WVd/gZsmcWS5fuWLvpx3bt5X8+fKqm9Wq8vsfW6SDWo4bJ456G1ZYC6oJEiSQ48dPyKCvBkiqlCkFb2F/Ue5OeDsGy5GAEvt6QFQ8bx0EKCTTz6xH8H6jBpIpY0ZJnDiRPFUPU3gBcPXaNXvegK6ZKO9tZfXUrGkTXRQevM5fuKD3+XXVGunUsb0ULVpEfyCEPlAWp2hBE+XyY6xbJk+ZJmeUqGS1wIuj8iZSVksQVZMlS+YgwGL/Dxs30mVmyJhBpkydLh+3bK6+E/mkfPmy+uYc+82dv0B69/xcsmbJrD+wAvjtjz/kvbp1rIdtn2cft6MIYkY9HilLOmsfQl9BgkUaYpdUqVxRvQwqrNeBN6w3YIFpPacur2OqX6FvmTpsfe+5XLp0Wa5evSbNPmoi1apWkahRo9rz6Mr4J1gEsqjvxLQpE+TQoSMC99aly1ZIoYIFtBX4hElTlOt3WqlQvpyykLLdLwWr0EiYCX0UlprGWhMI8F34dFR7W79U2z/84H1pWP89LVB17tpdevX4TIoXK6o/W7Ztk5XKQhPXxkuXLqkXT531b38nZTHY+MOPVBm27wFeEn3corkm3L5j5wC/X5XUeUSCpaDfUz8Z2P8LZSnzRNcb0Hrz3dI78Y/bEbBe/9A4qwUUzl1AzyqI8Yj+V79eXXVtjKJ/Fzt26qJ/B1GetR8Fdv75O+h2XYEN8lACFKA89MSh2XCPu3fvvn4TXq5saXmkXI9wczv4m2/lXWWan9ZfgMKFNIYyJ7+m3sbDnQ6ueClS2EZxwYOUudBi+mLevF3w04TwhrVypQraTQDm00iwvur5+Wfi6xtwN6pUqZLO5+qPqc9VHm4jAUPAxOhBv6lUsbxyi1imRKghUqhQAfsDGdxdYK2yY+dOvRv6/rslS9r7dnL1wI79Y8eOJRkypJfYyloQyzFiRBc/Nb148aLer1HjpqZaPd2xY5dkzJDBYZ1ZYF83JDx7irgSqiPZ+4r1aHCd6/rZ59oKNE6c2Prai36DDxIehmzLL66ZuKmFiGnyoM/BSvX27dvKaum6wCXObKtWtbKtOrVPCjXKllkP11Fc282yLROa+UKEsM37C2dqfXJ1fUf+WDFtI3hlUkIUlmMoSw5M8VuAhN8KfEyKqdz56tauZRYdpuzjDjhcLqAfWc/X5ctXdP4kSZPoB2D8BkOANAn9Cfmt59TVdQwio7UO9L02rT/WFjstP2kjKK9Fs4+khXLrZAodAYjN+MCdZ+z4CTJl0nhlTdhfxx3Eiwucq0pKNGQKnAAYvVOiuLawRK6ECRNq8Q5u7rq/q3Xm+giXKFwT4UZsvjv58uaV7Tt2ylnl/gyX1njKkh/bjEUhhFfUgZetZh8ITAF9v5Dvq4H91P3CYIEVKMrr/lkX7coa2PrAj4xbIpJAvLjxVHiFFxagaMu9u/fsTQrsWQUvf9DHypR3fDb59+ixl/qRvTCnGf4OOgHhIgmEkkDAykEoCwuL3fCjwRQwgdVr1sqkydNk+dLFOgPMxBFwfOr0GXqUkTRpbTEo1GOKHD5yRP/wwh2vuDIpf6pc6ipXq+V/E2BjjHwmwZ0E7GGWioR5BD2H9cjnn3WVTZs364f8zMq65KMmH5jdHKarVq1yWA5ooXJl/4eugDZyHQk4ETDXAzNFPJsateppSycdlFf10yFDv5P7SpidooLF4kYVD9hPntiCNaM4vLXG/qYMM9VVqfXxVcwKpM0b1+r4FZhHTKikSZPa98E6a2Jft9Lw3Hl1+nVy6BNqDdxHOqg363BpG/TVQEmTJrVUqY7rp+trJrYiRJ4pz3aNfa4DGqMiPFiZhynEmMmTx2aZCssVsw/yYT/rMtbpy7WqQK/XDX+Rx9fHV6+37oN5W16ROHHj6CLG/DBSPyBiASJJtGi2/fRGpz/s405AXCzidFjZb9y0WedOp36TEX8RsZlg/YYEV7o7d+7Yzw3OK/Z1eR3T5/JFHcgfRf0b/f1wVdZdWa7iLsJFvnDhQsraOZeuh39CR2DZ8hXaGgcu23Bl3bR+tbKc3apiD23T1lGhKzXy7JUqVUptPWY9Yvt3Q/V183ucSIlTSPitTZM6tZ6HJTK+M9mzZdMxezCwThxlrXxSudIj6XJU3zdlYF1g3y9YfeLF68plvwhGm5z90xzp1OUz2bH1twDX796xJdCXq6iHKeIIZMiQTv12nnO4xsKd8403MulGBfasAut2xMyd+9MsnQ+/64jtiMFs1jv1o8COjr+DgZHhehIIGQG3F6BwgWAKmABM9PsN+ErfqDZu1FDiqoeK9Rs2aTP83LlyaTcA7IngtPjhRsLbKLxZHTtugl5+/OixQ74c2bPp9du379Qxcv73y1K9/EydB5ihIw4UTNPLlysrc5TfPd5ABXaOKlSoIKtXr9b7B/QHbxIC2zeg/FxHAs/8bNYmfmqKvoOHgk87tpMfRo/TViNYd0O5ucDFDg/2uEmBpcG7Jd+x9zW/Z356Xr8xVTfApg9qtxl1E4IAvjD5n60Clbds0Uy5YRxWQ0e3lXlzZilXpSwBngT29QCxeNxK9IlH6pqIN+jWhEC591QcksKFCuqA33gQhbvTYyXUGwvQgK6Z5g29tY+Zh69iyvVu+YpftYveBXWN7j/wK+3WjO1oh30ftRzQdRYuBHAtRXwUuB9gP+xj3R99Hcl8X7TLilI4fJUIC5cixE5B4F6kRo2b6EDkgbngsY9rTEH/UdcUxONCH7qvXtocOnxYRo0eq9098JKoqHK9mzdvoVStUklZYaRVv+EDlfAXXccCs55TV9cxVYVDH8F5RmBdPGB379ZFqinX9nHjJwl+t00/CrrhzOFMANZPEydNlUkTxupNsEzEOb1//562xiFbZ2KOy/hNxScwTmqrjl+G7bCKyqWsnzAoCO5DYa2C62w3NYJeRmXBCfZwR65Zo7pMnzFTVwSLZeu1DysD+371/6K3NG32sXK36q5H5sOAD6tWr1XX9QcBrsdLq6AG2HE8Wi6FF4G8efLokCP4DcuRPbvs/nOPzJg1Ww/igb4U2LMKBgEZP2GSirG4WT8LQYScP3+RLF4076V+FNix8HcwMDJcTwIhI+D2ApQxqw3ZYUWO3Ij9gSDJGK3L+NgnVz/SCOCIUZHwIJJX+cY3bdZS5Rsrpd4tKWUrVNEP1+VVED6MfHTixEk9qovJN3XyeH0D+823wwQfxD9AwoNLndo1BSNAlSxtW4eLP4I+ujpHuFivWfPC1cCcmYoVK7rcz+TjlASsBKwueKbfvd+wgRZGkQ/rWjRrqgPsL1UWJb7RomlrAwQ2xfcByTyg65tj3ACrffR6NY9tiAc1RI1UhiD9U6bN0N8TPNRlfuMNe169g9Mf9nUnIB64iPMPF45ades7tB5WD4ir17P3F4LRsTASFq5/x9QbeuyD/hHQNRM9Dg8xpo+ZhyUsw/2jhwoUXaZcJd3HenzeTY/UCOsn1Uvt+6Ah2M+UgWUkxISaoUZTg/UMhow3/dq6v9kHU3ysLoawHuzdp59UqFTN/ptQu2aNl+qx1Wb7yz5upRHwPM75CDUKJz5I6dOnk6bKSri5isuEc9CoQQMVRPmE1G9osxxGPxo4oJveZj2ngV3H9DlV/QHnGx8kTNu2+UTdC3wjhYuV1Oswwi1G+tL59Rr+CSkBPMgWU/GIcD8FjjWqV5Ve6hqA2G+Iv0m2rolCYMK/QDmh/6r/Znv/fn2khxrJsUx5m2X8B+830rEasR1uckPUPSmueea+NKrNvFRbmZoyAvt+wRW/T6/PZfiIUdpVFS2HKBVPvbgNaL2vr4+9Xa6PklvDm0C9urXVi/XzOqg8XsDghSGsSvEbjX4Q2LMKLKAw+EOXbp/rJiP+IQYUwYsBdRF16Eeujom/g67ocBsJBI9AFHXjYruDCV7+cM21detWZVL5RrjW6amVIR7Uw4eP9JC2zseAkR5ixYqpV2NIYbyxx4+xc7Lmw5s/BCuPFzeuczYdjwTmzDCFDm6yilAQn5hIICwJ4LJ289YtNdKNzaw/NHXpMtSoZIhbEZI3oezroaHtGfs8Vq7Lj9S1FlakzsnVNdM5r3X51q3b2prCJhxZtwQ9j9hQ2C+aElpDmyBgwfogJGWwj4eW9ov98JuNt/XOv6PWcxqa6xjOZwx1PqO/Qp940crIPfe3sn5NrVzIEBzepBMnT0oy5Y4d0DXA5OH01Qjgmog4Zsa6FH0ao+c1UUIu+jVGE8WL1XWrVwR6HgL7fkGgQBwgBKO2XnMDW/9qR8K9w5IAro/XlBjsfC5NnbiWBvSsgusuXJVh2fwqib+DoaOH7xpCWoQ03VL39EePHtW7FVcDYTF5NgG3F6AyZszo2YTZejuBtWvXCt4cMJGAtxNgX/f2M8zjYx9nHyABEggvAq3bdtCWKtmyZpV1GzZod6vOajQ8JhKISAL8HQwdfQpQoePmTXu5vQCVTgWHYyIBEiABEiABEiABEiABEoh8BBBYet/+AzpIOeI75lFxgBAzjYkESMCzCGDQAApQnnXOwqK1jAEVFlRZJgmQAAmQAAmQAAmQAAmQwCsTQNgIDAKBjy0htpTbRhB55eNlASTgrQQgQDGRgNsLUPDxZSIBEiABEiABEiABEiABEiABEiABEiABEvBcAm4vQCFYGRMJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIDnEnB7AQqjFTCRAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAl4LgG3F6Dogue5nYstJwESIAESIAESIAESIAESIAESIAESIAEQcHsBii547KgkQAIkQAIkQAIkQAIkQAIkQAIkQAIk4NkE3F6AogWUZ3cwtp4ESIAESIAESIAESIAESIAESIAESIAEKECxD5AACZAACZAACZAACZAACZAACZAACZAACYQpAbcXoHbt2hWmAFg4CZAACZAACZAACZAACZAACZAACZBA2BGoUKFC2BXOkj2GgNsLUDVr1vQYmGwoCZAACZAACZAACZAACZAACZAACZCAI4EHDx44ruBSpCQQNVIeNQ+aBEiABEiABEiABEiABEiABEiABEiABEgg3AhQgAo31KyIBEiABEiABEiABEiABEiABEiABEiABCInAQpQkfO886hJgARIgARIgARIgARIgARIgARIgARIINwIUIAKN9SsiARIgARIgARIgARIgARIgARIgARIgAQiJwEKUJHzvPOoSYAESIAESIAESIAESIAESIAESIAESCDcCLj9KHghJbFz586Q7sL8JBBmBAoXLhxmZaNg9vcwxcvCQ0ggrPt7CJvD7CRAAiRAAiTgVQR43+dVp9PjD4b3fR5/CiPkALxOgALFSpUqRQhMVkoCVgKrV6+2LobZPPt7mKFlwSEgEF79PQRNYlYSIAESIAES8DoCvO/zulPqkQfE+z6PPG1u0Wi64LnFaWAjSIAESIAESIAESIAESIAESIAESIAESMB7CVCA8t5zyyMjARIgARIgARIgARIgARIgARIgARIgAbcgQAHKLU4DG0ECJEACJEACJEACJEACJEACJEACJEAC3kuAApT3nlseGQmQAAmQAAmQAAmQAAmQAAmQAAmQAAm4BQEKUG5xGtgIEiABEiABEiABEiABEiABEiABEiABEvBeAhSgvPfc8shIgARIgARIgARIgARIgARIgARIgARIwC0I+LpFK8KxEceOHRN8nFP06NGlbNmy8ueff0rs2LElZ86csmrVKilYsKAkTZpUZ79z547EixfPedcQLd+6dUu2bdsm5cuXF1/fV8N/4cIF2b9/v1y+fFlSpkwpuXPnltSpU9vb8/TpU8EnZsyY9nWBzdy9e1fixIkjUaJECSwL13sgAW/p73/88YfEiBFDChUq5HAW9u7dKz4+PpInTx6H9VwgARIgARIgARIggchGwFvu+7Zu3SqJEiXSz2PWc4jnNNz35cuXz7qa8yRAAh5E4NUUEA86UNNUCDbr16+XZMmSmVV6CtEJAtTGjRslRYoU+oK3bNkySZUqlRagZsyYoQWa+vXrO+wX0oWrV68Kyi1ZsuQrCVB79uyRqVOn6odyiE5YXrJkibRo0UIKFCggz58/l759+8qHH36ohSlX7YSQNWTIEBk5cuQrtclVHdwWMQS8pb+vXLlSIN7iZiRLlix2mL/99ptAPKYAZUfCGRIgARIgARIggUhKwFvu+2AEkDVr1pcEqA0bNkisWLEoQEXS/s3D9g4CkU6AwmnDhWvAgAEBnsFu3boFuP78+fOSLVu2ALdFxMo1a9ZI+vTppUePHrp6CE5Dhw6VxYsXawEKK2GxFZyEB/tnz54FJyvzeCABb+jvBvuUKVPkyy+/1KKTWccpCZAACZAACZAACZCAjYA33ffxnJIACXgfgUgpQLk6jdOnT9cWTzVr1rRn+9///iewEvrvv//k0aNH2qpo8+bNsmLFCrl3754kT55cmjZtKpkyZZIzZ87I5MmTJV26dHLgwAFp2LChvPPOO/ayzMzcuXNl37592oKpYsWKgg8ss7Zs2SJffPGF3RVu0qRJ2lqrTp06Zlc9RTvgkgQXO7jywXWuSZMm2r0QYtSwYcN0vmnTpgmstrJnzy5z5szR2588eSIJEyaU5s2ba9c9tBepd+/eAgEOllRp06aVqlWr6vXbt28XHC/Erhs3bsj48eMFgly0aNG05ckHH3yg26Iz849HEfCU/g6ouXLlkr///lt+/vlnef/991/ijO/CwoULBW55+F7i+4HvcenSpeXcuXMyceJEyZs3r8CdD9+Z9957Ty5evKj7NtxP69WrJ2+//bYuN7Dv90uVcgUJkAAJkAAJkAAJeAgBT7rvCwqpq2cSbJs5c6YcP35cu+wVL15c6tatq+//8DIT94F//fWXxI8fX/r376/zBFUft5MACbweApEyCDnEm9WrVzt8bt68qYlev35du/pY8ZYpU0YSJ06sH16rVKmiL1gLFizQbnSdO3fW20aMGKEfeh8/fiwoA3GZatSoIW+88Ya1KPs8hKo2bdpIiRIltOADk9k333xTLl26JP/884/OB8skiFQ5cuSw72dm8GB99uxZ6dKli4wbN04/RMONsFSpUlqMgusdEtrw1ltvafEJIlr79u3l008/1RfaH3/8Uce7qlWrls7btm1bSZIkiW7/7du39Tr8wcP8lStX9DIe8HGMEKNatmypY2bhgZ7JfQl4Q38HXbiaVq9eXQtIAcVxgzse+mKjRo10/4TpNvrrgwcPdJ/F9xLfrXbt2knGjBll9uzZcujQIWndurVkyJBBFi1apE8ibkgC+36771lmy0iABEiABEiABEhA9MtyT3/OCc55DOyZBC/iEVYE93141qpdu7YgphRCoCBdu3ZNdu3apePx4hkPMaWYSIAEwo9ApBSg4G6GQODWjyt3NVgLIZB3ggQJtECDOFGYL1y4sFbOIeCgTDy4mgSrIFg1WYOCm22YwvoCFh2wbIL1BdqCeFOwpoIVFBLWwYw2IAEqf/780qdPHy04QezCAzNiPsE3GglByZEQ6ypu3LhSoUIF6dChg7bSQpmoCyJT1KhRdZ3IC6utoAKj4yKN/U6ePKnzf/3111qIw/5M7knAG/q7IVu5cmUdow2WgRBCrQnfk06dOgm+G7B+gqiEBAHVpMaNG2tX2nLlyulV+P5hwIF3331XC88PHz7UceCC+n6b8jglARIgARIgARIgAXci4E33fa64BvZMghf0EJkQ2xcDSeE+Dy/jzfMVyoTXCl5qQoBiIgESCF8CkdIFz5VvdHDwI5A4rJMgvpgEIQfrEMAcyTnIuclnptZ4UpkzZ9YXSmyDuxAsMfBw/fvvv2sLKeeR6eBqBNchiEgQsvDBKHbz58/X7klwI8IDtDXhbcCECRN0PWgrGAQ3YV+TGjRooIOfQ/DCB8f5ySefSJo0aUwWTt2MgKf3dytOfBdgsYQ4UMZiyWyHSAw3U4ijSOY7gBsxk2Dhh2RGhoToioRA5kjI6+r7rTPxDwmQAAmQAAmQAAm4KQFvuO+DVweebZwTrNrNvVxgzyTGawMhG5yTeaYxz2vO27lMAiQQ9gQipQD1qljhLwyrJcRMMunw4cPa2slc9IIy54Qyb0Sb06dP2601ihQpooUdmM7CLRCj5TknWHR888039hHvsB1WTrDEwmh4cOMzD9/YhofqsWPH6jcAcMGDlRXiWsFlKaCEh3y4bZkEP2qT0G5YkaD8gwcPatELD/3du3c3WTj1MgIR3d+dceKmAS6oS5cu1ZZOcLVDgq8/+ir6IoSlf//9V8aMGaNHhDRlQHy1JmdxFzcmro7Xui/nSYAESIAESIAESMDbCLi6DwqP5xzwxEt253ALeAEPt7qCBQtq5IE9k5i4ufD8QAxcJPNy0dz3BfWcpnfiHxIggTAh4Pg0FiZVeEehcOmB1RFEIVz4EIQb8WbgsoMh4vGga3X1Ceqof/31V70vgh3DcqpQoUJ6F1hmIFAyhh+F+x5MR50TxB88YM+YMUPHfkJsp6NHjwoCjuMBGxZV5gKLWFPGvRDWSvjANBXik5+fn71OzCBQHy7uGOoewZ5xYT916pSDySrajZhTOFY8+EP4Ahsm7yLgTv09ILJwb8XNiVUoRXD9ePHi6e8N+idGhERCnw5Jeh3f75DUx7wkQAIkQAIkQAIkEJEE3O2+D89CEJsQrxOW7YjZNHr0aMG9Xp48eTSqwJ5JMEo4jgcv2/HsBsMe+9kAAEAASURBVPHp22+/FYwgzkQCJBDxBCKdBZQRZkKKHhc7jA43atQoPUodRsTDSHb4wBoKZqAQjJzVeud6TP24qGLEOSTEozGjb2EZ8WgQfBwBxQNLCD4+depUbS1l8kBcglWWieME1d+M1AeLEcxv2rRJj16H+FXwhYbIhHhRMNf94YcfBIHIq1WrpoP39evXTwtauXPn1gIX6sGIerCmwkh9SAjOjpH+mNyTgOlvIW2du/V3tN96LJhv1aqVDBw40H5osADE6C74biDh+wNxFhaGJiaatQz7jpYZbEc8gMC+35asnCUBEiABEiABEiABtyIQ1H1OYI11t/u+fPny6VHrIDJhNG4kPHN8/PHHeqRuLAf2TIKwCh07dtSjH5twKYj5hNHCkULLSO/MPyRAAq9MIIpyOXkR4OeVi3u9BWDEAgSOC0nauXOnVKpUKSS7BDsvrC1gYRQtWjS9Dywr4J+MIOWhSQjmDYsnE3/GlIFg5hCXhg0bFqR1EU4fxKzALJHu37+v60C74YqHOmFB5XzxRTnwq4bPtUlwZ0JeZ7clbIdVFcpAvUwBE4AbJYS+sEyRrb8HhyWsFGE+HlC/Dc7+Js+rfr9NOZFlGh79PbKw5HGSAAmQAAmQQEAEIuN9H55d8Kxk4nc6c3H1TIJtsIZyftZyLoPLIScQmvs+PGsG5N0TVO3wFoK3D1Lx4sWDys7tbk4g0llAvcr5wAXMmmBpFFrxCeXgIdma4DaEgHkQoBD7ybk+a14zDxHIBOMz66xTq6CEB/LA2otyrHlRBlzxAktwdWLybgLO/c8d+ntwiAfWx4OzrzXPqx6vtSzOkwAJkAAJkAAJkIA7E3DX+z7n5yVnhq6eSVxtcy6HyyRAAuFDgDGgwodzsGqBOg+ro6JFi2qz02DtxEwk4KEE2N899MSx2SRAAiRAAiRAAiQQQgK87wshMGYnAS8lQAsoNzqxcO3r1KmTG7WITSGBsCPA/h52bFkyCZAACZAACZAACbgTAd73udPZYFtIIOII0AIq4tizZhIgARIgARIgARIgARIgARIgARIgARKIFAQoQEWK08yDJAESIAESIAESIAESIAESIAESIAESIIGII0ABKuLYs2YSIAESIAESIAESIAESIAESIAESIAESiBQEKEBFitPMgyQBEiABEiABEiABEiABEiABEiABEiCBiCPglUHIV69eHXFEWTMJhDMB9vdwBs7qSIAESIAESIAESCCCCPC+L4LAs1oSIIHXQsDrBKjChQu/FjAshAQ8gQD7uyecJbaRBEiABEiABEiABF6dAO/7Xp0hSyABEohYAnTBi1j+rJ0ESIAESIAESIAESIAESIAESIAESIAEvJ4ABSivP8U8QBIgARIgARIgARIgARIgARIgARIgARKIWAIUoCKWP2snARIgARIgARIgARIgARIgARIgARIgAa8nQAHK608xD5AESIAESIAESIAESIAESIAESIAESIAEIpYABaiI5c/aSYAESIAESIAESIAESIAESIAESIAESMDrCbj9KHiHDx/2+pPAAyQBEiABEiABEiABEiABEiABEiABbyWQMWNGbz00HlcICLi9AJUmR/EQHA6zkgAJkAAJkAAJkAAJkAAJkAAJkAAJuBWBhxfcqjlsTMQQoAtexHBnrSRAAiRAAiRAAiRAAiRAAiRAAiRAAiQQaQhQgIo0p5oHSgIkQAIkQAIkQAIkQAIkQAIkQAIkQAIRQ4ACVMRwZ60kQAIkQAIkQAIkQAIkQAIkQAIkQAIkEGkIuH0MqEhzJrzsQO88Frn2UMTveegPzCeKSJKYIvGih74M7kkCJEACJEACJEACJEACJEACJEACJBDxBGgBFfHnwCtb8KriE6BAvEI5TCRAAiRAAiRAAiRAAiRAAiRAAiRAAp5NgBZQnn3+wrX1d+7clvv37krMmLEkQcJELut+Fcsna8GvqxxrmZwnARIgARIgARIgARIgARIgARIgARIIXwKRQoDye/RIU/WJESN86XpZbV/17Sbnz55W4lNiGTdtXoQc3TlV/6OHwTOLihEzpqRNlyFC2slKSYAESIAESIAESIAESIAESIAESIAEXhDwegHq2ZMnsuHj+vqIy037WaJGi/bi6DkXIgJPnz7V+f38noRov9eV+ak6lz07t5Lnz4MXWCpKlCgyY95y8eU5f12ngOWQAAmQAAmQAAmQAAmQAAmQAAmQQKgIeL0AdeKXeXLn7CkNB/NZ6jcJEaiHV6/Ihd/XB7hPuvJVJVq8+AFuw8pHN2/I+Y2rJWP1unL75DG5d/G8pClVIdD8gW04/esvkuSttyVu2vSBZfGo9f+dOyWXz5/WbU6eJoOkTJsxWO1/9vxZsMUnFAihCvtExnTzxnXZuPZXqV67vkSLzijukbEPeOsxP3z4QP7cuU1u37opbxcqKilSprYf6uG/98uN69fsy5gpVPQdieYvQu/ZtV2uXb0sFarUFFflYL8jhw7K8WNHpFiJUpI4STKssidrObjO/HP4oBz794gULvaOJE+Ryp7v2TM/OXRwnxw/+o+8mTuvZM3+pn0bZi6cPysoK3vOXC9tMxn3//Wnsvp8oI/DrHM1dVXns2fPZOf2P+Siqjd3nvySJVtOgVDvKuG4Ll+6KMVLlrFnO3/ujJw+edy+jJnsOXNLkqSOnEyGk8f/FRxHpjeyylv5CjjUCXZglCFjZnkr79vhfr3a889lOX7uptQrk1WiRn3B4ujZG/L3ietSu1RmcxickgAJkIBHEbhz+5asW7VcqtSsq8NnBLfxuO6fPnVcylWsFtxdmI8ESIAEgk3AqwWoJ3fvyJHZk+wwMJ+hSm2JFjeefV1QM/f+Oyd/jRosCdWNuk90NSSbJaUqUdqlAPXw2mW9L4Sqy3t2yoXf1oVKgDo46XvJ16l3hAhQsHr6bcMaefr0iY7/hMN/8viJrFm5RKL6RJWSSlCDq1tw0rZ1S2TF3Ely/tRRSZwslXqoui/37tySNBmzStVGn0jxCrVdFhMtWnSpVe99eaAexoKTYqlYVdgnMqarVy7LyG8HSvnK1cP9gS4y8uYxhw+Be+qa3rhuRV1ZpsxZZdR3X8kPk36UbDly6XXfft1HiSvnHK5Jsxf+KtESJNTblyyeJ0WKlZSgyunwSWM59s9hyft2IRn6ZW/5rPeXUrNuI/tBmnKePH4szRpVV6LWFZ0X9ddr2EQ6df9C5+3bvaP8sXmdvFOqvAwf0l96fDFIqtWyWeQO/aqPrFiyUIq9U1rGjBgsqdKklSk//iI+Pj72ei79d0E+//RjKVm6QrAFqMDqhFDWt3sH3R4IdyOHDpS6DT6Uzp/3s9fnPPOfemnSrUNzKVy0pIMA9cvCn2T+T9MlUeIk9l16DRgaoACF417761IlFhbTDHD84IC0YM50dexD9Pm7cvk/SZY8pYyZMidED0r2BoRyZsOuMzJjxSF5/PSZfFAph72Uv/69IhMW76cAZSfCGRIgAU8jcEO9jMS9YMkyFUJ0XT2gXhgs/d88ClCedsLZXhLwEAJeLUD9M2eqQIR6o47tweHkkgWCdblbdQ7x6Sk2eLTESpo8RPslyJxd6mz4S6JE9eDBBtVDy5pfl8jZ0yftx/7o0UOZOWWstjwoXrKsfb2rmSWzx8g/+3bK9csXpXazTyVu/ESy/Kdxehes+2P1Yrn633mp2aR9oMXgTX10Fcfr1+WLA81j3QCxKqi3+9b83jSfJVsO2bTziHqj78F9z5tOCI/ltRCYNW28g0jxpYpLN33SaBkyYoI8fvxIWxqNmTxH8uQv+FJ9fn5+smPLZmn7aXdxVc7+vbsFn4XLN+lr3KK5M9X1bpy2Jowa1Ues5Wxav0qLT0vWbpMYMWLK3t3bpVObpvJh8zbaKgri06IVm7VV1LL/LZDRwwcrUbiGXL92VYtPk2b9LDnefEvuqgEeqpYpKFt/36jEpvK67bBkGty/h9y/f++lYwlsBfYPrM6//typt333wxQpUvxduXjhnDSsWVZKvFs2QHELohHEo4Dq//fIIfm4XRdp2qJtYE3R62ElteTnuTJx5iLJmSuP7FLWV906tJDmrTpIzFixtfj0YfPW0qp9N3miXKybNawmP06fKB+3DflvtMuGBGPjkBk75Z28qSVDysCtmoNRDLOQAAmQgMcTqF2/seDDRAIkQAJhQcBrBagH6m3q8UU/iVIgtPUQ4J1culCvy1y7kcRSb1pfR0KMqcMzx8v5zWvlrgqQHStZCsn1yaeSvmINuXPmpOzo11VKjZ39UlVn1i6XI7Mm6n2S5nlb8nTsKQmz2t6+Xtq1VY7MnCi3TvwractUkkfqDUZEJcRP6vPldzKoX3cHEQpuL32/GiaxY8cJsmmLp38vT5Ro9VGXL+Wr9vUlibJ+mvpdL/t+D+7f1ds2LpsryFu3eeAPH7eU281j/6DyKCB12nRSoXJNXdbaVUvlwrmz9nKR15vTg/v3pXWz9146xErVaivLtPLS9/MOMn7afIE11IDenbWlxeL5P2pLiwaNm0uVGnVf2pcrSMCdCezdvUMqVa1lf5NbUc3DQgiikHEJy5Aps3afS5osueBj0uG/92kLnZSp0iihKPByILBbE66BsM7xe+onUaP7iLWc82fP6OsjxCek1P5u0idPHJW/D+zV4o5xyStboYp8N6ivQLyJHz+BdPm8vxafsF8cZZWbOk06te1vuwC14KcZcvv2Tf09feYXPFdiV3WeOPavvl4XKloCVUqq1Gl1/agTbopTJ4wSuNb1+3q43j5j8hhp3vpTOaPcMB4/eqzX4Q/c+Pb+uUMaNWkpOE4fH19Jlz6jXey3lpMsRUo9YAXEJ6QHD2zWqzge81KjYpVaehvcJN8tW0kOK3e88E4FciSXm3cfSd8JW2Vmv0oOrnimLQePX5UF6/+V1dtPS7KEsaRN3TxS/Z035MT5W9J7/BapWCS9zFh+SB498ZP3K2aXTg3fxu3HS+mzUb/J0XM3HNZnTJVARnUtLVduPpChM3fJ7/vOS4xoPtKoQnZpVect8VXWxl9P2yHR1brlf5yQdCniyaz+lWX97jPyy+bj8tvec4Jj+LxJIcn1xgurNIdKuEACJOAVBHBPN3H0MOVO/bt2OYcFMKx08TIDaeGcGfLLojlyV72At74kxm/koP6fK4vccvLz/NkSS70EaNeph5xVzyoL1D6wQMWLhaLqBcW6VcvUC4v1MvCbUdrjAb+ZCGmxef1qSZgosX5pULZiVa/gyYMgARIIfwJeax5xaNoY8VNvxJ+rBxN8nilXMkyxDttCms4ocePk0gX2z82jR3QRZ9etkH9+nCJ5O/SQ8irIeYrCJWT34D7yVL21xuh7t9XNu7pjd6gOAtPuQb0lU436Umb8HImdIrX81qm5tta6d+GsbOneRhKqWCElvh2v40g57BwBC/FUnCuIUOkyZNK1G/EpcZKkQbYGbnen/jkoDVr3UDf1PvLwwT2ZP+nbl/bDtoate+q82Ce46c7t2zr2CvzVMR+ZUoyYMaSvOi/mk+ut/HLqxDEpoFxd8BCNeTwsGsuQfXt2yfCx06VGnYYyZGBP+Uu5hTKRgCcROHPqhEDUMCmpv1XqrZvX5YSKM4QEq55WTetK3SrvaOsok3f3jq3yjr91katy8r1dWMpUqCofNagmPdSgByO+GSBdevS3u7JayylQuJhdMEI9sJaCKJ9dPRBADLfGp4LIhHT92hWBSFanwQd6GX+2/r5Bx4OCEISE69m4UUO1GGTELb0hiD+u6sya401tzXT71i1dCtwHweGMv3Ur2vSmv1CEDBjAoeEHzbXAZK0WbnlIA3t30Yw+rFdJenT6RMfUwnprOWCRW71gQUw6uBwOVg8/KDNl6jQq5tMbyK6PW8+oP6eUoHXM/7fVrAuPacwYvjKkXUnZq+JB/bTa9tturfexEpXafbtBXU+fy+TeFaRq8UzSc+wfsnX/BS04QZzaduCiDO/0rnRrXECmLDkoiC0VUGpfP6+uC/V9WDmnij91S4rmTqUe7p5L5xGb5OK1ezK2e1np/mFBmbf2H5mp3AORLly9J7NWHpJPar8l9ctlkxMXbknX7zdLwZzJ5acvq0hSJYq1+HqNXFUiFhMJkID3EoD4dOzoYflm5EQZP32BjnE4erjNrXnjul9ltHLpbqCus72VWzReSpiEe8Ejhw4I7gUHDx+vYu4V0C8qEYfwq2/HaCvViaO/09nvKKvcM6dP2OdXLF2kBasR42ZIwSLF9UvNh/4vFEz5nJIACZBAcAl4pQXULfUgcmbNcjsDPxUzyDpuGrZlqd9UEmTOZs8T1Mz539Y6xIDyjRVHWywhOHjpcT9Kohy55b6K12HKfKwu3oGlUysW63ypS5bTWbK931xgEXVp5xYx+73VpqsesS9P+8/k4paNgRUVZuuP/nNIvUGZqwJ528SzBAkTSfc+X+kHrDoqbsjSn+fJZeU6Z1KVGvV0AFmzbKZpMmaT/86qh5xjhyRD1lyS5c388s/+XWaznmbPU0iSpUonp4/+rfNin+AmBFjc8tv64Gb3qnwQ7Uzsm21/bNIuPV9/N1a/BcP5c07NPukgud7Kpz/L/jdfx/bCwzYTCXgCAbikwR3MKsjE9I8/B2vA6NFjaOGoQ5deEi9+fHWtmiWTxg5XN8sl9LUJ7mmtOnRTIoLrciDQ/KUsfNIqqx5YCUFEOfbvYW1lhfhMphxnZnNmTdZxkeAOGE9ZOCFIOqytrAkxk+7fc3Spw81/r65t5YOPWkkeFaAbwdH79/xUOnTtJZlC8BuFelzViThUqL/PZ+2kshoYA6564Pnwoc3iq3yl6tam2gU3h5VqAQHR4bbXWLUX15M/d27VbnXgDXc653Kw/4MH9/VbcwQp36tcASFigQ3cEeHmd15ZDyMg+5bfNgTLqta5Ta9j+c1MiaXde3ll6KxdUjKv43lbs+O0XL/9UPo2LyIQq/JkSSrrVOyoJb8dl2bVc+nqYX2UNV1CKfRmShk+50+5ePWuPPVLKg8e2UaPRaY4MaNJptQJdP7zl+/K6AV/SdOqb2qLKQQ933f0igxuW0JSJYmjP5WLZZSF649Ky5q59T7lCqWXJlVy6vl+k7ZKkVwppUUN2za0rWTrBbJpzzl5r2xWnYd/SIAEvI8AXOMSqLiGKdXvE14iZMyURQ8ugSPdtG6VGgyjpI6XimXEgILwb01tlBs6BsSA5fDqlb/IRx+31789GIQBLtP4PXVO+B389LO+OqxDrNixZeni+arsa5IqVlrnrFwmARIggSAJeKUAdXDiSHlusTra1qeTw+hp2IY8sDAKbgosBpSvCnSNssxIeUaAUhUGWjSsnCCSrW/5wn3KV13cH6m3+BgpL0nu/Fp8QgFxUqeTGMrcNbwTAhDiIcyazp4+Je+WqSgTfvhOxzexbkuhHiYwgpFzSp8lp7T54nsZO6CjtO03Str0/V6mKfe7g7t/11lzFywpLboPkZP/HJDxX3bSebEPU/AJYLQuWGq079xTnZ8Kge6YS416ZRKsEozlg1nHKQm4MwEIrrgJtsYkunv3rm5yEuVqVyZdBilTvor9EOo3/kgLUIcO/KVdxPDmFyO/BVXOlHHfS1xlrTR59mLtVlb7vcbStEFVgauYzb3PVo6pCILWD8MGyeIFP8q3Kr4S3BeQEqjrNlwgrAkj9FktuBBn6asvPpMWytUNAjHS3FlTlEvEKe2W9+uyxdqyC27H69esCDIgrKs6IZ4NGz1Vx+9bqd5mF1Wj+8WPn1BSpEptbWKQ8xDFILKZBKstPPAc2PenWfXSFEJeayX+tWjVUWqULyKrV9geej7t1ke7/q1Wg1rATQ8PRr9vXPvS/uG14pNab8m6nWfkCyXuVCths/hF3XtVQPL82ZNr8cm0BeLPwRPXzKIkTxTLPh83VjQlPj1X7nInlVvfFvt6WCrlzZpMbil3v9bfrJN82ZJpiylkuKgsnJAGqVhUzsncTqRPabOiw/adf1+Smu/arMiwnCh+TMmcNoFcvv7ywyO2M5EACXgHAbwYhivd3+q3Db+J1tFH4RZt/R3E6KvOybiFx4plu2ZlVAN6IOElDlJAo0djkAwTUxR16nxKwGIiARIggdAQ8DoB6vKeHdqSyAoDFkZIV/fttq+GtRHyJn+7iH1daGb2jRkq9y9dkHJTF0l8NYz09UP7ZXPHjxwEMOdyYyZOJikKJZIS3724ib+mzGTjpsso5zeuFlhIwWUwqq+vPFYxQCIyBpS17RhKGx+kmEp4q6tGe9q4dqXkK1BE/NRDWGDpjRx5pF3/H2SMEqGKlqsujTv0lXgJEunsd27dkHW/zJLt65dLhwGjJWM229vcwMriekcCsBro3KaJftvV8MMWjhudlvCmzMQIwHD1sLZgIgFPIpBeuW2hH5uE+ESw6sH1CEG+79+7K+Z78Mg/VlyGN7IIrIwgDCEfkqtyTp08pq5phe0xjdIoYQsJ3zWMdmctB2+Q4c76x6Z12hUCFkEmpVJuZgj8bRKCfiOZm3/E6IB7n/MIe76+0XQQdYhPSIiV9EhZKa1fHbQA5arOG9ev6mOAqwUGZ8CoeO/XLi/5C4bsNxDuGxDDMNKfGbEPLnaFlKWZc0KsqJVLfpae/YfovNGiR9fsz505rUZWfSr71YsOBByHhS0SrKHSqt/BiErRfKMq97h3pF7PZXLhik3cRFtSJIqtYy89VbGrEI8Jaf+xq1rw0QvqT0ADXpQukFYWDqluskjGVPHl0WM/+XT4Rokd01e+aV9ScbEFikqsBCSkSb3Ka5EK8xClbtx5qMrGkoivZVCJNMniyCGLAHb3/mPtzpe+1guRyrYX/5IACXgLAbzw+KxDSylVrpL0GzRCW5Ji4IZF82bqQ0yvQmUgrp9J59TLDOdkhCSz3v/yYhYloBfoiPXHRAIkQAKvi4DtTup1lRbR5agb6oMTRrzUikQ5cws+zknnNa8WnTcGc/mZ8qmOkSiJxE2bQcdwOjzTJio9e/ok0BJSv1tOEAfq3IZV8lS5JhxfPEeLVhixL1n+Qjp+1NH5M7Tw9O/c6YGWE5YbkqdM5XL0PriJzPtxqh5JaY0y4U2pgpK7ShCWBoxfrHzI48rEwV2ld7PK+oN5rMM2ik+uCL687bZyP+zesaV2FXq/6ceCIdvxwYNmQGn+j9N0QHI8POIGBcO/M5GAJxFA/DIINxhN7Z/DB7U1T7VaNktSxKQb+/03eiQ6CCLTVFBtvKktULCo7Nj2m+rvZeyH6qocxFCD2IO3y7C2mqtc61AObvidy4Er8hplvdNeuf0hYR984AqHwREO7Nsj/1v4k3Y5GztyiHZZS5suvcBFFuITRurMrAafMPtB5GrSoo1gJD/zKaUCc5csXUHF7Bin60BsN5SJBxHn5KpOPEB88XlHPaopYoHMmz1Vu8aZuFh/7twmmzesdi7ypWW4JuIcINDtPfWbtWLJQn09KVWuss5rLQeuIXDx+Hn+LM0Sohos0XDt8VUvWOar35BpE3/Qboe7lSsf3D8ieuSl7BkSSYf6+eSSxZKoZP40cu/BE5n8y0ElCD3SYhTc5Yrldv27lzBuDMmZMbH9E0MFse+jApYfOX1DvmhZVFtCQWTCJ0u6RJIicWyZsHi/nPnvjl73yeC1Og7USydBrShfOIN2t4PFFtwDsR8SLKyQlv1+Qrv0Yf7Uhdu6HD9llYW04+//BG6FTCRAAp5FAMI9EgatSKHu008eP6rFJ7ykQCqhni/gyoywDHB1hmUuEwmQAAm4GwGvkrT/2/6b3FSxOpzT6verOq/Sy8iLfVIWKxXgdttK27uBKPLSOwK9OfuHn8ieb/vLkkqF9HLOZm3l8u5tcluZwcb1f3OODeYNJuYzVK4l99RoQzu/tPllI1/BPoOViJUem6XIgGHy16jB8vfkHyRhtpwR4oKHeCH4vM4UV1k9VWvcWn9CW25iZe0QN17w3vAirzenQ2q0KLjqIDWqZYsnhnm4QnbpMQCzDgk3IwjMjIdpuL6YgMcOmbhAAm5MoFK1WrJ/724dcwjNhDjTtGU73WKIGohBNEAFx4arGyyjhoycID5K6MDIPY2bfmI/Mlfl1G/cTFsKtW3eQOfH96V736+19ZRzOeatM0a3syaMHAQ3iI5de8vIoQP1B9ZRvfp/o10AVyxZpLNDcMHHpDr1P9ABz80yps6WNfjeo8zqterrUfmseTMqa6/A6oyvYob07DdEJo0ZoUY1/VzHjxs0bKwekQ9lYNQjWH+BqasEdw8MfDB39hQdKB15YQ2V483cejdrOTgH/QePlB+nT5AxI4bo7Z+06ypm9KR2ym0Yx1Lxnbx6BKbufb7WIp3OGI5/olp/oFW9H9fKLRvUCHPXbtke6iAifd2mhAyZuVPGLvpL4igXu66N35YqxTPK4VPXdUutRUTz9Qmw9feViLVq+ym97f2+Kx3y7J7RWMao4OM9x/4uVbv8T29DzKfPPiio51V4FofUQAUiP3vpjnQeuUmvT5s8nraewgh5SN/P26Nc9DJrQergiat6FL2aJTNLbCVErthyQltLVSySQeflHxIgAc8gADc5vPCYMn6kdl/GNRYvYWAFdeXyJT1qKqyEEZYBKaAXjeY3JUoURxsEsx4PLIE986BMez4sMJEACZBAKAhEUWb4tldiodg5rHfZunWrpMlRPNjVXFUxKHYO7K7c1wK3PrIWFlW5OhTu/50kVSNBvGp6qKxOYiiBJYqKsxHcBDc7uNjFTJz0pV0Qp+qxck+DdZUnpuO2gZZeS9Mz22K2vpayImMhsLZo+UFtWbFhlx4VL64a1dC4zkRGHjxmzydwT7naRVU3zwiG6pww8iNGxUvkf13FT9wFJfgbVzprflflYCRJjKyZOEkSLRq5KsdapvP8kydPtGugcTNz3h7SZYxe1+qjejJ97rJAd3VVJ/jcVYNkQJB61QRrSxwX4moFlTB0OIbvhuWTc7p184Zuj7s/2GCkOowyhxHnnEUr52N6leWbKkZUrOi+AoupoNKTp8/k9r3HkiSBzYUvqPzcTgIk4PkEYAELS1/8zgV03YSVK6yiMCAGEwm4E4FoDy9I0qQvP/cG1cZbaoCYo0eP6mzFiwdfGwiqXG6PGAJeJUBFDELWGhABClABUYmYdVYBijcjEXMOWCsJvC4C27f+JjeuXdVvul9XmSyHBEiABEiABEiABMKaAAWosCbsGeW//CrSM9rNVro5AcRV9Q838Uot9Y/P+kplRPadEyorOgRmjh7DNsJJZOfB4ycBTyZgRtnz5GNg20mABEiABEiABEiABCInAUcH4MjJgEcdBgSSKG+AVxWPsD/KYXo1AsmSp5D2KtZKjBiE+WokuTcJkAAJkAAJkAAJkAAJkAAJkEBoCdACKrTkuJ9LAvGii+DDRAIkQAIkQAIkQAIkQAIkQAIkQAIkQAK0gGIfIAESIAESIAESIAESIAESIAESIAESIAESCFMCFKDCFC8LDwkBjM5kkhmc0Tq1ziOvWTb7+Pn56Vldjhqt6PnzZ3rUN+QzZVvnHdf52fOgEFO2dWqdZ/3hw9+cW05JgARIgARIgARIgARIgARIgAQ8mwAFKM8+f17ReiME4WAg8hihxywbYQlDzT73F6miRo2qh561CkHYjmVsU6WockTPY70KJ6W3WetCPlOHGUac9bsXf5wvnH9rn9AnjX9IgARIgARIgARIgARIgARIgAQ8igAFKI86Xd7RWFgmKalJCUJ+Slx4qoUkHJkRGYzgZBOLnuvt2IblZ/4CFfJgfy06+QsUtnKN0GTbD/n8nj4VlVHn9fHx0XUjL+p++vSJFqdYv3vyh3BoFQrRB0w/wTljIgESIAESIAESIAESIAESIAES8AwCFKA84zx5RSu1gKQEBKUGaeskiEc+Pr5aUHjy5LFab7O+geBgtXrBsk14eKbFIuxnRAg99V82VkzYjoQysK8yhNJi1TO1/BRilF62CVSoH6IW63df/lpk9BeeMG+W9YnkHxIgARIgARIgARIgARIgARIgAY8g4Paj4GVI7BEc2cggCEAoihLFpndarVieP7cJQlGj+mrBKEoUm4WLEZ1sxSrhyV94gKiEPFg2Fk+2sm2iE8qGlZNZ9+zZE5sIperXYpS2oLLVYSvDZkUF8cpWNuQqm9UNyrIl1h+e/FHXi/OPfmMTC7HOiIroS+Yc+58kTkiABEiABEiABEiABEiABNyUwIULbtowNitcCbi9ABWuNFhZmBGAWGA+EBEgEkFogEWSr6+vskBSrnBq2QgMWG/yYz3mjYBkXUaDse2FWCS6TOQxCdtRrhG+jEhl6rPWj22oh/VHLH9zrnAOzbk0wqI53zZ3SnOWOSUBEiABEiABEiABEiABEiABEnBnAhSg3PnseEHbjJBgBCQjIuDQjOj0+PFjLQ4ZqxeIRSYZsQnlGHHIiFSPHj3SQhaWjaCFPNaEevFBQvmmfuRD/Vg29WMe643ggX1Yv038Axd8wDCs+aMOw956LlC/OX+YGvHSnH+9E/+QAAmQAAmQAAmQAAmQAAmQAAm4JQEKUG55WrynURAQjLCEo4LoA0EIos+9e/fsy0YkQn4IC2Y/I3YYkcEIIWY7ljGPj3Ue5WEdpqZ+k8fQxbI1YRl5rfWjTKxj/TaRL6z4g72VP5hbxSYsJ0iQwC4m4rwawRDbmEiABEiABEiABEiABEiABEiABNybAAUo9z4/XtE6iBYQDIx4AcEA4pPf44fwn5OoSnzw8VHCj7JkUuF+JIZvVC1G+GnxB5ZLItFUjCYEL4+iLF+eP4fgoOajQmBSsYCeKSsnhBpXGVG2bVnEB/OqfOTFNsw/V1NfbemE9apNah2ED+TV9csz8Y1mcw9E/apZrD88+T/3s5x/JUTq86esr5RR3O3btyVRokT6fKmTpxPOnelbEKSYSIAESIAESIAESIAESIAESIAE3JMABSj3PC8e3yqITRAHYDmEKT5IEAlg/YSPD8QDtR1SEEaoQ8K8c0IZAaYAVkM0MumpZd6sw/SJ03rW7/780W8ePHigraC0yOgvHKJfGQso9Dkzbz3fnCcBEiABEvBMAsbV2jNbz1aTAAmQAAmQAAk4E6AA5UyEy6+FAIQACALGKgWud2YZU2O18loqYyGRggD6lBE0ccBmHn0J/cyInJECBg+SBEiABLyUAO4Rpi/ZJYs3H5fj5+/KE+WWz2QjEE2ZZWdJm0DqlMosTarlk+jRoxMNCZAACZAACXgUAQpQHnW6PKexuIGEYKDd3vytVbBsAn5DPIgW3VeePnlhseQ5R8eWRgQBvAk34iUEJ3zQv5BMf4uIdrFOEiABEiCB10MA1/Lu36+Wpdv/E5/ocSRK7GQSHW70TP4Ensuxq0/km7l/y6GT12R41yokQwIkQAIkQAIeRQDBdP7P3lWAV3U00QFCcIe2uBQo7h7c3V1KgQLF3d1dghV3L1BcSmmhUKDQ4u4OxR1+9J8zj33cvOS9BEjSJMx8ebmyu7N7z9U9OzMbouX+/Qd08+atEH2MQfHgYI2CD0kQTSAOIMZSxZAGSPsY+fvvfwgz4AVVuXDxIt2+fdvH5t248S/9tWePBF93lc/Hwp/1Tpsbp7mecE2Z68dY2X3W8OjBKwKKgCIQAhCA5dOavXfILQLH+wsD6x4ln7yeVsTCdBd81uy9SzN+3uM1WbcUAUVAEVAEFIEgjkCItIBCMOkJEybRlt9+pyNHjwkRkiJFcsqfLy+1b9uaIkeO7OfTAtexQ4cP0969/0iZggUL0DcpUwSqu8/mX7dQ7FixKHPmTL62+8GDBxQ1atRAbZ9PjTLuUFiCIABZAOLJWLGIxYqbG/lEQS39aZkEKW/wXX276vMXLtDoMWNpxLCh9NPy5RQ7TmxKkjixPT0orfzK5ytZ0qRUuHAhL826c/cu9RswkPLkzkXp06UjZ/m8FNKNdwi8JZB3v2z+la8nN7m+cW2ZX7mypenff2/SmbPnqHy5MvQh94xCHLwQQCywP3fuonv37pNHnlwUL148+wEcOHiI7ty5Y9/GCp77YcOGlX07d+3mAYmbVLFCeYkp5kwPMh86fIROnDhBhfiZHydOHClv/ln14LmGvMePn6D8+fNSvLhxTTZ57h04eJDTTlLmTBkpbdo09jSsXLp0maArfbq03tJMxr1MuOOYcRx+ETxrXdV55cpV2vHnTsqSJROlTJHCqUpXx4VCJ06eon379lPixIkoZ84cMrmDM2UnT52Sd2hKfndmz5ZV7ttHjx7R7r+8d57xvihcqKAzVbo/hCOwZtc1tnzy+zdaCIfD5eHBQmzNrivUqFIOl/k08fNFAH2CVavXUrWqlSlChAh+BgLvs9Nnzsr3lJ8LaUZFQBFQBPyIQIizgAL51LJVWxrjOV46BSA6IKdPn6EZM2dT3foN6fHjx36CBx/9yF+5ak35YMdHe4lSZalp85Z+Ku9fmeYvXES/bd3mqzqQNLnzFrRbHPlaIBAymFhQ6MwYUgrVgtizOU95b0SunDnpn337ZFY6k7pnz17KmjULhQ8fnoYNGRxkySfTXp+WV69e5c5yXKpXtw5FjBjRpyy6zwUC12/coIGDQUCuoLXr1tGateto9Zq18vsfB7VHR33Sj5NFg1/vGRfVaVIQRACkhUf+wtS5aw9a8fNKKlqiDB05ctTe0q7delCrNu2pU5fu9t/jx0/s6QsWLqYX/OzxTU+1GrWpZu16tGHjL5QtpwehnFWMHrgUFy5agmrV+ZY2/bKZcnsUoD79Btiz/tC8lbw/tv2xnUqXq0hLlv5kT8Mx5CtYRMpVq1mHSpYu5+WZh4zXrl2j+g2+p59XrraX823FVZ1j+b3okb+QELQVK1en1m07+KjOt+NatHipvAsxyAO8ixUv5a3tRnGPXn2oUpUaBAyAa5duPSUJ9zPWrb/vmzSjlq3bmaK6/MwQwADV2Zs+DUv5PxBuHEsJM/A6ik/7TB5naTGjhDNZZAndqRJF87IvoDbO3NQwBgGFbUjQe+fOXerVpx/PIvzogw7H+j31QQU1syKgCCgCfkAgxFlAoQOyYeMmp4e+f/8BatCoCf20ZKHTPCahTfuOQlzt2bWDvvzyC9mN8hWrVOdO77ogNzKAF82TJ+87W+Y4AnsJsgnEH5YQQwJiaSyhMModBoHKmTB0lESJElLMmDHp8OHDbDVgs/ra+/ff1OT77yVr7779qE3rVhSL81zlDtrcefPFkiAlW7l936ih1Dt46DAaPHCAxKEaxKRF0aKFKWeOHNwJ+oOuX79BNWtUt1e7/8ABHp1n/Y2/F6uKgYMHU7cunSl27NhMWs6ijBkyUDq2UJg5azYdO36cYsSIwee+LI/kZxMdPXr1puTJkxNIsk4d29v1YmXlqtV05coVrr8ITZs+Q1wHO3TqTAP79/OSzxzHxYuXxKLgWyap4sePT0OGDafaNWvKvsVLlgp+dWrXEp1z5s6nHt27etFz7vx5mjNnHt25e4cSJEggeMB6DnUOGtBfCDwQYcCsW9cu9Mf27dKBh1XIzVu3qUL5cozlJSYA91PcuF9Rq5YtKCYfL44x1TffsMXCX/TFF19QyRLFhQDA9Va6VEn+2eJQoI27du+Wc5And247zlaMWjZvRrPnzqU+vXtR5EiRhAwYMGgw9e/bR9rn5YAsG0Jg8iU1abyntA3XECxbcF1hvU7tmvRtvTqWEroa0hAYP/FHOffL+PmN0VwQKBhsmDFtstxbx0+clGd7juy2e9N6/Bic+J2J/O5dO5ErPXv4WYDfrh1bxbpq5qw5NJ4tamvWqCbXmVXP+g0b6V928d63d5dcu7vYmqkmk1Etmv1Ah48cEYu9XX9uE6sokDb9BgyWe+wW32sgo1avXM7Pl/TcOXhI6TNloy1bfqcSxYtKs/GsbNexywc900EIwUrQpzrRuQdW4zxHUwV+foG4K1O+ErVv19oboe/quCJECE8DBg2hgQP6Ur06taV92XPlpV+YgMOzwCpnzpyl+QsW0aqfl1GmjBn4ebOD6vGgTts2LcX6CrgZOXfuPBViMq9vHxtBZfbr8vNBwI2tol+9DRPgB5wwTiRaP6wIjf7pGM3acEbqy5IiJnm2ykGxo4Wn5y9eU8cf/6Yt+65LWoNSyalFxVQUKbwb3br/nGr030bX7zyjdEmj05yueck9bGj6++QdajDsT8nfs14Gyp0mDpXovDnAj+V1IOAV4AehFQQ5BOrVrc2DpbWDXLu0QYqAIhAyEAhRFlDPnz8XU1OfTg1cKFYuX0ply5SWzgWshVwJOgSbNm2mAf1628kn5Icb3MjhQ5kgiSHFMYo7YuRoypUnP2XJnptGjh4rgbaRiJFwbGPUN3GylNSkWQtCBwnbadJnpq7de4prBfKiIzB8xCgZEYeeIcNGCNmANKtgZBr5kAc60AGDaxfMbGH5BSlesgxdvnxFYl+14H3Ih/zofKATEhgCyyf8hGhicgBiLKCwH+1w1RZYQe3Zu1fKwXoNZeC+AcGxGuJq/PiJhLyeY0ZxxzQuzZ4zV1wQUe9FJlJu3bpFV5hw2X/goJQ9zK4yiR1c975OlkzcLEFkHDl6hJ4+fcadR5tVxcFDh+jrr79mC4hFFJp1jhw+jDtddaSef//9V3Tev3+fO5/haNSIYZQ0SRLZh38gn46zCw9IMZA3jRo2EF2jRgz3ZgrtOW48ZWMLr/GeY2TpOX6C6EnAJBR0QA7wMcC1BnLi5EmKn+C965Hs5H/LV/xM+fJ5sJ6xQt4BOwjclQwR+OrVa3rA1zcEsbTOnD1LrZnQ69CujXSKkyRJTBOY5IkaJQrt3LlT8uEYo/C255jRFD16dDm2nt27UeuWLcUCCbqBNawLB/TrS7179aTtO3bwdXjZXt5glCZNaor71VfsvrNP0vbt3y9kGazbnAm4TLleeMQaxCauJSyt1xAsonC9O4qze8Yxn24HfQR27/6LKlesYL9/sP7rlt/E+gZkByR58q/F+hUumVY5yPfOl1/EEWLXlR68R6wS1j0s4TkPQghi1YP3yphRI+zEKdzRIKdOnxb3tKJFCttd8sqWKSVkDdzCcd8N6NdHyCfkx70F4v3I0ffWXLDYfcD3HVwn/CpwiXNWJ+4Xq+C4IHg2QEaN8bRbRLk6LpBIIJ7rMhGOZzGezX/t/IOKFy/mTQ9I7BXLFgv5hMRn/GyFvHnt1WoD2Hbq0o2KFytK1atWkTz673NFwLtVkn8i0bpKalo3tAi7jL7//A0TOhRN7ZiHHjx+KeTSiUsPyLNlDorIhNM3CaNSpxrp6Je91+i7oTv4eg9F87rnkyY1r5CKLtx4TB6tNlDO1HHoyxjhKbx7GKqSPxH1nXPAP5vtQlfA4uWiYk36jxDAu61dh87yXY++BfoPBw8dtrcG745CRYpL+uSp0+378Y4sX7GKDKigTwAL3I2bfqFJk6dIXujZuvUPyb9q9Rr799TPK1eJRXHHzl2lP4Fya9aut+vVFUVAEVAEPhSB92/gDy0ZBPPDZBSdzejRo1G7Nq0oXLhw0kp8TC9ZOE/Io7weeWQf3OlcyVHuJECyZsniLRs6BEbPwEFDJY7FqJHDqGvnDmwlM4c8x9nIg2vXrr8bOa9Oc2ZNF0ILbhZVKleiGVN/FCsqxP+AYDR68dJl1Ltnd45zNJh+WraC3YmmeKsbupEPxNjUyRPpAhNp7dp3krhWXbh+yKQJ49hKJY4QXrCsmTl9CvXs3oXmzV/IVjgzven07x2GIIBedCxATpif2QeCyBBSPtWfK1dOOsQvVLjqIWg3th0Fgb5vviM94P4Cl0lDNCHG0qlTp4VIKsbWT2eZZEEbTp85I/FWrLoQMwvWTpeYLMF5QEfxCFsvwHIJZEuMGNGF8IHVD0gSEGEpU6YUXUZPkUKFxK3OHBPcxOAe1qFdW3vn1OR1XOI44CZUrGhRsejBEtvYD8srxE/BeYwVOxZ3oL8Qa6+THH8lfdp0jqooPsfDQYd87br1lDpVKsrtA26OhdKkTi1WTiDawoZ1oxzZs0s8F2w/ZJcnIx55chNGqFNwBx+60WkGFi9fviJ02nGfleBOKIjDHTv+5PPxnO5xB9qIFaM8rAvB5CGwPsuTK5fJ5vOSv7FxzTDrJOQXrEnM79ix43JuYWJ+7tw5b+Wd3TPeMuqOII8AYnyB1DBiLFPvMQmP+wSSl130ylWoTDly5yW4nBnZsWMnFWOCA+JKT66cOWSgAu59sJbt2asvDejfxz7duVUP7gljsQS9eP5HYqs+xHTC8yR+/PckMe4XCIhakGRWaz3cs4gHZeI8If7GoCHDyHPsKAofzjkxKwot/1zVifpBerVml7lGjX8QtzhYPGZIb3uOoE2wUoK4Oi6QcSDL4C6XIXN2SpU2I+M8we7OZNUDLPAOxSAJXA7bdexMjRs1YMI5vqXVJM/Kv//ZJ+3zkqAbioA/IgDSqWm5lDRv8zl6YyFkc6SOLdZNrcfvoUNn71GjETv5fROKyudJSPWKf00vmTDtPn0f/XX8No1ccpTix45I7m48yy+37fnL1/S/F2/4e4aEnOpZNwNdu/2Mdh3VyW/88dSpKgsCQ4eP5LiCx+XbHgPrsATvP2CQ5Fi3fgP1HzhYBjxHc78EA3xGMPABouqvPXulD5Ita1Zq2qwlDzTupik/TpDn/9DhIyT7gwcP7d9TWEdsVoSOWDBvtvR/WrZuK4O1RrcuFQFFQBH4EARCFAF1ljsnkFYtm7OJfytxy0iYMIGQT19/nUxc83pyPAoIRgJcya3btkC2UaI4D4aJDgM6+l06d5QP9urVqrK7VHWaxS5QRkqUKMaEU0UqWCC/BJ9GAGq4cuTmZRa2psKItZFavL8Yu2oV4eDVlStVEBcnk2aW0F2G3RwypE9PiRMlou/q15PYGnDpSJgwoWRDB+D8hYsEd0G4SICUgLsYiJWFi5cYVQG2BAljLFMMIQPiAiPlRkAGmTSzz7qE21eSJEkkFhQ6Jnly5bYmyzoseSDIix+Ou3atGrIPBBQ6pLAoyJw5s2ADi5xY7I7mUxB65AeRgZnpShQvLp3Ho7ydLm1a0YfjgcugEayDXDPi9i7IsdnGiz5y5Ejijmb2OVviODCqahVsYz+IHpAqsNxCGzOwO+DhI4fFail16lTWIrJeq2YNiTEFC4VRY8bI6JbJBMwhr9+8bze2hdjByjsx58nx/IThc2jE5DHbWIK0HTl6jJBnXzAZ5ShWjNAphRXitevX6TITfZn4XnAlQOcN2s0rm7mzDnIPI3T4wYILYo5PNiz/nN0zCGquEnwQwP2G69pqKRc+go2cefL0qQw4wML1t80b6cTRg9S5k809D88PCNzTQPD4pgdusLvY0ipp0iT83EgghBKeDXC9gxg9smH5N3nKNJo2YxaNY9IoWrRoYlnkGOsNzx9rTCoUxyAEyJxmPzSRAN0g0pu3bE29enbjCS9SWmrwfRXWTM7qhGXnCh7JRhtAAMEaDO64t9+96+CW17BBfW+VOB4X8uPd99VXX9L2rVvEIng6uyrjnoT4pOfpk6fiMo06d3HgcdRrlTnzFohrInSqKAIBhcArJpJyNltHIxYf8VJFivhRZfvcdduAy9PnbKHNeePFikAJ2F3v4ZMX9vwnLz+Q9YRfRqKVOy5RpuQxafWgwnT/8Qt68OQlVcibkPrMDizrJ3uzdOUzQuBbdo37cdJ4/j5NQxGYFErBISCuXr0mCKxbv5EK5M9HdevUkn5Hs6ZNvCHTrUsnGZA338utW7WQdw/6HfDSwPvUUTCY0Ld3T5lMo8F330qy44QfjmV0WxFQBBQBZwi871E6yxGM9mN2HYjnuIlixZEvrwdt3fKLWG0gLhRc1EwnwuR1dnipUtk+/M+fvyBWKNZ8eECjc27cmxDDwwiIHnRCjBtHwvgJTBJFicpuFu9IIuxEDJM3b967RaCsERBMsFaydqrhFogO2Nz5C2g5B+A1ghfDvxzDxyoIXgtB8EFHsVooOab5xzb0g6DAzxBN6PRZjwX1IN1K4jjWDauYn5Yt5w5TTOnsOKbD+gFuYuEZx6xZMsv5OHT4sGT75puUNH3mTArnHo7gFgc80UHyeGcB56gL5M6UadMoOVv9gCyD9c8vmzfLKBLyYraordv+4Jd6bZltDS5wldj9x5nAPSUxu7KNYhdMEICIEeVM0Oly45ndYOmFOFVYYtt0xhALavOvv3KslrZMgoWhEaNGSRwmx44m9C9jyytYMCHGFTrqxtUUVlxwK4RFlHHjc9aej91/8dJFIUUxwxjIHXd3d6eqMGKXhUmoMWM9xULCDdZNvohtwDoUjR87WoK5QwfuQ1xHINGwdBTf7hmDsWM53Q56COAc41lnJXAePXosDYVlYBJ2rS1T2haLDDsbMZkCd2UQ8UmTJpGRXzwnfNMzctRYisbP6rWrVsj1BRK/aInScr+D5MYIMvQYwTOsH48+IybbnJnTqWDB/JKEOHYIdm4VfLBbLbjgptumXUeZnbVNa9vkFlPYZeIcv3fwbIMlLIh0ENp+iTvoqs7tbJUILExMQ5DqOXLnk5FtDNo4irPjisFWoZBOHdqLtTGsoRYsWswzE+6W2QUd9WAbRF6Xzh2oXdtWlClrTnYVXkno9EAwmx7a1atHV9nWf4pAQCLw+Jn3MASI4WQxiJLqX71+S1EjuVNYt1A8cYFt8AYJD5lkgkSP7E6b/75Gzcf8RYUyf0Wj2DKqB1s/Xb39lC7ffEIzO3vQ6asPafRSdrllKykVRcC/EHjz9o244OG5iXciiH0jcP+2vgcx+6qjxOXJcCAR+dsZYmZDxfcy5O27wUrZePcvET/DzTcWYndCHAcz32XVhSKgCCgCviLgvcfma5GgmwGxZWAJg05nnXrfSRwQkAmO5BM6rR55bK54zo4mGccFgjjOPoSOQIOGjcU9zrh/4IFv5DBb3CC+jRmld2OXJquYB7jZ99YyF9zpd5YcSDt67BglS5rE/sDHPmO5g9GLY4f3y2/v7h00b84MHilPgSx2wSg3ZMHcWfa8v25aR0sWzXNpeWRX8AkrxnIGhJMhoIw6k4ZtK/lm0q1LzHr3hEfOYTXmk0BXi+bN6Cc2DW7dth37sU8WKyjkxXlPxBZiKVLYiJ8MTBLCOiADE00+yddfJxPSEEQVBEvUDVc7CIgnxJJq1aYtDR02XDqjIIacCrcNsaVqsUXcRJ6ZDdekj8L5IC1bNONrbRX73Lemn39eJdsmP6ywcN2AyAJhEtYtrDc3QpMX1+TI0aMJwfhBZJV5Fxy8TOnS3EGey53d9mK9YPLL8l0bvOxzuWFrs8lizimIr1vsNohzMXnKFCEOTR6flh4cpByB852Rgl7L2GI+YZ+VbDL3EzrLID7xs8qH3DPWcroeNBFIzvfpWbYINALXWjzrQObDJdPqYvz8+f8kG0aH4WIAYshMQ+1KD9x0c7IbnrmuERMNAqsfRz0Y0OjQqSsTvz9LjEFDPiF/QrYyOsGDFUYuX74iq/E4Vh1k3oKFQj4NHtifJ1WwkU/YD0tBBFEH+QS3h7PnzovLIGKc+Sau6oQlJd5N5r2FZyQGTxArz1FcHVc8fg5BENPNCGLygTBzFMTaQqwSM/ADUhrYw0LXyGYOmg4Syyd3d5NHl4pAQCJw4+4zvt+91uDGLnggku49fEHhwr4fIIkV1Xbdn7tmI5e3HbxBfdniCd9yFfKw9dOsA7SkdwEhqKrkT0ztq6fxqli3FIFPQADfOvXqN5Ln6I5tv9HRQ/uoSpXKMrsr1CZLllRCSZgqzCCk2cbSas2Pbcdr3/E7Ssrw+0JFEVAEFAH/QiBEPVHQYcAsZN179raTUHB3mzlztv0DGMA1adxI4vq4AhEWGfCJhn905CiRqSyPrCOeDUa5EQOjR7cuEgMdBBBmAABAAElEQVQHnZ+Jk6bI6O0VNoFdxp2GIkUKuVLtNA2zIuXP50FwV1i1ag1VdQg+i8525UoVOQD2PMrG1l6IxdOn30AJirtx/RqKxKa4EFgBIeg1OhtjOZh1vz69eJaWsELKZWeSYPhQm6+404Z8YgLOg7F2MgQBXmjYjx8E6T695KxVg8SbPGmCdZesIxC2ERBMQ4cMkvhPpnNp0tq1aW1WhZicOX2qfdtxBaTGxPHj7LtBelmJL8RPwcx4iDHmaNljLQcFCDpuJF/evIQfJFPGjPIzadZ8sJAaOniQWDqY2GUmn22WuZJmU47XvuGwkj9fPqkPFnhWPAoXKkj52SwbHUVr+xFvyipTfpxk3yxXtox93XqMjjNdTZ86WfLBImvIoIEcF+CpNzcga3mj9MHDB+IKBKLOV+HLBucIw9Tm2jLXGTrSEHONWXX5ds9Y8+p60EcALqYjRo0RCyRY9Y3jSQhqVq8qDY8TJ7ZM7AC3hJRsAYnYXxgdzpMnl7wTEIPMiCs9iH/kyXprsEs1YpyZuE6lS5WQiSWsehYuXCzE8dDBA0U1RqQhSZIkEWugCZMmi8VqEb7/BgweIm4PCFQOd1XEloKbRBp2pTXl8D5p2fwH+Yki/od8cIkYM2q47ILl7S6ejbJOrZq2e8Jk5CWsD53VidhWiB0CUguxn/7cuYt++30rLVu6SDRgG0R5qZIlyNVxwUUcuI4YOYbat29D29gyFFZhHTu086YHz+cVbK2bNm1qqsVWmes3bJK8jb9vZG81LKCUfLLDoSv/AQLnr9ssKVMlikYIQA7rJsSLOnP1EX3BgcXzZ3zvGpouWQy8hujeo/dueWhyr3oZ6fKtJ7T/9F2KFS0c1R28nTB7XsGMX9GQBTbL7P/g0LTKEIaACW8Bb4p4bMl08tRpeUcZr4tiRYoQgoXj2Y6BafRZVBQBRUARCGoI2HpuQa1Vn9Ae+DTDLLRX737yMT112gwv2hp/35Cn4e7sZZ+zDQSdHsbkBtzAxnqOl2zycT5/jn0UGQG+W7VpR3ny2To3cMtCIHEjhnBxuo2gNu8E5rDFS5aVrapVKkkcK5NmlogL0oWDuVapVlN2YeY0T3ZJAmmBUWT8KletSYsXzJUYWG3ad6QChYpJXsSj6tHNb8du6vvYJcgCEAXmh20EFIcAE2w7YvOxdaGclWz5FD2+lbWSN77l/Zh0R/LpY3QAV5/wEDc3kDgBLD65BjpWiU4wYt/80LSxY5KP25g16y2bneN2ESKKc+E4DYkJosmQnY4KXN0zjnl1O2gjgBgVe/b+zSPANpIXz2PjPgaStUWzptSidTu2rLsjllEzp00Wa0gQHz80eX+tudLTqOF3EgOuYpXqAgbIFhBMuKcc9cyaPUfyYEZTq0ya4CluEHgX4F3Ui/oJ+TSKZ1DF9buEr3/I/AWL5GfKflu3jgQ8N9tYOj4n9/NsftBZs3o1+71g8oPwcVYnZnCFtVWnLt3lhzJNm3wvsT+wvpIHPWD9BUx9Oy5Y3bZo2ZbdnGcJGYV3qgmgbtUDQg0ze05iK9ABA4egGhkkKle2tKzjH1wMq/DAiooi8F8hcPTCfXrCcZ961stAdQdtp971M9LLV2846PgtJqEe0rcciLxRae7MbzpLjcukoPM3bNZPpr1RIoSlMrkSUIPhf9ILLvea3fciR3CjyDyLHvSqKAL+hQC+EXv16CYDMZi5FM9YDMJM5EmLEPoAkyTBShgTaEDwXnQU805x/GYy+7E0645lZZvTVRQBRUAR+BQEQnEHzqvPyqdo8+eymAI+jy+ucs6qxGxoGAHAbHcYGcCsdfhARlyojxGMQId20rGHPnR4YCXzsQQFplKdNWOqzfWDe9kRI9p8s521FQFlX758IcFurXlA+MACxbgeIQ2uZxE4WK9xC7TmD4h1jNDAKsVYqpgRGyxhPgwi6i7PihQhXFixyAmINqjOoI2AT9ZKrlqMTvujp8+Z+P1SOt3YNj98KEEfrjlXep3dM67q1bSgicDjx48pFJOOxurT2ko8d/B8wcyWEFwTcDNDjChHcaUH7w3M/hM7diy51lzpcdRr3cbz7hG3F+7h/iGwwsRU2rB6dSau6oQ73G2etCJmzBgf/b4y9WKmzuh8XH6J4YapwxHPD/epiiLgDIHU9d/Ht3SWxz/2H51dgYYvOiKkEvSVzZ2AhjXNyl9fPAEID3j0m3uQlm+7KFX1a5CJqhdMws8SosfPXlLVvlvp0r9P7M0Y/kNWSpckBpXu+qvsm98jH8GaKhzHluo7570eewF/Xjk+Rwlcf4Y0yKvDt7R5z/lEFiFcCN5hmBBDRREISgggRrH5PvuQdj148IBj/Z6WIh/LDXxIfZo3YBEIsQRUwMLm/9oNAeXTaIX/1xawGvFiBDmAjiA6bfhB0ClCGjpQNzloepRIHISdt1UUAd8QwEjdsxevZLQP15axFMN+bEMcR/N806npikBwRGDr1j8k1hpGulUUgZCGQGARUD7hhkHGpPEi01l2vXOU8O5hKDa71l259dQxiSrmTUSHz9/zUg6ByU9feehjfm8KPnGHElCfCKAWVwQUgUBDQAmoQIM6SFekQ5FB5PTAdSRhggRBpDWf1gxDPkELSChjoYJtkAQYAcfPp1Eb5FFRBLwh8M7KCdeMIZyQB9eTITxBdOo15Q053RHCELAGOg9hh6aH85kjACvpsG6hxf3tv4DiDb9DfCKf0JbnL147JZNW7vAeyP/3/TcC5RCAl4oioAgoAoqAIhCcEFACKoicrc6dOgSRlvhPM0AMgHwC0QSCwBBRWDck1Ns3byk0W6+EDmUjEUKHtrlSgURAfkNkIT/2vWazeLaOxx9vQz8sreDq91rccWBNZQgIowNuOphoENPWYnQTH5iiVyyvbMq0/uCBf1gOpI/zan64Us21Ya43c/795ypWLYqAIqAIKAKBhQC+F9IliUL7zzwIrCqDfT3AS0URUAQUAUVAEQhOCCgBFZzOVjBqK6xRDCmAZmMdAmIJaVGjRpUg8XDHg2ueyYt1iLW8Ia9MHmybdaMXxIOxhDEkl8ljLGOwbdJMHaYcPnwhSMc+lDEEmLU86tb6/Rd/4Gks4sz5wTkA4QTBOuKXIZYBzgnOB34QlDXny+yTBP2nCCgCioAiEOwQqOQRXwmoDzhrlRkvFUVAEVAEFAFFIDghoARUcDpbwaythqwBQQDyB2QTCAQTpByEAggHEAdmaSUXsM+QQIZoMNuGXAIkSDPEBOrCD/uMLuTFD/Wa8lYoDYGBpRGsm/qhR+u3ET0GP//EH7qAMTA3P7PPavWEug1RiHUjODfYjzIqioAioAgoAsEXgSoFk9Ppq09p3q8Xgu9BBFLL6xVNQlULpwyk2rQaRUARUAQUAUXAfxBQAsp/cFQtDgiAUAAhAELBEDggCUACmf0gEQzxBBIBBBXymH1Ixw/ljT4rKQRyAvtRB8pb9Zmy2A9BPuRHeUNWmLaZpcSf4Dwog/zIp/UHHv44N+ac4pzhOsE5wPnBD+vW6wB5IThHOGdKQAkc+k8RUAQUgWCLAJ7jXetkoDRJotPSrRfoyIWH/1lMqKAIImI+pUsSVWblK++RKCg2UdukCCgCioAioAi4REAJKJfwaOLHIoCPSEMKgDTAD0QB9oNMQBoIJwj2Id3d3V3SkM8QTVgiDWVMeaMDaYacgB5sw1XL7Ec5Q1qgPqwjDXqQZvKZ+o1+6EJ+0w6tP/DwB+YQ67nDNs4R0sx5wTbWsTTpsqL/FAFFQBFQBII1AniuV8yXRH7B+kC08YqAIqAIKAKKgCLgDQEloLxBojv8CwFHkgBkkRGsG+sWQyRgH6yQDPmAbegw5UAYGQsZkBFmP5Yog7z4Qa/RiTLYZ9JRP7bN0qSZbeTX+m3E3X+BP84b8Mf5xbmxtgFp2I907McPgm38zHmVnfpPEVAEFAFFQBFQBBQBRUARUAQUAUUgSCGgBFSQOh0hszFWgsBYsRjix5AIIBcg4cKFEzIB20gzZAOWhnQy+kBGmfJYWmM8GcsnQ3KZ8qZeLFGH2Tb1oX6I2db6bWSPwc+cE2wHBP7GCs56bnCOIFiadXN+zLa5DiSj/lMEFAFFQBFQBBQBRUARUAQUAUVAEQhyCCgBFeROSchqkJUgMNZFIAusZBKOGEQR0iEmHWVNGeQ321gawsEQEdiGDghIDKML+5AHPwjyoTz0gUSBIA1kCsoYvdb6DPmi9b+fRdDgFND4Q7/BH+cE58icf7QB6dhWUQQUAUVAEVAEFAFFQBFQBBQBRUARCNoIKAEVtM9PiGmdlSQwpJIhF5CGH4gGLI0lk9k2ZAfAQDq2kQYxxJW1PPZjGz9ThyGnsA/6IdCBnyGbTH1onyGokF/rf+86afAISPxxzgz+wB7r5nxh25x/c74kUf8pAoqAIqAIKAKKgCKgCCgCioAioAgEaQSUgArSpydkNQ7EAgQkBsQQP9gPUsiQG7BGwj5rPkMaYR9+xlrJEBKGqAApgXWUx7qxbJIK+R/2G0LD6MI+Y1lj3Yd1CPJr/TbSzuATGPjjPFrrw7nANvYr+QQ0VBQBRUARUAQUAUVAEVAEFAFFQBEIPgio70rwOVfBvqWGTMCBWIkiEAom9o85SFgsYT9+hjQyVkwoC1IIaVbBfuSFIA15TFnUjfLWckY3llq/bQZCg2dQwt+cb5xDrOOHdRVFQBFQBBQBRUARUAQUAUVAEVAEFIHgg4D24oLPuQoxLQXhY34gEwwRZEgFQzTggJEOAZFk8iK/ISGQ15RDPlMWecy2WUcZ/KDLWg7rZp8pg3wQs9T6/xv8De6wuMK5wLky51NOkP5TBBQBRUARUAQUAUVAEVAEFAFFQBEIFgioC16wOE0hr5GGRIBFEgTEAgQkgyF9kMfsBxEBwbYhIkBKWK2ckG7KYh2CbVPW6MMSP+xHeeQxOs06ypr8WDc6tP7Aw9+ce+CvoggoAoqAIqAIKAKKgCKgCCgCioAiELwRUAIqeJ+/ENd6Z6SDdT+IIYghr8wS+0wa1iGO29Z9RifyGB1mnxS2/LPuNzpNGbO06jZFTV6zbc1jdGr9vuNvxU/XFQFFQBFQBBQBRUARUAQUAUVAEVAEgh8C6oIX/M6ZtlgRUAQUAUVAEVAEFAFFQBFQBBQBRUARUAQUgWCFgBJQwep0aWMVAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEQh+CCgBFfzOmbZYEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFIFghYASUMHqdGljFQFFQBFQBBQBRUAR+DwQePXq1edxoHqUioAioAgoAorAZ4KABiH/TE60HqYioAgoAoqAIqAIKAJBHQHMOjtr1V5ase0snb36mF4qCWU/ZWHDhKbkCaJRpQJfU70ymcjd3d2epiuKgCKgCCgCikBwQEAJqOBwlrSNioAioAgoAoqAIqAIhHAEQD51GruJVu++QWHcI1GoiHHInWwz34bwQ/fj4b2lM7df0tBFR+nY+Ts0qn0pP5bTbIqAIqAIKAKKQNBAIMS74N2//4Bu3rwVNNDWVigCioAioAgoAoqAIqAI+IgALJ/W7L1DbhFiUKgwsO5R8skrUKEEF+CzZu9dmvHzHq/JuqUIKAKKgCKgCARxBEKkBdSr169pwoRJtOW33+nI0WOEEbUUKZJT/nx5qX3b1hQ5cmQ/n5aXL1/SocOHae/ef6RMwYIF6JuUKShUqMD7KNr86xaKHSsWZc6cydd2P3jwgKJGjRqo7fO1UZohwBG4ceNf2rP3bzp+/ARlypiBPDxyf9B1/iEN/Nhr7NTp03SU78dKFSt8SHWaVxHwgsCzZ8/oz5276N69++SRJxfFixfPnn7g4CG6c+eOfRsreO6HDRtW9u3ctZsHJG5SxQrlyZUeZD50+AidOHGCCvEzP06cOFLe/LPqefv2reTFvZc/f16KFzeuyUav+V104OBBvi9PUuZMGSlt2jT2NKxcunSZoCt9urTe0kzGvX//I23FcfhFfKvzypWrtOPPnZQlSyZKmSKFU5WujguFTpw8Rfv27afEiRNRzpw5yC1MGKe6Tp46Je/QlPzuzJ4tq5f307//3mQMdpGbW1gqXKgARYoUyakeTQj5CKzZdY0tn/z+jRbyEXF+hLAQW7PrCjWqlMN5Jk35rBHA99qq1WupWtXKFCFCBD9jgffZ6TNnqXy5Mn4uoxkVAUVAEfArAiHOAgrkU8tWbWmM53jpFIB8gpw+fYZmzJxNdes3pMePH/sJH3RQkL9y1ZrywY6P9hKlylLT5i39VN6/Ms1fuIh+27rNV3XnL1yg3HkLkgbt9BWqEJUBRGvOPPmob/+BdOXqFerWszelzZCFDh467O/H+SnX2IEDB2nc+In+3iZV+Pkg8OjRI/LIX5g6d+1BK35eSUVLlKEjR47aAejarQe1atOeOnXpbv89fvzEnr5g4WJ6wYMKvumpVqM21axdjzZs/IWy5fQglLOK0fPixQsqXLQE1arzLW36ZTPl9ihAffoNsGf9oXkreX9s+2M7lS5XkZYs/cmehmPIV7CIlKtWsw6VLF2O8P6yyrVr16h+g+/p55Wrrbtdrruqcyy/Fz3yFyIMalSsXJ1at+3goy7fjmvR4qXyLsSzB3gXK17KW9uN4h69+lClKjUIGADXLt16miR5RhVi/OYvWEQTJ/1IadJnpsuXr9jTdeXzQgDfLmdver0HAgoBN46lFNqHgUSf9pk2OEuLGSWcySJL6E6VKJqXfQG1ceam7Rs3oPSr3uCNwJ07d6lXn3708OGjDzoQDHxM+nHyB5XRzIqAIqAI+BWBEEdAoQOyYeMmp8e/f/8BatCoidN0a0Kb9h2FuNqzawfNnztLfiuXL6VNmzbT6jXrrFmDxDpeNE+evO9sBYlGaSMCFAGQTA2/byqWff/s2UnjPccQloULFaQOnboQLPj8U/Qa8080VdeHIjB+4o8UN+5X9Ocfv9GiBXOpaJHCMtgAPf/73//o+ImTNHvmNNq3d5f9FyNGdKkG5M7vTOR75M5FrvTAkhC/Xzeto1kzplKfXj1oPFvUwrIIYtWzfsNG+pddvFEf8i7mNs2eM0/cvkHO/LL5V9r15zaaNmUSDR08kPoNGEzPnz8XkgVk1OqVy6Xcbs6Dtm/Z8rvUgX+or13HLh/0THdVJwZeMDAzznM0zZg2mZYums8j42vowsWL9jrNiqvjAnk3YNAQGjigr+jZvvVXweAXJuAc5cyZs0IuLZw/RzCYN2emkHDXrl+XrEOHjaCCBfLT8p8W04Z1qylfXg+aNmOmoxrd/kwQcHNzo1dvnVvS+RcMCeNEov3TylL9kl/bVWZJEZO2jytJR2dX4LRyVCTLe0vGBqWS099TykraH54lKW4smyVJuqTR6R/ev82zBM3q4mHX1bNeBvJsGThWSa8DAS/7genKZ4NAvbq15Zn82RywHqgioAgEKgIhioDChz1MTX0SuFCAPCpbprR0LmDJ4UoePnwoRNOAfr3pyy+/sGeFG9zI4UMpZswYsu/6jRs0YuRoypUnP2XJnptGjh5LGD2GYCQc2xj1TZwsJTVp1kI6GdjGSG/X7j3FtQJ5y5SvRMNHjJIRcegZwh/mpsODdCPQjXzIAx0Ywb5z9y7BzBaWX5DiJctIBwexr1rwPuRDfnQ+1DrKIBkylhvZQgPupS1aNLO7tcA9dEC/PlSrRnW29ntCcH8pX7EKwRIB1wLIU1fXBlxi2nXoLNcMrltcmyC6PvQaAyFg6ixUpDht3bbdKeiw/hg8dLi0b8DAIZLv55WrCOXQBtwzcN+DgADo3be/5MXxNGr8A8FSBAKrxZmz5kibkdaqTTt7DLily5Z7sfiAK1LREqXFZcsnjBA/rm37TlIPMJi3YKHUgX/O2mbPoCsBgsDu3X9RZXbhNK4EWP91y29yTYDsgCRP/rVYv+I6tspBdoX78os4FD9+fHKlB+8Rq4R1D0t4zpvnsVUP3itjRo2g8OHDSxG4o0Hgbgr3NBBkxiWvbJlSQibBLRz3Bu7RjBnSS/4oUaJQokQJ2WX8vTUXLHYf3L8vrhOSyQ//XNUJlzqr4LggcGWEjBrjab8/XB3XH9t3yHHUrV1LngmhQ4emv3b+QcWLF/OmB2ThimWLxS0Yic+ePpM8b16/IZvr3W5q0ayp4IH7DURdj25dJI/++1wRCNjwBq2rpKZ1Q4uwy+j7z98woUPR1I556MHjl1Sj/zY6cemBEEgRw7vRNwmjUqca6eiXvdfou6E7KDTnndc9n5yc5hVS0YUbj8mj1QbKmToOfRkjPIV3D0NV8ieivnMOBNIJDFi8AukgtJoPQMDZN5pRgXcHvp3w3T956nSzm/COxLcgBlSQBgvcjZt+oUmTp8g2vnO2bv1D8mNwAv0HCL53YFXcsXNX+R5CuTVr10ua/lMEFAFF4GMQeP8G/pjSQawMTEZB0ESPHo3atWlF4cKFkxbiY3rJwnkSQymvRx7ZB3c6V2I6u1mzZPGWDb7URs/AQUNp9197aNTIYdS1cwfp/HqOmyBlrl27Lg/6mkwEzJk1XQgtdLSrVK5EM6b+KEQA4n9A4EayeOky6t2zO40YNph+WraCzV+nSJr1H3QjH4ixqZMn0gUm0tpxJxlxrbpw/ZBJE8bRF9zRAuF1lTvmM6dPoZ7du9C8+Qtp2nQdXbbiGdzX//7nH8qVw3v8lQQJ4lOjht8RrD+eP/+fEEjnzp3n66ArpU2XxuW1MXT4SI5Zc1yuG5C2iJ/Tf8CgD77GBg0ZRuisThg3hppxJ3PrNtuHjU+Yw/pj2fKf5fovxHFgUA7kT23u5K76eZmQBnBTAjG8fv1GyTt39gxavnQR3fj3Xxo+coyoXb5iJU2YNJkaN2pAk8Z7igVjsxatJA7cvbv36NLly/bq8ayAa+7Ll6+8YZQ+fVomtprSuXPnaDrfq81/aEI9e/UlWFC6aptdua4ECAJnzp4TCyij3AwO3GMSHiQiJC+76JWrUJly5M5LcDkzsmPHTipWrKhsutKTi+MZYaAC7n2wlsV5H9C/j326c6sejzy5qURxm04oBvmJGEaI6YRrLX789/GpQDJBbt26JSTZt/XqyDb+gURDPCgT5wnxN3D/eI4dReHD2cgte2YXK67qRP0gvVqzyxxIW7jFVShfjjKkTycaQdwhfhzE1XGBjANZ9n2TZpQhc3ZKlTYj4zzB7s5k1QMs8A7FIAlcDtt17Cz3Jp5P/3IsLsiSn5ZRytTpKVPWHNS4aXN6+o6kkkT9pwj4IwIgnZqWS0nzNp+jNxZCNkfq2BSJyabW4/fQobP3qNGInRQmTCgqnych1Sv+Nb1kwrT79H301/HbNHLJUYofOyK5u4UmULrPX76m/714wwNAJORUz7oZ6NrtZ7TrqE5+44+nTlVZEHD2jYYs69ZvoP4DB/P3XwMazf2Sffv320ti4AODiX/t2St9kGxZs1LTZi1p587dNOXHCfL8Hzp8hOR/8OChfP9gA+tL+TkdMWJEWjBvtvR/WrZuq89qO7K6oggoAh+KQIgioM5y5wTSqmVzassEFNwMEiZMIOTT118nE9e8nmwFAjGj5bLhw79bt22BbKNEcR4MEx2GtevWM/HTUT7Yq1erSrVrVqdZ7IJhpESJYkw4VRQ3gzzs+oFfzRrVKDcvs7A1FUasjdTi/cWKFqEihQtR5UoVJMaJSTNL6C5TqiR3GtJT4kSJ6Lv69SS2xq1bt/lYE0o2dADOX7goneV6dWpTfA7Smz1bNu5UlaKFi5cYVboMAQiAfIka1dax9e1wQD7VrlWDXr546fLa+JZNr3+cNJ7SccDkCPzBkSJ5crp6lQPDcpBhv15jsLYAoVSnVk1xB6xetQqVLlXCZRPbtGoh9wbI3cVLfqLUqb6hkmxVEStmTPqhaWOxutj2xw5uR2hZBxkEknnB3NlCyMIyasq06dTgu28lyHTBgvmpQ/u29Pc/+/hD6rzLuk2iwShC+AhSDs8R3LNlSpcSVyl04l21zejRpf8jAAskuBgbayPUED6CjZx58vSpXAsgjn7bvJFOHD1InTt1EKtPnH8I3NNA8Pim5+LFS7SLLa2SJk0i7w+QKMeOHbfHODJ6oNMqk6dMY/exWTSOSaNo0aKJZRE+2K0SiyeTsMakQhoGIUDmNGOSEwG6YcXXvGVr6tWzG094kdJa3Nd1WDM5qxPEzgoeyUYbQADBGuzq1at0+927rkK5stSwQX1vdTgeF/Lj3ffVV1/S9q1bxCJ4+sxZPKBisz72Sc/TJ0/lPkadu3jABvXeZZdxCAZ7NrL7HVwqjzHxNmzESG9t0B2KgH8g8IqJpJzN1tGIxUe8qEsRP6psn7tui5Pz9Pkrvt/fUDx2tUvA7noPn9is2pHp5OUHkjfhl5Fo5Y5LlCl5TFo9qDDdf/yCHjx5SRXyJqQ+swPL+kmaov8+MwScfaMBhnU8QFcgfz6qW6eW9DuaNW3iDZ1uXTrJgDy+ByGt+dsL7x70OzAYiPepo+A92Ld3T5lMA99YEMcJPxzL6LYioAgoAs4QCFGz4OEBCvEcN5FyZM8u8SS2bvmFZ9dxE/IJLmropEJMXtnw4V+qVLYP//PnL1A6Hs22Ch7QcHOC9QTEuFFgHUQPOiHGjSNh/ATYLRKFiYJE70gi7IAbyZs3GEOzCcoaAcEEayUTRB37Yf2BDtjc+QtoOQfgNYIXgxlNNvuMSxKCDzoKyIHAnMXPsX7d9j8EcJ1gphJHwXW+Y8eflC3rews+dDohvl0bb96+ERc8EDy4ttBp9Elc6bnLFg+4VtO/s65Aedxz/7wjA3zSZ9qHtIuXLsmHUAm2GDSCtuCDpy4TZCCZ4VI6cPBQscbAh1HaNGmkY5w1S2ZTREhebDjeH9iH+8BRTBvOn7cRVtZ7G3G1IK7aJhn0X4AgAAIU14CVwHn06LHU9eUXX1CSxImFKDSVN2IyBe7KuI6TJk0iI7+4NnzTM3LUWIrGz+q1q1bIcxIkPlw1MXsjyH2MIFuvMRBa/dhCcM7c+TRn5nQC8QmJycQp4iVZBdcv3NKMrFy1mtq06ygx3Nq0tk1uMYVdJs7xeycqk52whIVlF0auV69Z5+uMRK7q3M7PA2CBmIawHIM7do7c+WRkG/eTozg7rhjRo0vWTh3ai7UxrKEWLFrMMxPuFuLXUQ+2MRDUpXMHate2FVs65SRYKubjeE+QFs1/oNSpU8k6OkQLFy2ReFmyQ/8pAv6MwONnr7xpdA/L1kwOr4NXr99S1EjuFNYtFE9c8MZe5iGTTJDokd1p89/XqPmYv6hQ5q9oFFtG9WDrp6u3n9Llm09oZmcPOn31IY1eyi63bCWlogj4FwKuvtFOsfs3BsyMYPZVR4kbzxbfLCL3QSBmNtRw7javkbfvJm+ylkvEz3C4W0Mi83sY8vqNXtcChP5TBBSBD0YgRFlApUmTmmLGiCFETZ1630kcEJ/IJ5AvHnlsrnjOEEuWLJkkOc4+hI5Ag4aNxT3OuH/ggW/kMMfwiPvVV/ZRerewXjk+8wA3+d+KEbdt6/TZ90TC0WPHKFnSJPYHPnLAzQ6C0Ytjh/fLb+/uHTRvzgweKfc6nTZGuSELOHi6yYuguksWzVPySZAJGf8yZ84oU9JfvnzFywEt444rZs+CC6YR3AsQV9cGCM969RtRcrYY3LHtNzp6aB9VqVJZZg4zeszSlZ4YfB+CLDjO09gbOeuLFRKIASNfsNssRvHMtYsl3FjL8ZTAN9nqq1SJ4nT4wN+0csVP8vGEmbiisestBO5LRo6y5QoE1oKhWf9zti4xAlcoRzEYRef2Q6zkHmJIwVXKVdsc9em2/yKA6/LsuXN2pWf5mYnrEGQ+ZmazuhjD9RQCCz64GIAYMrGjXOk5feYM5WQ3PEPSJ0mSWPTA6sdRD4jeDp26irUf3FUN+YQCCZnwPcGDFUbMPWpiQs3jmGIgnwYP7E+GfEJeN3Z5zZE9m5BPcHvAfQOXwTVrfZ/4wlWdcCfFu8m8t3Ctg2AFoeooro4rHlvUQsKHt3VWsP6GcQBh5iiItYV4cmbgx93dXZ4tsNCNG/ddJ8hiJYaOj4mv6KhLtxWBgELgxt1nfL971e7GLnggku49fEHhwr5/N8WKarvuz12zkcvbDt6gvmzxhG+5CnnY+mnWAVrSu4AQVFXyJ6b21dN4VaxbisAnIICBAVffaMmSJfUyM6xP8W7DhPba9XO89n0anAvz7vvxE5quRRUBRUARsCPg9Slk3x08V9Bh6NSxvXQcYC0EEgpxNKyWTziyJo0bSWwcV0fpxp1V+ETDtQCWFrB2wsxI7XlWIsTAQKDUdGnTSudn4qQp4lIAv2p0/IsUKeRKtdM0zIqE0W6MUq9atYbKsDuJVUBeVa5UUWZZglsJgkL36NWXOnIHCMce6d2H/KHDh+UjH52NseMnyCxHsFYBHvPmL7Kq1PVgjgACAaMz3eD7JvTb71ulM4kp4vtzDICmTb730YUn1TcppSPq07VhgtTDUi8ej5KdPHVa4toYiz6/XmO4VkuVLC7uarAYPHDwEK12MkGAT6cAZTFtO6w+YA6OmcWqVq8l5DJiriEe1Cm+J3EssEqBW1Y47tzC5XU+d+z3Hzgo1/10tkaEhQZi8cBKBm35Z98+CUw+afJUn6qWfcAU5WbOniP3O9rfqXM3Gflz1TanCjXBXxCoVbOGxLL7Y/sOOnzkCI0bP5FqVq8quuPEiS0WcbvYpQ0xh0aP9RQSNE+eXHwt/UFFCr1/LrvSg/hHuO7wHIYVH1zQQKbChdRRz0K+1xCgtVePbtIGlMEPrnAVK5QXN05YrMLlbMDgIeL2gEDlcDtDbCm4SaRh6x9TDiRXS7YI+mnJQvuvdMkSHGeqmAToRiV4F0EnOiKO4qpOxLbCuwukFgZS8LzAr0b1aqLmz5277DPIujouuIgDjxEcdw33JmbMg1VYgQL5vOlJkSK5uJLPnjNXsIRFF/LCmhAufFhiEg9YhuF8LmLX2xLv4nQ5HptuKwIBhcD56zZLylSJbIMYsG5CvKgzVx/R1TtP2RLKFrAf9adLFkOspe49eu+Wh/296mWky7ee0P7TdylWtHDUftJeWrf7ChXM+N7iEflUFIFPQcC3b7RiRYrIQBme7XjvwDJXRRFQBBSBoIaAV/OcoNa6j2gPTPhhFtqrdz/prE6dNsOLlsbfN6TuXTt72edsoyRbWQwbMohHopfbg9mW4s4AppQ2o8gI8I2ZtvLks3Vu4KaBQOJGzCi60216P+wGc9jiJctK1qpVKkkcK1POLBEXpAsHc61SrabsgouV59jREv8EHWb8KletKdOBIwZWm/YdqUAh2+xE6Jz36Oa3Yzf16TJoIwDiZerkSRw3ZRTPUNJNOnLJkiYhXOdN+AdxvAYRN8nZtYE0dKZHjBojs2LBugQd/IkcEP/GjX/l+vLrNdafAx6D/EXgfQhcbvBB5BdBoP7z5y/KvYX8OKaxo0dQ0iRJxI11OweUNnrRRsTdAek1qH9fsUipWNnWqcaslYs5tgwwwIxksKrC/QFBHAOQXEhzxAiB1ydPHE8ItIkZLlEHrFRy5cpJ2dk6xVnbRLH+CzAEEKMCAwH16tuubTyPjfsYyAzMqNaidTu5D3DOZvIzEJY+6zdsoh+aNLa3y5WeRg2/kwDiFatUl/wgW4YOHijWU456ZjFBCcGMplaZNMFT3CDwLsC7qBf1E/JpFM+gCks/BN6GzF+wSH6m7Ld160jAc7ONpeO1uZ9n84POmkwcWa0GkReEj7M6cS/A2gqzGeEHAUlt3NFX8qAHrL+AqW/HBavbFi3bygAN8ME71QRQt+rBORjvOYYthieTmd0Sg0TlytoGV4YMGiDvKMzIBEFQdMRdU1EEAhOBoxfu0xOO+9SzXgaqO2g79a6fkV6+esNBx28xCfWQvuVA5I1Kp6A5m85S4zIp6PwNr661USKEpTK5ElCD4X/SCy73mt33Ikdwo8gc2Bx6VRQB/0LAt280TJIEK2FMoAExoQOs9Zt3iqNHhtmPpVm3lrOvc7qKIqAIKAKfgkAoNrV08Hz/FHX+W3bnzp2UxxdXOWc1wgICIwCY7Q7WGwhsjA9kdII/RjDSG5ofusaFw1EHRnARoBguBh8jmGp+1oypNtcPJqUiRrT5ZjvThYCyL1++kGC31jxwoXrKbTXuekjDaHwEDtZrDd5rLaPrIQMB3Mq4DmPHju3nA3J2bcC6AnGcoMvxQ+RDrzFYI+K++JjrD6N99+7dI8xk6SgI1owYQJjx0VEeP34s8dOiRrUFl7WmY7r3cOHcnd7L1rxYB6bROO4NrCKt4qpt1ny67v8I4PyGYsLRWORZa8D1aa5d7Md9ATczxIhyFFd68N7A7D+xY8cSoseVHke91u2XL1/SI24v3MP9QzB7I6bS3rh+jVN1ruqEO9xtnrQCrm4f+74yFd++fZvgrup4b5h06xJTh8eKFVMIQet+rMOaN2xYd1/fe47ldDvkIZC6/vv4lgF5dEdnV6Dhi44IqYR6yuZOQMOaZuWvr1ASgLzf3IO0fNtFaUK/BpmoesEkYvn0+NlLqtp3K13694m9ecN/yErpksSg0l1/lX3ze+QjWFOF49hSfee812Mv4M8rx+dU9GeNqi6oI+DqGw1th5Ur3mGYEENFEQhKCMAj50P6Kabt+E44/S7kzcdyA0aXLv97BEIsAfXfQ/thLTAElE+jFR+mSXMrAoqAIqAIhFQEtm79g24x8YORbhVFIKQhEFgElE+4YZAxabzIdJZd7xwlvHsYis2udVdueZ8hrGLeRHT4/D0v5RCY/PSVhz7md9T9qdtKQH0qglpeEVAEAgsBJaACC+mgXU+Ic8EL2nA7bx1cRxImSOA8g6YoAoqAIqAIfPYIWAOdf/ZgKAAhCgFYlYZ1Cy3ub//Fgb1ha0mfyCe05fmL107JpJU7Lnlr7u/7b3jbFxA7gJeKIqAIKAKKgCIQnBBQAiqInK3OnToEkZZoMxQBRUARUAQUAUVAEQhcBBCvLV2SKLT/zIPArTgY1wa8VBQBRUARUAQUgeCEgA6dBKezpW1VBBQBRUARUAQUAUUghCJQySN+CD2ygDmsyopXwACrWhUBRUARUAQCDAEloAIMWlWsCCgCioAioAgoAoqAIuBXBKoUTE71iibxa/bPOh9wqlo45WeNgR68IqAIKAKKQPBDQF3wgt850xYrAoqAIqAIKAKKgCIQ4hDA1PBd62SgNEmi09KtF+jIhYf/WUyooAguYj6lSxJVZuUr75EoKDZR26QIKAKKgCKgCLhEQAkol/BooiKgCCgCioAioAgoAopAYCEAEqpiviTyC6w6tR5FQBFQBBQBRUARCBwE1AUvcHDWWhQBRUARUAQUAUVAEVAEFAFFQBFQBBQBRUAR+GwRUALqsz31euCKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCAQOAkpABQ7OWosioAgoAoqAIqAIKAKKgCKgCCgCioAioAgoAp8tAkpAfbanXg9cEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFIHAQUAJqMDBWWtRBBQBRUARUAQUAUVAEVAEFAFFQBFQBBQBReCzRUAJqM/21OuBKwKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCIQOAgoARU4OGstioAioAgoAoqAIqAIKAKKgCKgCCgCioAioAh8tggoAfXZnno9cEVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEAgcBJaACB2etRRFQBBQBRUARUAQUAUVAEVAEFAFFQBFQBBSBzxYBJaA+21OvB64IKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKQOAgoARU4OCstSgCioAioAgoAoqAIqAIKAKKgCKgCCgCioAi8NkioATUZ3vq9cAVAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEQgcBJSAChyctRZFQBFQBBQBRUARUAQUgQ9A4NWrVx+QW7MqAoqAIqAIKAKKQFBHwC2oN1DbpwgoAoqAIqAIKAKKgCLweSDw5s0bmrVqL63YdpbOXn1ML5WEsp/4sGFCU/IE0ahSga+pXplM5O7ubk/TFUVAEVAEFAFFIDggoARUcDhL2kZFQBFQBBQBRUARUARCOAIgnzqN3USrd9+gMO6RKFTEOOROoUL4UX/I4b2lM7df0tBFR+nY+Ts0qn2pDymseRUBRUARUAQUgf8cgRDvgnf//gO6efPWfw60NkARUAQUAUVAEVAEFAFFwDkCsHxas/cOuUWIQaHCwLpHySevaIUSXIDPmr13acbPe7wm65YioAgoAoqAIhDEEQiRFlCvXr+mCRMm0ZbffqcjR48RRtRSpEhO+fPlpfZtW1PkyJH9fFpevnxJhw4fpr17/5EyBQsWoG9SpqBQoQLvo2jzr1sodqxYlDlzJl/b/eDBA4oaNWqgts/XRmmGAENg91976NSp05Q1S2ZKmzaNl3qO8rX/z779lCtXDkqZIoWXNN82Tp0+TShfqWIFOn78BJ0+c5bKlysjxfbvP0C4JmPGikkRI0SkvB55KFGihL6p9JJu1e8lgTdWrlpNDx8+ojKlS1Isvu6t8tvvW+nKlatUoXxZisT38cKFi63J5ObmRrFjx6J8eT0oQoQI9jTcF79u+Z2P4wzFihlT7qVsWbPY03Ul+CDw7Nkz+nPnLrp37z555MlF8eLFszf+wMFDdOfOHfs2VvDcDxs2rOzbuWs3D0jcpIoVypMrPch86PAROnHiBBXiZ36cOHGkvPln1fP27VvJi/skf/68FC9uXJONXvO76MDBg3wPnaTMmTJ6u0cvXbpM0JU+XVpvaUbJ3r//kbbiOPwivtWJ+2fHnzspS5ZMLp8Lro4L7Thx8hTt4+dL4sSJKGfOHOQWJozT5p08dUreoSn53Zk9W1Yv76d//73JGOziezcsFS5UgCJFiuRUjyaEfATW7LrGlk9+/0YL+Yg4P0JYiK3ZdYUaVcrhPJOmfNYI4Ntn1eq1VK1qZS/fRL6B4vjd51t+TVcEFAFF4EMQCHEWUCCfWrZqS2M8x0unAOQT5PTpMzRj5myqW78hPX782E8YoYOC/JWr1pQPdny0lyhVlpo2b+mn8v6Vaf7CRfTb1m2+qjt/4QLlzluQNGinr1CFmAzrN2ykXn36keeEid6Oaey4CZJ24MBBb2m+7UCZceNtOtEBnvTjZCny8OFDqlilOv21Zy+9ffOWuvXoJaSOb/oc0636HdM837V77boNXpJABrds3U6O6c6du/Tify9kfclPy2j7jj/lN3fefGrctDlVrVGbSayHUh4d7kJFS0pePAeQv0q1mvKM8FKBbgR5BB49ekQe+QtT5649aMXPK6loiTJ05MhRe7u7dutBrdq0p05dutt/jx8/sacvYMLyBV9HvumpxtdPzdr1aMPGXyhbTg9COasYPS9evKDCRUtQrTrf0qZfNlNujwLUp98Ae9YfmreS98e2P7ZT6XIVacnSn+xpOIZ8BYtIuWo161DJ0uUI7y+rXLt2jeo3+J5+Xrnautvluqs6x/J70SN/ISGQK1auTq3bdvBRl2/HtWjxUnkXYpAHeBcrXspb243iHr36UKUqNQgYANcu3XqaJDp46DDfmyVo/oJFNHHSj5QmfWa6fPmKPV1XPi8E8O1y9qbXeyCgEHDjWEqhfRhI9GmfaYOztJhRwpkssoTuVImiedkXUBtnbtq+cQNKv+oN3gjgWwnfiBjU+xCxfvd9SDnNqwgoAoqAXxAIcRZQ6IBs2LjJ6bHDeqNBoyb005KFTvOYhDbtOwpxtWfXDvryyy9kN8qjA756zTq7RYjJ/18v8aJ58uR9Z+u/bo/WH3gIbNq0WTrVUaJEkUox6vXL5l/9pQH16tYm/CCwVoCMHT2SEiZMQI0afkehQwcMj716zVqq/21dqQ//YPXi0/UNq8YihQvZ8/2zb590+kFKlSldikDSPX/+nPb+9SdFihhR8k2eMo2GDBtBDep/S9GjB05Hwd5AXfloBMZP/JHixv2KlvHzGxZuIFAw2DBj2mT63//+R8dPnJRne47s2bzVAXLndybyu3ftRK707Nn7N+G3a8dWsa6aOWsOjWeL2po1qlEYtvKx6sG19S+7eO/bu4vChw9Pu9iaqSaTUS2a/UCHjxyRe3DXn9vEKgqkTb8Bg9l6rxzdunVbyKjVK5dTxgzphSxNnykbbWErvRLFi0rbYcnUrmMXH695bwf3bgcIIdz3PtWJzj2wGuc5miqUKyvEXZnylah9u9aUJHFiLypdHVeECOFpwKAhNHBAX6pXp7a0L3uuvPQLE3ClS5X0oufMmbNCLq36eRllypiB/ti+g+rxoE7bNi0Fk6F8DxYskJ8mTfAkWFwhbdqMmdS/b28venTj80AAFqyv3jq3pPMvFBLGiUTrhxWh0T8do1kbzojaLClikmerHBQ7Wnh6/uI1dfzxb9qy77qkNSiVnFpUTEWRwrvRrfvPqUb/bXT9zjNKlzQ6zemal9zDhqa/T96hBsP+lPw962Wg3GniUInOm/2ryU71vA4EvJxWrgkhFgHrd1+IPUg9MEVAEfjPEAiYnuN/dDjoZMLU1CeBC8XK5UupbJnS0rmAtZArgfUEOvUD+vW2k0/IDze4kcOHUsyYMaT49Rs3aMTI0ZQrT37Kkj03jRw9ljB6DMFIOLYx6ps4WUpq0qyFdJCwjZHert17imsF8qIjMHzEKBkRhx50jtEBcRToRj7kgQ50wO7cvUsgHGD5BSlesoyMIiP2VQveh3zIj86HWkc5Ihr8twsWzC9uK79v/cN+MHA3g4uZ1YXN1bWKzjssFXCtFCpSnLZu227XtWr1GrmOzp07Tw0bN5X9337XUDq6FStXo927/5J9rq43V/rtFVlWKleqSH//s4+uXbd1AJC0dt16KlWyhCWXz6vp0qaVhAcPbBZQsGSEoA1G6tapRSOGD+F77JXsQqy4tu07yfHjXpy3wEZQw+oK9zcwwT2M+xyWN5CfV64SK5uOnbtKOVizrFm7XtL0X8AggGutMruFGvdKrP+65TchhUB2QJIn/1qsXw1ZalpykF3hvvwiDsWPH1+uWWd68B6xSlj3sIR7xzyPrXrwXhkzaoSQTygDdzQIXEzhnla0SGG7S17ZMqWErIFbOK7FAf36CPmE/CCO4cZ65Oh7ay5Y7D64f19cJ5DHL+KqThA8VsFxQeDKCBk1xtNuEeXquEAigQiuW7uWvHdAQP+18w8qXryYNz0gC1csWyzkExKfPbXdi29evxEyG+6HLZo1FTxwD06bMol6dOsievTf54pAwIY3aF0lNa0bWoRdRt9//oYJHYqmdsxDDx6/FHLpxKUH5NkyB0VkwumbhFGpU4109Mvea/Td0B084BKK5nXPJyeneYVUdOHGY/JotYFypo5DX8YIT+Hdw1CV/Imo75wDgXQCAxavQDoIreYDEMC7rV2HzvJdj+8SfLPAmtQI3h34ZsF3/+Sp081uwjuyfMUqMqCCNHyzbNz0C02aPEXyQs/Wd9+R5rsPhfVbxw6hrigCioA/IfD+DexPCv9LNTAZBUEDi4Z2bVpRuHDhpDn4mF6ycJ6QR4hXA4E7nStB/BtI1ize48TAl9roGThoKCEOz6iRw6hr5w6E0XK4EEGuXbv+buS8Os2ZNV0ILbhZVKlciWZM/VGsqPABDoEbyeKly6h3z+40Ythg+mnZCnZ7miJp1n/QjXwgxqZOnkgXLlygdtxxRlyrLlw/ZNKEcfQFd7RAeF1lF46Z06dQz+5daN78hTRt+kyrOl0PAQi4hXGj6tWq0Nr178mP1WvXEkgcq7i6VgcNGSbWCRPGjaFm3CHcuu09mQUi59y5c5QgQXy+jrqJyhFMwubiuC/46Hny9KnEWXN1vbnSb22jWU+bNrXEbdu8eYvsAimAewKxnxwFbcBHE37I06jxD5LFWGMAh6jcwc+cNaekzZ23gK5fv0HVq1axE3SNmFjDMU7n+7L5D02oZ6++BGvHnzke1YRJk6lPr560acNajvGTTz780AEHLkvZnS8iW1UtmDdbngktW7elp+862Y7t1O1PR+DM2XNiAWU0GcvUe0zCI84QJC+76JWrUJly5M5LcDkzsmPHTipWzGZd5EoPrmsMVMC9D9ayuBYG9O9jn+7cqscjT267xRLqwfMfMYwQ0+nS5ctMdsUz1QvJhI1bt24JSfZtvTr2NJBoiAdl4jwh/gbuGc+xoyh8uPD2fL6tuKoTJBdIr9bsMod7BG5xsMbKkD6dqAVxBysliKvjAhkHsuz7Js0oQ+bslCptRsZ5gt2dyaoHWOAdikESuBy269iZGjdqIM+SfzkWFwQusSlTp6dMWXOI+6zePwKL/gsABEA6NS2XkuZtPkdvLIRsjtSxxbqp9fg9dOjsPWo0YidbO4ai8nkSUr3iX9NLJky7T99Hfx2/TSOXHKX4sSOSu1toAqX7/OVr+t+LNxzXjISc6lk3A127/Yx2Hb0VAEegKhUBoqHDR3JcwePybY+BdcQ47D9gkECzbv0G6j9wMFunN6DR3C/Zt3+/HTIMfOB7CSEU0AfJljUrNW3Wknbu3E1Tfpwgz/+hw0dIfvPdhw391rFDqCuKgCLgTwiEKALqLHdOIK1aNmcT/1bilgE3IZBPX3+dTFzzerKVB8SMlsuGD/9u3bYFso0SxXkwTHQYYJXRpXNH+WCvXq0q1a5ZnWbNmWfXWKJEMSacKoqbQZ7cuQg/uHLk5mUWtqbCiLWRWry/WNEi4k5UuVIFu6WFSccSusuwm0OG9OkpcaJE9F39ehJbAy4dCRMmlKzoAJy/cFE60HCRiM9BerNny8adqlK0cPESqzpdDyEIwNXMuOEhCDPIGOPKg0N0da3CMmLZ8p+pTq2aHAS4oBAzpUt5tzRyd3e3W3gkS5ZUgt0b+E5xbCUQNj5db37Vb3SZJQJFgwCCwJ0OEwmkSvWNSbYvp8+YJdaE9Rt+T7BGgnXMtt83213r8AzYuH6NuAyhEOIhFC1Rmnr37U+wcLpx41+xtsIzA/cnsJw1Y6oQBgiYjA88BJeOyHrTpE4l9cLiEIIOdt/ePSXAdIPvvpV9jkGwZaf++2QEYIEE4g+ubkbCszsYBCQoBhxAHP22eSOdOHqQOneyuefBkg4C9zQQPL7puXjxEu1iS6ukSZOImynO8bFjx+0xjowe6LQK3Dqn8bU4jkmjaNGiiWURyEmrwCLRGpMKaRiEAJnTjIlPXG+w2GvesjX16tmNJ7xIaS3u6zqsmZzVCWJnBVvtoQ0gk2ENdvXqVbr97l0Ht7yGDep7q8PxuJAfz5OvvvqStm/dIhbB02fO4gEVm/WxT3qePnkqwf9R5y4esEG9d9llHILBno3rVtOiBXPpGBNvw0aM9NYG3aEI+AcCr5hIytlsHY1YfMSLuhTxo8r2ueu2ODlPn7/i+/0NxYsVgRKwu97DJzardmQ6edn27E/4ZSRaueMSZUoek1YPKkz3H7+gB09eUoW8CanP7MCyfvJyGLrxmSDwLYdE+HHSeErHE89E4HdMiuTJ+Zl6TY5+3fqNVIAHymDlDffmZk2beEOlW5dOMiBfu1YNSWvdqoW8e9DvgBs73qeOot86jojotiKgCHwKAiEqBhQ+3iGe4yZSjuzZZSasrVt+kZmxEBcKLmomyKvJ6wy8VKlsH/7nz1+gdDyabRU8oDELHgIaQxDDwwiIHnRCjBtHwvgJTBJFicpuFu9IIuxER/kNB3I2grJGQDDBWskEUcd+uAWiAzZ3/gJa/s4NCPvxYjCjydiGIHgtBJ1tRwEhEJiz+DnWr9v+jwDITHQs4YaHawQfILFjx7ZXZMyzfbpWYQ2EMunfWUKgEO6Pf9513O1KXKy4ut7usvXDx+gvgPuOAAAAQABJREFUze52cH+DGx5c26qy5aBPMp5j2iAGFEihJjyad/jwEYoS+T1xfOHiRYoRPbqQYyDIQDoZk3KP3LmZSLPFzbJiAyIOAlN3uMOC3IOkfkeAmfs2EZNbJgZWZL4PIa/fvJal/vNfBBB/Cc86K4Hz6NFjqeTLL76QOEYgD400YjIF7sogRpMmTSIjv5gt0jc9I0eNpWh8TaxdtUKek7hmQFhiRkiQ+7iXoMcICK1+PPo8Z+58mjNzOsElFhKTZ1tEsHOrgJyEW5oRzPjYpl1HmZ21TeuWsnsKu0yc4/cOrPZg0QfLLoxc+yXuoKs6QeICCxPTEO7YOXLnEys+DNo4irPjwr0E6dShvZC8sIZasGgxx2jbLbMLOurBNkjgLp07ULu2rdjSKSctX7FS3s9Ia9H8B0r9jthFh2jhoiU0dPBAJKkoAv6OwONnNrdrq2LEcLIYREnSq9dvKWokdwrrFoonLnhjz/6QSSZI9MjutPnva9R8zF9UKPNXNIoto3qw9dPV20/p8s0nNLOzB52++pBGL2WXW7aSUlEE/AuBN2/fiCU2nud4J4LYNwL3b+t7ELOvOkrceHFlFwbVIGaW5HDuNq+Rt+8mb5LEd//0W8eKhq4rAorApyIQoiyg0qRJTTFjxBCipk697yQOCIJaOpJPIF888thc8ZwBmCxZMklynH0IHYEGDRuLe5xx/8AD38hhjuER96uv7KP0bmG9cnyms2ryvxUjbtvW6bNnzW46euwYJUuaxN65RQLc7CAYvTh2eL/89u7eQfPmzOCR8hSSZv6Z2D8L5s6y5/110zpasmiekk8GpBC0RKcao1dww1vJMZsqVijn5ehcXauwZMBHzHGect7I2XPnzaqflq6utxh8T36MflhZgfBBZxXxCIxLnbMGwepkIrsQPuROf3Mmmw15C+uSH9k6xQjM1WGtiPv03PnzFJ3bBznN8RGMLF22XGILgVjAyCIsqM6ePs6uWH0li9Edhp8vKoGHQHK2ZD3LrpJGzvIzE9ceyHwE+ba6GD9//j/JhtFhuBiAGDKxo1zpOX3mDOVkNzxD0idJklj0wOrHUQ8GNDp06ioWhLCUM+QTCiRkK6MTPFhhxMzuFi+u7eN/HscZA/k0eGB/MuQT8rrx9Ykg6iCf4OKJexEug2vWrjOqnC5d1QkXU1zz5lmAdyNI14uXLnnT5+q44rFFLSR8eFtnBetvGAcQZo6CmF2IVWIGfmBFCexhoRv3HQ5Wiy10fEx8RUdduq0IBBQCN+4+4/vdq3Y3dsEDkXTv4QsKFzaMPTFWVNt1f+6ajVzedvAG9WWLJ3zLVcjD1k+zDtCS3gWEoKqSPzG1r57GXlZXFIFPRQADA/XqN5Ln6I5tv9HRQ/uoSpXKMrsrdOO76ciR97EEfYp3Gya0166f47XvGC8QevVbByioKAKKgH8h4PUp5F9a/yM96DB06theOg6wFgIJhTgaVssnNK1J40YUI4ZtFNdZU924Qw+faLgWIHg3rJ0wM1J7npUIMTAQKBXBjtH5mThpirgUwK96GXcaihQp5Eyty/2Yohuj3RjVWLVqDZVhdxKrgLxCPJvZ7IYHtxJYfPTo1Zc6cgcIx25m+Dp0+LC8nNDZGDt+AsECBBYqwGPe/EVWlboeghCAayYsddDpQ/Bjq7i6VnFdlSpZnBYv+UnMrw8cPESrnQTzt+q0rqf6JqV0bn263j5FP6xORo4aI+bisLTwTWD1NWoEx2VjDJZwrDQIYj39OHmqzHyG2DonTp6SyQFwH8NEHR1i6J45e47c2zj+Tp27ESyaQDjHjh2LkjIJgWeKie8GKyqVwEegVs0aEssOgbAxy9y48ROpZvWq0pA4cWLTwMFDZSY6xBwaPdZTiM88eXKxm/IfVKTQ++eyKz2IfwRrIzyHYbkHFzQQqHBLddSzcOFisabr1aObtAFl8IMrHFxI8ZyGxSpczgYMHiLXMQKVw+0MsaXgJgG3TlMOJFdLtgjCLK3mB0vAEhzgGwG6IXgXQSc6Io7iqk7EtsI1D1IL1/Vvv2+VX43q1UQNZpk0M8i6Oi5YGwKPESPHiKsGZsyDVViBAvm86YHbLIL2z54zV7AEqYa8sDAE8Y0lrBxhGYbzuYifQSXexelyPDbdVgQCCoHz122WlKkS2WZEhXUT4kWdufqIrt55ypZQtoD9qD9dshhiLXXv0Xu3POzvVS8jXb71hPafvkuxooWj9pP20rrdV6hgxvcWj8inogh8CgJmIiF4U8RjS6aTp05L7EHjdVGsSBEZPMPzHe8dWOaqKAKKgCIQ1BAIUQQUwIUJPwLGgpBBh3HqtBn20VekN/6+IU/D3RmrvkrJEsVp2JBBtINdF+CCgdnr8NG/cP4cGUWOGDGCBAGEtVKefIWoes06lCtXTgkkbpSjHVbxtk3v02EOW7xkWapYpTp5eOSWOFbWslhHXBC4SlWpVlMCwF7mQLeeY0dL/BN0ovGrXLUmHeKPfExNDuuNAoWKUe68BSkFW0n16Oa3Y3esV7eDJgLW6ykjBxAG6YiZ4qJGtcW0MK327Vrtz8GJEyZIQAiSX6FSVXE1MmWtdZjLOZTlukU+xN9xdb250m/qsS6N/pJMjEEwY5kzsbYPeXD8xbkTi6niEfAZ93zP7l1p1uy5VLJMeSpRqqxYVMFdCq4/sIiaPJFJZv6Qwyx3Db9vKhYpuJdBBuAe+iZNBglinpVnFoScOHlSll7+GXC87NQN/0QAVn5wL61XvyGVLV+ZvvnmG4n5hzpAZmBGtRat21GWbLk4Pt8GmsnPQFj6rN+wSeJ7mba40tOo4XfsbldensOYFRLWc3AJg/WUo55ZTFpCMKMpntvmt3PXLolZhkklevXuJ+8HzBI5ioP3w1oRgbch8xcsspdBWasFl2Tgf47X936ezQ86fSKgQPg4qxMzuMLaqlOX7hL0GwHWmzb5XtxtUdfKVWtoCr8vIa6OC88SWN0i2G2adJk47lo3eaeaAOpWPRigGe85RgZmgCVitGGQqFxZ2+DKkEEDxOILMzLhfGJyD8RiU1EEAhOBoxfu0xOO+9SzXgaptnf9jPTy1RsOOn6L5m46y254oalR6RRCSjUuk4LO3/DqWhslQlgqkysB9Wbrpxdc7jW770WO4EaReRY96FVRBPwLAXxrYcBjNhNLyVKkptp168sgDAZLEM8SkyQhniCe7+iX4H3jKOad4uiRYfZjadYdy8q2fuv4CIvuVAQUAb8jEIpNLd8HIfJ7uUDJuXPnTsrji6ucs4bsP3BQRncx2x1GBvBhiw/kfHk9nBVxuf/J06cyy49x4XDMjBFczDIEF4OPEUylisDH4vrBnXt85LsSBJR9+fKFBLu15oNr0FNuq3HXQxpG4yNwsF5r8F5rGV3/vBBwda2CtMU1/CnXiqvrzT/0f8rZun37thBOcNfzSYBNNI5xAwtIq4DIisExfRz3W/PoeuAh8PjxYwrFlnvG6tNaM56BiDtmYqDhFQc3sySJba501ryu9OC9gdl/YAGHj3hXeqw6HddhLfeI2wv3cP8QzPSKqbThFupMXNUJd7jbt26Lq9vHvq9Mvbif4MLql/sC8dRixeJ7iAlBR4E1b9iw7r6+9xzL6XbIQyB1/ZWBclBH/9/encDZVP5xHP/ZaZOtxZZKKlFKKyqlCMm+JYT2UhFSWkgrbVqkjewUhTZLQol2CW3WVLKECPkn/J/vM851Z8zcMeIYcz7P6zUzdznnec7zPufeued3f89zXqtrvYbPtYEuwKRy+XnF7bHrK7pPX9n8BOQ9Bs220dN+9s/1aFPBmlQt5TOfNvy9xRp1n2pLV2z0z+lXrxsqWrlSBaxW1w/8Y0O6nW/Kpsrj5pbqPnBnPbEV9vKN7wfW28s1Ul1mF9AXEMH/udSCRcpy1f+wtD7rZPb+sX1ZV0AjcoLPZxnppT4nzJ+fNOXNnsYGMtIey+5bgSwbgNq3bHu/9iAAFUx+vPdboEYEEEAAgQNdQFe4XOUCP/qmm4JAVhMIKwCVmlt2l9lxbNFDbKEbepey5M2dwwq7oXW/rtr1CmH1qpS0OYvXJltPE5PP/3V9qsunrPu/3icA9V8FWR8BBMISIAAVlnTmbmfXryIz9/Zm2a3T0BENgaIggAACCCCQlkD8ROdpLcPjCByIAprfRsPdNPxtf5RtLlsyteCTtmXzP1vTDCaNmb50l82dMmv5Lo/tiwfkRUEAAQQQQOBAEiAAlUn2VpfOd2SSLWEzEEAAAQQQQACBcAU0PLNcqUNt1oJ14TZ8ALcmLwoCCCCAAAIHkgBfnRxIe4ttRQABBBBAAAEEsqhA/crFsmjP9k23GuC1b2CpFQEEEEBgnwkQgNpntFSMAAIIIIAAAgggsLsCDauWtpaXlNrdxSO9nJwaXVwm0gZ0HgEEEEDgwBNgCN6Bt8/YYgQQQAABBBBAIMsJ6NLwXVucamVLHW6vT11ic5es329zQmVGXM35VK7UYf6qfFdULpkZN5FtQgABBBBAIKEAAaiEPDyJAAIIIIAAAgggEJaAglD1zi/lf8Jqk3YQQAABBBBAIBwBhuCF40wrCCCAAAIIIIAAAggggAACCCCAQGQFCEBFdtfTcQQQQAABBBBAAAEEEEAAAQQQQCAcAQJQ4TjTCgIIIIAAAggggAACCCCAAAIIIBBZAQJQkd31dBwBBBBAAAEEEEAAAQQQQAABBBAIR4AAVDjOtIIAAggggAACCCCAAAIIIIAAAghEVoAAVGR3PR1HAAEEEEAAAQQQQAABBBBAAAEEwhEgABWOM60ggAACCCCAAAIIIIAAAggggAACkRUgABXZXU/HEUAAAQQQQAABBBBAAAEEEEAAgXAECECF40wrCCCAAAIIIIAAAggggAACCCCAQGQFCEBFdtfTcQQQQAABBBBAAAEEEEAAAQQQQCAcAQJQ4TjTCgIIIIAAAggggAACCCCAAAIIIBBZAQJQkd31dBwBBBBAAAEEEEAAAQQQQAABBBAIR4AAVDjOtIIAAggggAACCCCQAYF///03A0uzKAIIIIAAAghkdoGcmX0D2T4EEEAAAQQQQACBaAhs27bNBoz9wt6cttAW/rbBthCEiu34XDmyW+ni+a3+hcdby9oVLHfu3LHnuIEAAggggMCBIEAA6kDYS2wjAggggAACCCCQxQUUfOr89AQb9+lyy5H7YMt2UBHLbdmyeK8z0r3ttuCPLfbo8Hn23eLV9kTHmhlZmWURQAABBBDY7wJZfgjen3+us5UrV+13aDYAAQQQQAABBBBAIG0BZT69/cVqy5mvgGXLoewegk/JtbJ5F/m8/cUae/Wtz5M/zT0EEEAAAQQyuUCO7q5k1m385ZdfrESJEhnevH+3brVnnn3eHnrkMev50CP20suv2rvvvW9Lfv7ZKp5xeoZSlrds2WLfzJ5t48a9Y19+9bUdcuihVqhQQcuWLbwPRZM+mGzr1623o48+Kl2LdevWWZ48eULdvnQ3igX2ucDff/9tw0e8bv9u/deKHn10wvY++ni6/f7771a8ePFdlvtp/nzT8yefdNIuzyV6QMfd62+MtjJlTrBcuXIlW1Svu3Fvv2t/rF5txx17bLLnVrvHRo1+y9atX2/HHFPSvvr6a/vggw9t9rdzYj8LFi7yx3ORwoWTrRt/R+2/+95418479v33P9j27dutaNHEDvHrZ/T2h1Om+v4UK1o0o6uy/H8U0LE+7aOP3bEyywocnt8Ode/JQflm9rc277vvbPHiJbGfEu44z5Ejh19kxsxP/TF20kknWqJ6tPC3c+a6dj6yI44oYgcffHDQxC716FjTslOnfmQF3f+G+O3Z6v4XzfrmG/vww6l+G1RXfFm69Bd7f/xEf3ynfC5Y7osvv7KF7jWg18fulPTa/PXX3+y99ydY7jy53f+yQmlWmahfWumHH3+yiZM+sPV//eVea0Ute/a0v8/68aefbLzr5+b//c+/LuP/f65YsdImffCBLViwyIoXK5qh/89pbjxPHLACDwz4wtZsznPAbn+YG57dBehWr11nzS49OcxmaesAEkj02SxRN/Q5auann9mJJ5ZJtBjPIZBhgb/cZ4aDDjoow+v9z31+WLNmjV9vT2IDGW6QFfapQNqfGPdps/uucgWfbml/uz3V51l/UqB0bpX58xfYq/1fs6tat7UNGzbs1gboBEXLN2jUzKZ/MsP/1Kh5uV1/0y27tf7eWmjIsOH24dRp6Va3eMkSO69KVWPSznSpstwCEyZOsnvv72F33nVPun17a8w4e2/8hFSX++ab2T54m+qTCR5cvXqNb3/9+r92Weq77773z7W/reMux+bb77znn9M2qUxxJ/Hqx8fTP/E/k6dM8fcvq1XH3nxrzC516wGdUF90yWV+Ob3OR74xyho2bubfA1JdYS88OOL1N9xJ8+S9UBNVZERAH1wqX3CxdenazR8Pl9SobXPnzotV0fWubqbjrPOdd8d+NmzYGHt+6LAR9o/7UiG9eho3vdKaXdnSB4fOPKeyab34EtTzzz//2MWX1LDmLVqZXoPnVb7Q7u/RM7boDTe19/8/FDCrVaeejXTHTVDUh/OrVvPrNW7WwnSM6/9XfFm2bJm1bnONBa+P+OfSup2ozafd/8XKF1zkj916DZrYrbffkWo16fVLwW79L5z84RTvfWn1mrtse1Bxt3vvt/oNm/qgoVzj36MUaL7I+Q0ZOtye7/uClS1/uv3yy6/BqvyNmIA+uyxcmfw1sK8Icrq5lLKn8kViao8F25DWcwUPTR4wU90nlcwfrLZP/y5YmfQZd582QuUHrECiz2aJOqUvPvq+0C/RIjyHAAII7LFAlpsDSicg76dxci2lWbO+sTbtrrM3Rg5LF+22jp184OrzmdPtyCOP8Mtr/XoNm/iMjivq1E63jjAX0D+ajRt3nmyF2TZt7V+B4SPfsCaNG7kspFE+U+/Mimfs3w1KpXUdm59+9rlVqVwp9mxqQaWTXXbKyy/2jS2jk5Lrb7zFB5Qa1K8Xezy48d77423z5s32xWef2ME7vlXp9+LL9shjva1N61Z2uMuS2dvlxb7P7e0qqW83BJ59/gWfCTrKvX/ny5fPB1D0ZcOrL/czfTv2/Q8/+vf2s886c5faFNyZ4gL5d3ftbInq+fyLL00/M6dP9Zk9/QcMtGef62vNmjb2WUzx9ejYW+GGeH/9xUzLmzevzXQZVs1cMOrmG2+wOXPn+gyhmZ9M81mJCtr06Pmw1b2ijq1a9YcPRo0bM9pOO7W8rXcZgOUrnGmTJ0+xGtUv8duuTKYOne7M0Hu6AkLKSkqtTb2OZPVMnyetbp3LfeCu9hX1rWOHW63UMcck80rUr3z58vrM4gd7dreWLa7023fWuVVsogvA1ap5WbJ6FixY6INLY98aZRVOO9VnV7Z0X+rcftst3uRR9xqteuEF1ve5Pj5rUc+9/Gp/e6D7fcnq4U40BHLmzGn/bk/KVtyXPS5R5GB777Fq9uQb39mA9xf4ps44oaD1aX+2Fc6f1zb/s9U6vfClTf76d/9cm5ql7eZ6J9nBeXPaqj83W9MHptnvq/+2cscebgO7VrHcubLblz+utjaPfeKXv6flqXZe2SJWo8ukfdkNX/fWELz2eSdoINMJtLzqStMPBQEEENgXAlkqA0onoWPdULnUSpEiRWzM6Nft8tq1/MmFsoUSFZ0QTJgwyXr2uC8WfNLyp59ewR7v9agVLFjAr/778uXW+/En7dxKF9gZZ51njz/5tOnbYxV9E677+tb3mOPK2HU33uxPkHRf3/R2vfsePwxEy+pEoFfvJ/w34qpHJ886AUlZVLeW0zKqQ99gr3YpiUqzVeaXSvXLavtvkTX31c3uMS2n5XXyQXZUStED/76GuH3qUqWvbNbEzj33nF2yNTTM59rrb/LHoDI14o99nbQrQ0HHyEXVqtvUaR8nA3lrzFj/uI5fHbfz5n0Xe14ZhVpHx1a/l16JPZ7WDb324oPDPy9d6ofZXXxR1bRW8Y/rpESvOwVYg4zG+BWUqaiivgTlqhbNrXevR9xr6F//UKLXgob9KftEfVR/Bg0Z6tdRoOG+7g94G/m0u/YGU0aKSo+eD9nLr/T3t9N7D9DrrqnLplH9V9Rr6N8D/Ir8yrCAjvMG9er64JNW1u0PJn/os28U7FApXfp4n/2qoV3xZbYbSn2kGwJXrFgx/3pJqx79H4kvuXLnMu3j4P04vh79X3nqid4++KR1gmFyGsr6tRsieEm1i2NDYi+vXdMHa+a615CO1Z497vfBJ62nYXslS5awufN2ZnPp9bXuzz+tcaMGWmS3SqI2NaQuvqhfKmvX/un/PvFUn1hGVKJ+aYiugslXXdnc/9/R0LvPZnxk1atfuks9Gjb+5qgRPvikJ//elPRa3bZ1m2n/aEjkzTde7z00X6MCz93uutPXw6+oCuzb6Q1ubXiyvftoNVOWUlByZM9mL3WqZOs2bPHBpR+WrrM+t5xtB7mA04klDrPOTcvZxC+W2dWPTndDTbPZ4LvP96veVPckW7J8g1Vu/76dc3IRO7JAXsubO4c1vKCkdR/4TVD9Pv67b7328cZT/R4I6L2zwx1d/Gcvfa7Q+YOySYOS1mcz/Y/UZxB9oaLPbcrAHT9hovXt96K/r3o0lFxl7Li3/fmDbutzoLKKO3Xp6j8PaT1lr1MQQACBPRXY+R94T2vIROspZVQBGmU8dLitvZ8LSZunD9Mjhw32J7FB9oWG1CUqwYl2xTN2zSTRCUFQz4MPPeqzOp54/DHr2uUO07flfZ5Jyo5Ytuz3Hd+cN7GBA17xAS2d6DZsUN9efekFn0WlD+AqGkYy4vVRdt89d1vvxx62N0a96dJfX9xlE1W3llNg7KV+z9sSF0jr0LGzHXLIIXana1+l73PP+HlLFPD6zZ0w93/lRbvn7jtt8JBhsZPmXSrmgQNWQMNzdPJaocJp1rRxQz80SUFJFQUcr7vhJh/oHP3GCDvDBXKUxRcUzZOmE8rnnnnKbnQnglOnJX340PN6/HZ3bF3pTjSVwaATdw0VUnBWc6o98ODD1q5tG3vSHftfz5oVVJnm3zqX1/JDiYIg6PjxE31A+PDDD0+2jk5E9SFIPwoCP9e3nw/yXt3qqlTnmVFW1GHuBP70iuf4INGgwUPdHFfLrUmjhn6OGwWtEr0W1Mezzz7Lpnwwwdpc3druva+HLVq02N5zc0ppfqpBr71qo18fbstXrLBejz/lt3WZm0NLc1qppPceoGFPtV1miAxVHnDBK8qeCWg+sPi58ILM1LXueNc8QypV3BC9OnUb2NnnVTHZB2X69Bl26aVJ2UWJ6jn3nLP9canhfcqWvefe7tbzgftjcxPF11O50nmxjCW1o/d/zRdVvtwpttTNYVjMzWkUlGBuqFWrVvkgWauWLYKnfBBNgeILzq/iH9P8G3pt9nn6CcubJ29sufRuJGpT7SvodasboqhgqobFKRvr1PLlfLUK3ClLSSVRvxSM0/vNNdfdaKeefpaddMppzvm52HCm+Hpkof+hej/SkMMOnbrYte3auPnnirnMsaQAoYbMljm5vFWoeLYPlG/aEaTyG8IvBPaigIJO19cpY4MnLbJtcQHZs08u7LObbn32c/t24Vpr13uGy3bMZldUKmEtqx9vW1zA9O5XvrbPvv/DHh85z4oVPshy58xuCulu3rLV/vfPNjePm/ng1D1XnWrL/vjbZs7j4jd7cddRVZzAo70ed3Ndfu8/2+uLdc27GXyuSPTZTF98KFD12edf+HOQMytW9NnlM2Z8ai++8Jx//3+0V2/f0jo37+yiRYtit5Vdr3l7hg5+zZ//3HLr7cZ7ddxO4SYCCGRIIEsFoDRRq0r7W25yKf7t/bCMEiWK++DT8ccf57Mv7nHZHirBt+X+Tiq/Vv2RdHJ56KGHpPJs0kM6YXjn3fdc4KeT/8CuIVDKQhkwcHBsnRo1LnUBp3p+mEGl8841/Wgox3nur4IB+sY6KM3d45deUs2qXXyRNahfN9U5b1S3TmZPLV/ejilZ0q5u3dLPraEhHcGkbDoBWLzkZx9o0BAJTZR81plnupOqmjZsxMigOf5mAQFl6Siw2Nwdd5rYt0aN6r5Xb745xv/VibaGJd3R4TbTsLzOnTrGJh5WRoQCLC2aNzNlISlgU6tmjZjKCDesT8PhLnOZDYUKFrQbrr/WZz5M+2i6n/D7wgvON2UaaQjNjddfF1svrRtaPhiGp2X0rdoVbihQyqITXGUH3tT+Nh840kn9wP6v2B0db0+5qL+v1/j49942DQlS0RxSl9So5bOXdBGBn9y8UAq6pfVayOkmqNbcUXo9N2rYwA9fKukmfM7hTla0vVpXE/sPHfSaD/z6Rnb82p33AGV+Kdigk/umTRr7ybHj6+D27gkoA0n7Q0PdgpLXDQdT2bhpk99Hsv5w0nj7Yd5s69L5Dp/1qYtHqGh4mgI86dXz889L/eSrxx5byr2nFvcBJc1jpteaSlCPvxP3S8M+X351gD3jgkb58+f3mUUpJ9rUpN/xc1JpdX0JoWDOjTdc596nK/pg8U233Gr33nOXnVimTFwL6d9UNlNabepk4U33mtM2KACkbLDffvvN/tjxv07D8tq2ab1LIyn7peV13B911JH28dTJPiP4lf4D/AUAtHJq9WzauMm/h6jNmW4Yrtpd4zIaVfRlz/h3x9nwoYPsOxd4e6z34/5xfiGwtwX+dYGkc25813qPmJus6hOKHebvL/r9L/930+Z/3et9mxUtlM+Ku+F66zcmZbXryR9/WeeXKXHkwTZm+lKrULqgjXvoYvtzwz+2buMWq1ulhN3/2s4vefzC/EJgLwq0ckPjXuj7rJU7pazlc0GhE0qXdu+py3wLuhhLep/N7rqzs/9C/srmTf06t7a/2f/v0XmHPi/q/2nKoi8Tut93j53uvuhsc3Ur/7QuIkNBAAEE9kQgSwWg9OFdpc8zz/shGOdXqWxTJ0+0IPikIWrBSUSwbFpoJ52U9MFfV1NKWfQGrSsABSmvmsMjKAr06CQpGMZRoljx4Ck79LBD7RT3DyMomsNk27adwyK0blAUYFrk2o4fcqTME9WtIUI1XCaVfu5x2Rr6xxB8mxysHwwV0sl4sKyCDRrGlHIoRrAOfw88gelusm59CHis1xM+NfosN2Gyio4RnWjrZFqlbNmdV8kJsizWrF3rj6fyOzIgtFz860JD5HSsB8dPg0ZN/bGm9jTESMPigqIPJekVHe/13ZApDcNTAFh1X3hBUsZH/LoKen3qhvR8N2eW9XMfstTe/AUL/Pw78csFtzUEUd8+K8CkuYAW/DjPZxEOHDTEX30svdfCc88kDZtt3fYaO7ncaS7b6inb7Ib1KZinYLaG0Gmi5Dr1Gvjhu0G7+rs77wHxGTuHuIC2JsGmZFxAV7LTe118AOevvzb4io484girXaumPf/s0z4womOt3Y5gigKIysDRvtJVUNOrR4HX/O69+p2xb/q5iMa++Ya/wuRXLpAVX0/QA73ONFRTw6YVKNWwO5WCLmiryc7ji47l+ONhzNhxfgLzjrff6jJoO/lFX3TDWfXer6w+ZcIqs2vhwoU+Yza+rtRuJ2pTE/vL4v13xlqP+++1SRPe819U6Jvt1Epa/SqwI2Ox8x0dfSaUMoL1XvCJ+xY9raJA3p1d7rAJ77/jA7CjXYA8f/6kk/6bb7rBTj75JP/ljE6IJk6anFY1PI7AfxbY8HfSsOz4ijSHU1xClH/q363b7bCDc1uunNnce/a22OLrXZBJ5fBDctukL5fZTU99ZjO/W2XVO02ybi776bc/NtkvKzda/y6V7a4W5S1PrhyxdbmBwN4Q2LZ9mx+Cd3yZsu4iF03tyy+/jFW7O5/Njt5xheCD3P9JlTInnOD/5smdx//d7rLGU5aS7j08uNLpIe7/sMrWbUlfyqRclvsIIIBAegJZKgClk+yCBQr4IUItWl7tg1CaP0YnvPHBJ2WKVK5UKaHNcccd559PefUhpbC2aXutHx4XDP/QG35Q5rg5PI4+6qjYt/Q5cyWf5z14Aw+W3+6TuJPuzXcnGUHRpcSPO7ZU7A1fj2uYnYq+vdDJuX6++HS6DR74qvumPOkfiF/A/Qourz100IDYsh9MeNdGDh/sM2WC5fh7YAvoBFWZTRPHv2NvjR7pfzShrzIUPpkx0/ShQeXHn3Yeoz/88IN/TCeSOqH/fsd9PbjQDT0LyhFu6Kq+SQuONf3VUNI6bvL94447NtnVx+LnlQrWT+2vsvD0mhr3zrt+0vT4bJbUlq95WQ3TyfmDDz/qM0VSW0bZIy+47JOgKB1d2Yh6HS5avDjha0En2X+7OX/Ur1lffeazOTQxuoK1K92Qu5ouCDXnmy9tjAtC6EOav5KfWycou/MeoIAHZe8IlHaZrAt3DAtQjQrM6L1OASdN8h3My6XnNm9OmhNM3w5riEHVqhfE5o5KVI+Cnee4YXj6P6FSqtQx/q9eUynr0Rcad3Tu6o8XDYVQG0Ep4bKMfnBB1qAEV3crevTR/qHBQ4fZbR062cMPPmC33XpLsJjldMevJlHXa1vBIb0mlcn4tnvNpFcStanhFHpNBMes/jfqyxMFmlOWRP0q6jJqVfLmTTpZ0e1tzkEBs5RFc3ZprpLgi5/cuXOb7JWhe/QOh/iMLZ34BPMrpqyL+wjsK4Hla/72X2LE15/TDcFTIGnt+n+SBZEKHZZ03C9alhRcnjZ7uXV3GU/6LFe3kst+GvCNjbzvQh+ganjBMdaxyc4vHePr5zYCeyKgzywtW7fz76PTp31o87792hq6zO3gi63d+WyWI3vyU78d/+pim5Pal9Q53P8LCgIIILC3BJK/C+2tWvdTPTph0BAj/VW2kIJQmkcjPvikTbvu2nZWoMDhCbdSw3I0JlpDC5QBoSE6ujJSR3dVIg0R0kSp5U45xZ/8PN/3RT+kQOOqR7mThmrVLkpYd1pP6hLd+rZb31KPHfu21XbDSeKLglea7+Y1NwxPw0o08Xg3Nz9JJ3cCpD4HVwD7ds4c/89JJxtPP/ucKUNEWSDyGDxkeHyV3D6ABZSNoSGgzZo28UN1NFxHP7oSlYKXQ4YN93PN6DhQVoUmrtTEkco8UtHxVPOy6qaMDz32zexvbVzcJP56TpePH/f2uz4lW8ddoybN/Wvr0mrV/Lw1H06Z6o99ZRvtTtHcacri01xmmhNqd4rPkHBZUXe6K1wGE47Hr6ehgy/0e8lf2Uxz5yg7UZP/63Wq4YEnnVjGn3in9lrQB60Od3S2J59+xvK4k2NlyCgop8CYrtinOa80hE91lC59vH88/lLce/s9IL5f3N5VoHmzpn7IqeYn01Xmnnn2eWvWpJFfsEiRwj5QqSvR6bXx5NN9/L6sVOlcdxx/ZNUu2vm+nKgezX+kY17vwzpW+7ngpo4JDU9NWc+wYSP8UNJ7u93lt0Hr6EdD4erVvcK/TysbUUPOej78iM8U0kTlGnamuaU0hLWsy/4J1lOQ6xaXEaSrtAY/tVwQtkb1S2NXhtT/oiDDMaVQojY1t5VeEwpq6YsUvXb1o2GhKgpYBxcJSNQvDRGXhzIFNVRDV8xTdtmFF56/Sz0nnFDaDyV/beAgb6mgmpbVkF8N4dNfXcRDmWHan7qaZ40d83T5yviFQAgCi39PyqQ8qWR+35qymzRf1ILf/rLfVm9ymVC5YltR7rgCPltq7V87h+XpyXtbnma/rHJDtuevsUL581jHvl/Yu5/+alVPOyq2LjcQ+K8CwRyaJUuUcFdpPdp/uahpCoJRF3v62ey/bhfrI4AAAhkRyHIhbaXwKy1UEwkrCPXSy68m87j2mrbuMtxdkj2W1p3LXPbDY4885L6JHh2bzFYZGcOGDIx9i6wJvtvf1sEqnZ90cqMhRppIPCgKDMWXXe7bzueVDlv9ssv94o0a1vfzWMWvq9uaF+RON5lrw8bN/FPKfunz9JN+/hNNDKufBo2a2Qg3n4aGI93WsZNdeNGlflnNR9Xtrt3ru1+BX5laQJNNqgSXbQ82VseYJg5/8KFHbM2atS5Drr/d6OaU0aTMOnGMHzL6gJuUWAFaTY6vcn6Vyv5kWbc1Wf7ixT/741v3FdR6+snedmypUv5HmSiapFkl0ZXs4o95BXY0ZOe99yf4ITd+5RS/Un7TpkyNXo894ieW1tVbNLdPfNFrWm0oC+rxJ5ImCdfrQMOhNLRHJa3XgrKlHnmop3u/6G66coyKJmbW3FR58uS2j93E1YGNMm00v098FuNBB+XzE4Hu7ntAtrjXu2+MXxkS0BwV+iKgZeu2fj29H2uYpIqOQV1R7eZbO/iAhvZXf/ceqONHx9sN113rl9OvRPW0a3u1n0C8XsMmfnm9Zh59+EGfPZWyngGvDfTLaM6y+KIsRA0J1P8C/S+613r44NMT7gqqyojTxNsqQ4YO9z/Buq2uauEnPA/u62/860f3Z7mr+anOZi5wlDK7TgGftNrUMDllW+lqRvpRuf66a2LDbse4Lz2U/SXT9PqlrNubb7ndf0EjH/1PDYb2xtejffBsn6dcxnA/6/ngI75NfUkUBJ/12tP/KF2RSUWvPc3fSEEgTIF5S/60jW7ep3tanmpXPfSx3df6NNvy7zY36fgqF4Rab63cROTtap1gAycstGtrn2CLlycfWntovlxW+9zi1qbXJ/aPW2+rG753SL6cdoi7ip7qpSCwtwQ0H6W+8OjtPuvoyqV6j9WXMM+7ixYtX77Cf75K77NZ8D8l/rOMti94XH+D26lud4rzmlSX4UEEEEAggUA2lwGwcxKiBAvuj6dmzJhhldIZKpfWds36Zrb/dldXu9M3A8q80AdknWDvSdE3vcp80FCP1Iq+wdVVhjTEYE+KLqU64NWXkoZ+uJNUndgmKppQdsuWf/xkt/HLac6oTW5bg+F6ek7fxudzk/WmN9wpvh5uZz0BHaO64lzKk1b1VMFaHbupHSP6xm2tmy9KV5NMWZRJodeXJl3ODOWPP/7wV4RJa3sSvRb04U1X0ExpoKwrzTV0hJtAOVH5r+8BiermueQCGzZssGwugy/I+ox/Vu+Ba1wGVOHChf3D+henYWaljkkaShe/bKJ6dFzrSkCFCxfyr5lE9cTXmfK2JsL/y22vhofvjaIrvepS2pp4P62SqE0Nh/vDXbRCQ9329P9V0K5eb4e7filjOL2iDMxChQr6gGDKZZXNmytX7nT/76Vcj/tZT+Dk1mNC6dS81+par+FzfVBJDV5+XnF77PqK7tNXNj8BeY9Bs230tJ/9tvRoU8GaVC3lM582/L3FGnWfaktXbIxtZ68bKlq5UgWsVtcP/GNDup1vyqbK4+aW6j5wZz2xFfbyje8H1tvLNVJdZhfQULzg/1xqwaLM9tkss3uyfeEJaERO8PksI63qc8L8+UnTiexpbCAj7bHsvhXIsgGofcu292sPAlCJMkn2fqvUiAACCCBwIAlMnfqRrXKBH2USUhDIagJhBaBSc9OXjMcWPcQWuqF3KUve3DmssBta9+uqXa8QVq9KSZuzeG2y9S46/Sib/+v6VJdPWfd/vU8A6r8Ksj4CCIQlQAAqLOnM3U6WG4KXubnT3joNHSlRPGnC6LSX4hkEEEAAgSgLxE90HmUH+p71BJRtmytndj/8bX/0bpvLlkwt+KRt2fzP1jSDSWOm7zqR/5RZy0PpgrwoCCCAAAIIHEgCBKAyyd5KOa9NJtksNgMBBBBAAAEEENjnApqvrVypQ23WgnX7vK2s0oC8KAgggAACCBxIAnx1ciDtLbYVAQQQQAABBBDIogL1KxfLoj3bN91qgNe+gaVWBBBAAIF9JkAAap/RUjECCCCAAAIIIIDA7go0rFraWl5SancXj/Rycmp0cZlIG9B5BBBAAIEDT4AheAfePmOLEUAAAQQQQACBLCegS8N3bXGqlS11uL0+dYnNXbJ+v80JlRlxNedTuVKH+avyXVG5ZGbcRLYJAQQQQACBhAIEoBLy8CQCCCCAAAIIIIBAWAIKQtU7v5T/CatN2kEAAQQQQACBcAQYgheOM60ggAACCCCAAAIIIIAAAggggAACkRUgABXZXU/HEUAAAQQQQAABBBBAAAEEEEAAgXAECECF40wrCCCAAAIIIIAAAggggAACCCCAQGQFCEBFdtfTcQQQQAABBBBAAAEEEEAAAQQQQCAcAQJQ4TjTCgIIIIAAAggggAACCCCAAAIIIBBZAQJQkd31dBwBBBBAAAEEEEAAAQQQQAABBBAIR4AAVDjOtIIAAggggAACCCCAAAIIIIAAAghEVoAAVGR3PR1HAAEEEEAAAQQQQAABBBBAAAEEwhEgABWOM60ggAACCCCAAAIIIIAAAggggAACkRUgABXZXU/HEUAAAQQQQAABBBBAAAEEEEAAgXAECECF40wrCCCAAAIIIIAAAggggAACCCCAQGQFCEBFdtfTcQQQQAABBBBAAAEEEEAAAQQQQCAcAQJQ4TjTCgIIIIAAAggggAACCCCAAAIIIBBZAQJQkd31dBwBBBBAAAEEEEAAAQQQQAABBBAIR4AAVDjOtIIAAggggAACCCCAAAIIIIAAAghEVoAAVGR3PR1HAAEEEEAAAQQQQAABBBBAAAEEwhEgABWOM60ggAACCCCAAAIIIIAAAggggAACkRUgABXZXU/HEUAAAQQQQAABBBBAAAEEEEAAgXAECECF40wrCCCAAAIIIIAAAggggAACCCCAQGQFCEBFdtfTcQQQQAABBBBAAAEEEEAAAQQQQCAcAQJQ4TjTCgIIIIAAAggggAACCCCAAAIIIBBZAQJQkd31dBwBBBBAAAEEEEAAAQQQQAABBBAIR4AAVDjOtIIAAggggAACCCCAAAIIIIAAAghEVoAAVGR3PR1HAAEEEEAAAQQQQAABBBBAAAEEwhEgABWOM60ggAACCCCAAAIIIIAAAggggAACkRUgABXZXU/HEUAAAQQQQAABBBBAAAEEEEAAgXAECECF40wrCCCAAAIIIIAAAggggAACCCCAQGQFCEBFdtfTcQQQQAABBBBAAAEEEEAAAQQQQCAcAQJQ4TjTCgIIIIAAAggggAACCCCAAAIIIBBZAQJQkd31dBwBBBBAAAEEEEAAAQQQQAABBBAIR4AAVDjOtIIAAggggAACCCCAAAIIIIAAAghEVoAAVGR3PR1HAAEEEEAAAQQQQAABBBBAAAEEwhEgABWOM60ggAACCCCAAAIIIIAAAggggAACkRUgABXZXU/HEUAAAQQQQAABBBBAAAEEEEAAgXAECECF40wrCCCAAAIIIIAAAggggAACCCCAQGQFCEBFdtfTcQQQQAABBBBAAAEEEEAAAQQQQCAcAQJQ4TjTCgIIIIAAAggggAACCCCAAAIIIBBZAQJQkd31dBwBBBBAAAEEEEAAAQQQQAABBBAIR4AAVDjOtIIAAggggAACCCCAAAIIIIAAAghEVoAAVGR3PR1HAAEEEEAAAQQQQAABBBBAAAEEwhEgABWOM60ggAACCCCAAAIIIIAAAggggAACkRUgABXZXU/HEUAAAQQQQAABBBBAAAEEEEAAgXAECECF40wrCCCAAAIIIIAAAggggAACCCCAQGQFCEBFdtfTcQQQQAABBBBAAAEEEEAAAQQQQCAcAQJQ4TjTCgIIIIAAAggggAACCCCAAAIIIBBZAQJQkd31dBwBBBBAAAEEEEAAAQQQQAABBBAIR4AAVDjOtIIAAggggAACCCCAAAIIIIAAAghEVoAAVGR3PR1HAAEEEEAAAQQQQAABBBBAAAEEwhEgABWOM60ggAACCCCAAAIIIIAAAggggAACkRUgABXZXU/HEUAAAQQQQAABBBBAAAEEEEAAgXAECECF40wrCCCAAAIIIIAAAggggAACCCCAQGQFCEBFdtfTcQQQQAABBBBAAAEEEEAAAQQQQCAcAQJQ4TjTCgIIIIAAAggggAACCCCAAAIIIBBZAQJQkd31dBwBBBBAAAEEEEAAAQQQQAABBBAIR4AAVDjOtIIAAggggAACCCCAAAIIIIAAAghEVoAAVGR3PR1HAAEEEEAAAQQQQAABBBBAAAEEwhEgABWOM60ggAACCCCAAAIIIIAAAggggAACkRUgABXZXU/HEUAAAQQQQAABBBBAAAEEEEAAgXAECECF40wrCCCAAAIIIIAAAggggAACCCCAQGQFCEBFdtfTcQQQQAABBBBAAAEEEEAAAQQQQCAcAQJQ4TjTCgIIIIAAAggggAACCCCAAAIIIBBZAQJQkd31dBwBBBBAAAEEEEAAAQQQQAABBBAIR4AAVDjOtIIAAggggAACCCCAAAIIIIAAAghEVoAAVGR3PR1HAAEEEEAAAQQQQAABBBBAAAEEwhEgABWOM60ggAACCCCAAAIIIIAAAggggAACkRUgABXZXU/HEUAAAQQQQAABBBBAAAEEEEAAgXAECECF40wrCCCAAAIIIIAAAggggAACCCCAQGQFCEBFdtfTcQQQQAABBBBAAAEEEEAAAQQQQCAcAQJQ4TjTCgIIIIAAAggggAACCCCAAAIIIBBZAQJQkd31dBwBBBBAAAEEEEAAAQQQQAABBBAIR4AAVDjOtIIAAggggAACCCCAAAIIIIAAAghEVoAAVGR3PR1HAAEEEEAAAQQQQAABBBBAAAEEwhEgABWOM60ggAACCCCAAAIIIIAAAggggAACkRUgABXZXU/HEUAAAQQQQAABBBBAAAEEEEAAgXAECECF40wrCCCAAAIIIIAAAggggAACCCCAQGQFCEBFdtfTcQQQQAABBBBAAAEEEEAAAQQQQCAcAQJQ4TjTCgIIIIAAAggggAACCCCAAAIIIBBZAQJQkd31dBwBBBBAAAEEEEAAAQQQQAABBBAIR4AAVDjOtIIAAggggAACCCCAAAIIIIAAAghEVoAAVGR3PR1HAAEEEEAAAQQQQAABBBBAAAEEwhEgABWOM60ggAACCCCAAAIIIIAAAggggAACkRUgABXZXU/HEUAAAQQQQAABBBBAAAEEEEAAgXAECECF40wrCCCAAAIIIIAAAggggAACCCCAQGQFCEBFdtfTcQQQQAABBBBAAAEEEEAAAQQQQCAcAQJQ4TjTCgIIIIAAAggggAACCCCAAAIIIBBZAQJQkd31dBwBBBBAAAEEEEAAAQQQQAABBBAIR4AAVDjOtIIAAggggAACCCCAAAIIIIAAAghEVoAAVGR3PR1HAAEEEEAAAQQQQAABBBBAAAEEwhEgABWOM60ggAACCCCAAAIIIIAAAggggAACkRUgABXZXU/HEUAAAQQQQAABBBBAAAEEEEAAgXAECECF40wrCCCAAAIIIIAAAggggAACCCCAQGQFCEBFdtfTcQQQQAABBBBAAAEEEEAAAQQQQCAcAQJQ4TjTCgIIIIAAAggggAACCCCAAAIIIBBZAQJQkd31dBwBBBBAAAEEEEAAAQQQQAABBBAIR4AAVDjOtIIAAggggAACCCCAAAIIIIAAAghEVoAAVGR3PR1HAAEEEEAAAQQQQAABBBBAAAEEwhEgABWOM60ggAACCCCAAAIIIIAAAggggAACkRUgABXZXU/HEUAAAQQQQAABBBBAAAEEEEAAgXAECECF40wrCCCAAAIIIIAAAggggAACCCCAQGQFCEBFdtfTcQQQQAABBBBAAAEEEEAAAQQQQCAcAQJQ4TjTCgIIIIAAAggggAACCCCAAAIIIBBZAQJQkd31dBwBBBBAAAEEEEAAAQQQQAABBBAIR4AAVDjOtIIAAggggAACCCCAAAIIIIAAAghEVoAAVGR3PR1HAAEEEEAAAQQQQAABBBBAAAEEwhEgABWOM60ggAACCCCAAAIIIIAAAggggAACkRUgABXZXU/HEUAAAQQQQAABBBBAAAEEEEAAgXAECECF40wrCCCAAAIIIIAAAggggAACCCCAQGQFCEBFdtfTcQQQQAABBBBAAAEEEEAAAQQQQCAcAQJQ4TjTCgIIIIAAAggggAACCCCAAAIIIBBZAQJQkd31dBwBBBBAAAEEEEAAAQQQQAABBBAIR4AAVDjOtIIAAggggAACCCCAAAIIIIAAAghEVoAAVGR3PR1HAAEEEEAAAQQQQAABBBBAAAEEwhEgABWOM60ggAACCCCAAAIIIIAAAggggAACkRUgABXZXU/HEUAAAQQQQAABBBBAAAEEEEAAgXAECECF40wrCCCAAAIIIIAAAggggAACCCCAQGQFCEBFdtfTcQQQQAABBBBAAAEEEEAAAQQQQCAcAQJQ4TjTCgIIIIAAAggggAACCCCAAAIIIBBZAQJQkd31dBwBBBBAAAEEEEAAAQQQQAABBBAIR4AAVDjOtIIAAggggAACCCCAAAIIIIAAAghEVoAAVGR3PR1HAAEEEEAAAQQQQAABBBBAAAEEwhEgABWOM60ggAACCCCAAAIIIIAAAggggAACkRUgABXZXU/HEUAAAQQQQAABBBBAAAEEEEAAgXAECECF40wrCCCAAAIIIIAAAggggAACCCCAQGQFCEBFdtfTcQQQQAABBBBAAAEEEEAAAQQQQCAcAQJQ4TjTCgIIIIAAAggggAACCCCAAAIIIBBZAQJQkd31dBwBBBBAAAEEEEAAAQQQQAABBBAIR4AAVDjOtIIAAggggAACCCCAAAIIIIAAAghEVoAAVGR3PR1HAAEEEEAAAQQQQAABBBBAAAEEwhEgABWOM60ggAACCCCAAAIIIIAAAggggAACkRUgABXZXU/HEUAAAQQQQAABBBBAAAEEEEAAgXAECECF40wrCCCAAAIIIIAAAggggAACCCCAQGQFCEBFdtfTcQQQQAABBBBAAAEEEEAAAQQQQCAcAQJQ4TjTCgIIIIAAAggggAACCCCAAAIIIBBZAQJQkd31dBwBBBBAAAEEEEAAAQQQQAABBBAIR4AAVDjOtIIAAggggAACCCCAAAIIIIAAAghEVoAAVGR3PR1HAAEEEEAAAQQQQAABBBBAAAEEwhEgABWOM60ggAACCCCAAAIIIIAAAggggAACkRUgABXZXU/HEUAAAQQQQAABBBBAAAEEEEAAgXAECECF40wrCCCAAAIIIIAAAggggAACCCCAQGQFCEBFdtfTcQQQQAABBBBAAAEEEEAAAQQQQCAcAQJQ4TjTCgIIIIAAAggggAACCCCAAAIIIBBZAQJQkd31dBwBBBBAAAEEEEAAAQQQQAABBBAIRyBnOM3seSszZszY85VZEwEEEEAAAQQQQAABBBBAAAEE9rvAkiVL9vs2sAH7VyDbdlf27ybQOgIIIIAAAggggAACCCCAAAIIIIBAVhZgCF5W3rv0DQEEEEAAAQQQQAABBBBAAAEEEMgEAgSgMsFOYBMQQAABBBBAAAEEEEAAAQQQQACBrCxAACor7136hgACCCCAAAIIIIAAAggggAACCGQCAQJQmWAnsAkIIIAAAggggAACCCCAAAIIIIBAVhYgAJWV9y59QwABBBBAAAEEEEAAAQQQQAABBDKBAAGoTLAT2AQEEEAAAQQQQAABBBBAAAEEEEAgKwsQgMrKe5e+IYAAAggggAACCCCAAAIIIIAAAplAgABUJtgJbAICCCCAAAIIIIAAAggggAACCCCQlQUIQGXlvUvfEEAAAQQQQAABBBBAAAEEEEAAgUwgQAAqE+wENgEBBBBAAAEEEEAAAQQQQAABBBDIygIEoLLy3qVvCCCAAAIIIIAAAggggAACCCCAQCYQIACVCXYCm4AAAggggAACCCCAAAIIIIAAAghkZQECUFl579I3BBBAAAEEEEAAAQQQQAABBBBAIBMIEIDKBDuBTUAAAQQQQAABBBBAAAEEEEAAAQSysgABqKy8d+kbAggggAumr5cAABM3SURBVAACCCCAAAIIIIAAAgggkAkEcnR3JRNsR8JNWL58hX04ZZqNGfu2bdyw0Y466kjLnTt3wnX29Ml169ZZnjx5LFu2bBmq4qf58+2jj6fbySedlOp6f/65zsZPmGgrV62yYsWKWvbsO2N/f//9t0376GP76utZVuDw/HbooYfG6ti+fbt9O2euTZ36kRUsVDDZc7GF3I1xb79r2bJns0KFCsU/nOx2ona0oNqZ9tFHdsQRRezggw9Otm7KO+nVpeU3b95sw0aMtFLHHGN58+ZNWYW//7///c+mT59hs+fMsWJFj/b2wYK723ctn149n376mU11fdNxU6Rw4aCJXf5u2vS3Tfpgsn33ww9WsECBZA7ant2t55vZ39q8776zxYuXxH5KFC9uOXLk8G3++NNPNn78RNvs+l/U9VvH219//eWPoUWLFlv8z88/L7Vjjy3l1wt+rV692kaNfsvKlj05Vmfw3L76m94xnla7H06Zan+47S1WtGhai/A4AggggAACCCCAAAIIIIBAFhfI5k6qt2fmPk7+cIq1veZ6H1ipXOlc+2TGp6aT73FjRttpp5bfq5u+eMkSq12nvs3++nPLlStXhup+/Y1R9kK/l2zK5Im7rPfGqDetU5eudu6559jKFStsxcpV9rbb/uOPP84HHS68uLpf58QyJ9jsb+fY68OHWLlyp9g///xjNWpe7pc/5+yzXBBuql3duqX1uP/eZG0oYHLNdTda78cetiaNGyV7Lrij4EZa7WiZxk2vdAGT7y1o5+EHH7AWVzYLVk/2N726goUffOgRe/nVATblgwl23HHHBg/H/ioIU79hUzvSBbwKu6DQ5198ac/2ecquqFN7t/uuyhLVo+dv79jZJk76wCpXOs//bXVVC+v5wP16KlnR/q/q9oWOq63btvnA0eg3Rrig4ol+ud2tRwtfVquOLf3l12SBt8kT37cCBQ63bvfeb2+NGRfbnqZNGluvRx8yBXiaXdkq2TbpWFcw8Ls5s5I9PmfuXLv8igY2d/ZXaQYlk62wF+4kOsYTVX/djTf7IOTdXbskWoznEEAAAQQQQAABBBBAAAEEsrKAAlCZtbgsku0ljz1h+9N9nt2+bds2v5n6e3Xba7dXq15zuwvQ7NVN/+LLr3x7e1LvyNff2F714kt32Z5///13e5ULL97+0iv9Y9vfqEnz7Q/0fNjff+iRx7bXqlNv+6ZNm/z99rd13O4Cbv72W2PGbj+5XIXtLtvI358xY6bfvhUrVvr7+rVy5Uq/jJy0DWmVRO189vkXvt7ffvvNr/5q/9e2n3Pe+du17amVRHUFy0//ZIavU9u1cOGi4OFkf++8q1usr3pC+1n7VWV3+u4XdL8S1RP0be7ceX7xYB8v+/33YPXYX9nr2ApK3QaNt999z33+bkbqcZlfvu9aJ2WZP3+Bf27WN7P9Uy7zLcl+2bKUi3o3v1/fGLXLc9/OmePXW79+/S7P7asH0jrG02tPr9ng9ZvesjyPAAIIIIAAAggggAACCCCQNQV2jgPLhFE2DVE64YTSdvPNN8aGxGmoUs8e91vzpk1sgxuOp+yXK+o19FklZcuf7oeirXQZRje3v910/4yzzrOn+jxrLpjie+iCN9bhji7+8WOOK2O1r3AZTy7rSEPvbnHrqFS/rLb94rJXEtWjIV/KZFEbF1WrblOnfezXTflrw4YNdk3bNla/bh3/lLZfmU9fzUrKaNGQrgb16lq+fPn887r9weQP7d+tW61IkSL21BO9Y1k0xxxT0i+jTBkVd0hal67drGH9elayZAn/WFq/ErWjoXLxJVfuXPb78uW21W1DaiVRXVpeww1dMMe63XVnaqvHHqt4xhl22623xO6rfy5AYxoGl17fm7doZa8NHOzXTVTPO+++Z9UvvcROOaWs/fHHH1ahwmn27awvXNbVEX7d+Hpua3+zPdSzu3/cBUzc8bXBtmxJOm7Sq8evtOPXggUL/a3SpY/3wxp1zAXl6KOPsjdHjbAKp53qH/rb9VVl29Zt/m/wS/ad77zLb3uTRg2Dh3f5+1ivJ/wxeH7VajZs+Ej/vAsUWdMrW/rjI1hBx2rffi8Gd2N/v//hR7uqVRtfh14P115/k3fSAomOcRcg9Fl9ygrTa0CvQRfk868t3W937Q1+GKHq6dHzIXv5lf66aff36Olfj9o+taf1tA0UBBBAAAEEEEAAAQQQQACBrC2QqQNQX371lZ179tmWc8e8OcGuKF68mLVre7UfzrR58/98AGmRmzfnnru72inlypqG/Py2bJn1f+VF99idNnjIsNgJ8KO9Hrfvv//ePzdm9Ot+qN0D7gT5kEMOsTu73OGb6PvcM34epET1uCwgP1/Pc888ZTfeeL0LQH0UbF6yv/nz57fWra7yQ8z0hMu8seEjXrdLL6nml1uwcJEpKBGUI49MCoysXbPGD9GqUf2S4CnrP2CgH45V3g3PUxk6bIQtWLjQ7tqNoU2J2jn3nLPt8tq17JIata1Nu+vsnnu7+yFqac2zlagubZeCHRecX8UNpbtcd9MsjRs1sFPLl/PPb9myxffv/CqV7aCD8qXbd21zEHRLVM9vvy3zwUcFCSueXcmOP+FkmzJ1WmwOrvh6FBgs6uYpGvv2O9agcTNbs2atXXdNW7996dUT30kFRVWqXHCx1anbwM4+r4q57C7/mIbTKWC22u1fBQ87dOpi17ZrYzqm48s4tw1ffvW1D7bGP57y9lw3z5SO8yubNbW7ut3rhqjOtHOcjYKEX+8IcqqtIUOH29lnnZVsdQU527S91gf7xrz5ug3s/4pfX8uqJDrG161bbxpaqvnCBg981Q+ZVDBXQwyHDn7NVrm5zka4QJiKjnnNAeVvL/vdW9SueZmNfWuUf0yvPwoCCCCAAAIIIIAAAggggEDWFsjUAajlbr6kww7bOSF3ol2h4NOVzZvaln+22KxZ31jLFlf6SY/POvNMF1yp6SfD1vqtrrrSXuj7rJVzGTH5DjrITihd2hRc0OTQJUokZREpc2Xxkp/TrEeZR5oAukXzZnbxRVVNGSq1atZItHn+OTfEzVpc1drOrHiGDzooy2Xjxo2xDCctlDdf0mTdGzdtSlZfvxdf9vMpPfP0E6aglgJuCvRoziQFbOKLsr3c0KzYj+aSStSOJrme6QIWxx5byhkUT5pzyM0HpQCFJhsP6tLcT+ltszJjVFeP+++J36SEt5WBpYypX91+0NxTKUvKvut5ZU7JPr6kVo+OIc2d1dYFLKdP+9DaXN3KbuvQyX5eutSvmlo9/3PbU9IdC5p/acqOwGJ69cRvhyaxV0Dvw0nj7Yd5s61L5zt81o8CSkHZtHGTFSpY0M9/NfOzz90x+FvwlP87cPBQq3tFHT/hfrInUtzp1PF2UxDtxhuus+OOLWVvv/Oun2/p7LPOtLHj3vFLv/ve+z5YV/GM05Otvc3t38d7P2rd7+vmJsYv5o6rw/wxsGLlSp89tTvH+F13dvYBtcsvr+3r7nxHBzvdZZlddll1HwRL1uCOO7Jp1bKFzwLT/FeL3UTtFAQQQAABBBBAAAEEEEAAgawtkDMzd+/U8uVt/oKk4Uzx26nAyPTpn/hATvB4kEGyzGU+qdx7f4/gqdhfBY7cbDR+mJCCVMpG0QTYqZVE9axxGSUK6JTfkb2j9c86s6J9FRdgSFmnhhm1aHm1n+C673N9Ylfx0zZoKGFQ/vprg78ZDBFTwEdDmAYOGuIzVKpWvcA/r+FZmqhcQ9b0s3r1GnNzDrlAQ0k/fFCTngdFmV6J2nn8iactvwv0vTP2TT/UUcG7S2rUsvpuOKAmnlYgIig/L/opzbryusCLhmRpvYmTJruheH/61d4bP8FqXVYj1YnINfRRk8zr6oBvjR4Zy2rSimn1PdiW+L9p1VO4cCHvpD6pdLz9Vhvw2iC/r45xVqkVTeSuHwVs7uvuJmN3gcaM1FO7Vk3TT1DatWltvXo/4QOaCj6qKNCnjLsOt7e3ChXPsdFvjrFb3RBAlR9+/Mkve2+3nfvQP5HKrzNO3xlUUubTMpdhpKJgbDeXyaZhkCNfH2XNmzWJDWMNqlGGmwJfypxauvQXO/qoo+wfl4l2Stmytmbt2nSPcQ2PDa4WeajLINRk7cFQ0rx5Ur/qodqOz/g75NBDfJvBNvEXAQQQQAABBBBAAAEEEEAgawpk6gyo008/zQ8J0nxM8WWUG/rTus01fphd8HjOnEmxtEKFCvmHhg4a4K8cpquHfTDhXRs5fLBpXp+WrdtZaTfUStkw87792ho2bJDqCXCiegoUKOCDMN//8EPQvC10GUlpFQW7GrohXRdfdKG9/GLf2Em6lte2LFy0KLbqQjekTm3rRF6Btjs6d/UBIAWRguCTFtYcSQe5ZRQg0o8CYp+7q8h97oJQl1S72N57e0zs58QTT0zYzvwFC/ywrSCYUKrUMX57FJTocNutsXpUp0pa22yWzQ3zOtMHNbRNysZRed8FoHSFuZRFczI1bX6VbXbzaY1+fYTFB4QS9T0j9ZQoVtwPr0y5joZcpizKKNNVF4MSbM+KlSssI/VoiGUw55Hq0jBRFWXbaWic5iBT/1QUBJKnMu6CMsldsU/DCzVUL72y3M3VFZRvvpnthhAe7e9Wr36pPyYGueGnc93cTPVcNlXKoqCohgFe266tzfrqM/t0xkemKzEqUFvg8MPTPcaV6ZWo6EqCqRVlG1IQQAABBBBAAAEEEEAAAQSiJZCpA1BXXdncn5y3ueY6P4xKw6Y079EDDz5s1193jTtZLrPL3jrpxDI+k+PpZ5+zJT//7DJClvnMo8FDhscmItfwKp2o//jTfD/vUDAJ98FuSJ7Kt3Pm+HaVEZJaPdmzZ7eabojRiJFv+AmU3dX6bNyO4U4pN0hD6dpdd6OvT1koc+bM9dkt8+Z95xdt7ubu0RxVH3083ebMnWvPPPu8NWvSyD83zPVVQ9ru7XaXv69Aln7Wrv3T+rlhhG+MHBb7UcCivZusXVk0modHk24HPxqil6idypXO85O3q24FsjTkTRlTGlaozLKgHv1VSauuo446MrY92raX+vX1yz/79JNW7eKL/O34X3e7gM9SF1y80w1RUyZO0D/NB5Wo76pDGUNaXiVRPY0bN/RBH83rpCGEffu95NepuCMTKb6eww49zB586BGfDaSA2fMv9PPD2hSISq+eN9/auT1FihS2Bx9+1GbO/NTP9fTk0328Z6VK5/pJ9bXsawMHeWvNo6RJ8OOHEyoDaneCT+qIsrl0jOk4UUDpsurVff90LCsLSv05v0plP7eVfyLul5xVTnBDTvMfdpiNnzDRZrht1uTjGTnG46r8Tzc16fugIUP9a/Y/VcTKCCCAAAIIIIAAAggggAACmU4gUw/By5s3rw9iPOaGL3Xqcpefk0fz3FzrJoYOJocOsnYCWWVlvPpyP7utYye78KJL/cM1alzqhiJ1MT2nYE7vJ56yJ57q4zONFOx5/oUXbfnyFT7rRIGcBo2a2Yihg9KsR5U+4K7Ep6vmXVYrKbNEJ/kp5/HRclPdhNeaS0g/qjcoaufjqZOtQf26PnOpZeu2/qmabqha+1tu8rcHvDbQ/+16d/L5lDSEL36IV1CnGw8Vu5nyRqJ2NKH70l9+sXoNm/jVFHx69OEHfdAkZT26n6iu+OWDfZMt+67bpavsTZgwyS8e9D1Y9/OZ011gJXHfez/+pA8KHeUmcE9Uz2mnlvfzSt3q5phSUXbZsCED/fxLuh/Uc/rpFeyaa9rYqj9Wma4op6J1X335RR+MSa+eXr2ftIYN6pnqUTDpZjcx/c23dvD7XW32d8eksp10W/N29XXBrZ4PPuLb6dypo9W5vJa/rV+axFxXNkxUsrlsMxVN8F22XAV/W/XEZ8k1aljfXxlPwwlTK5oAXkGqZi1a+afVR03orqGcKrt7jGtZ7escO7IQdV8BrBzuJ7USHBd6LuiHbuvqiffe18PPYaXJ4CkIIIAAAggggAACCCCAAAJZRyCbG26z/UDojjZTQZzChQvv9uYqUyifm9Rbgaz4ormFNI+T6oo/GdYyGqa3yWWUxA/RSqseLa8JuhVYSNmGnstIUfZHNnfCHmRhZWTdjCybqB1lgunqZprvaHeGSSWqKyPbFMay2ueaJ0tXbUuvaOL1v51FQTfUMmXJSD06loLjLGU9ur9ixUoXkCpowfDR1JbZncc0X5OOm5RD4pRVd8NN7e2rz2ckG/aZsk71VxPVa3L71MreOsZTq5vHEEAAAQQQQAABBBBAAAEEoiFwwASgorE76CUC/11AQw37uKGc77zznjVt2tjN49X+v1dKDQgggAACCCCAAAIIIIAAAgj8B4HUx8j8hwpZFQEE9q+AMqFWrFjhg0+aF4yCAAIIIIAAAggggAACCCCAwP4WIANqf+8B2kcAAQQQQAABBBBAAAEEEEAAAQSyuAAZUFl8B9M9BBBAAAEEEEAAAQQQQAABBBBAYH8LEIDa33uA9hFAAAEEEEAAAQQQQAABBBBAAIEsLkAAKovvYLqHAAIIIIAAAggggAACCCCAAAII7G+B/wNau82zBK8NeQAAAABJRU5ErkJggg==" + "17b4eb61-ef8d-469e-99bc-75095ff62bc1.png": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABSMAAATsCAYAAAB7f5dpAAABWmlDQ1BJQ0MgUHJvZmlsZQAAKJFtkD9IAmEYxp+rC8Okgoz+0ODgEKERp1BNYQ4RFB1WkG3neWmg59d5/XEIGqKpRWiOwNa2qDWa2oOIoi2iPXAp+Xo/rzqtXnh5fjw8vLw8QIusMZaTAeRN20rMTAdWkqsBzyva0YMODCCo6UUWU9U5iuBbm6d6B0nobVjcevZzb+/WwmTf7vzgS/Js72++abxpo6iTftCO6MyyAWmYWN22meAdYr9FTxEfCs44fCI45fB5PbOUiBPfEHfrWS1NfE8cSjX4mQbO5zb1rx/E9z7DXF4k7aQdggoF49hAmHSMuvk/G61n4yiAoQQL68ggCxsBxMhhyMEgnoUJHaMIEYtrCqKi49/duV7hFJioAq1l10sdAZcHQP+D6wWPga594OKaaZb206hUlYtrEcVh3xTQ9sT5G3XqKQO1MufvFc5rFbr/CFyVPgEdOmGchaZ0bQAAAFZlWElmTU0AKgAAAAgAAYdpAAQAAAABAAAAGgAAAAAAA5KGAAcAAAASAAAARKACAAQAAAABAAAFI6ADAAQAAAABAAAE7AAAAABBU0NJSQAAAFNjcmVlbnNob3Sl3vNJAAAB2GlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNi4wLjAiPgogICA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4xMjYwPC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjEzMTU8L2V4aWY6UGl4ZWxYRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpVc2VyQ29tbWVudD5TY3JlZW5zaG90PC9leGlmOlVzZXJDb21tZW50PgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4KN3J7dQAAQABJREFUeAHs3QmcVtMfx/Ff+6J9X7SvlDYkEVFCyBYhZGmzZ0spQlKRLfsfUSkpRaRUQlISihbt+6bSvi/qf75nuk/PTM/sU81Mn+M189znLuee+753xvR7fuecDIdcMQoCCCCAAAIIIIAAAggggAACCCCAAAIIIHCMBTIe4/qpHgEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ8AIEI3kQEEAAAQQQQAABBBBAAAEEEEAAAQQQQOC4CBCMPC7MnAQBBBBAAAEEEEAAAQQQQAABBBBAAAEECEbyDCCAAAIIIIAAAggggAACCCCAAAIIIIDAcREgGHlcmDkJAggggAACCCCAAAIIIIAAAggggAACCBCM5BlAAAEEEEAAAQQQQAABBBBAAAEEEEAAgeMiQDDyuDBzEgQQQAABBBBAAAEEEEAAAQQQQAABBBAgGMkzgAACCCCAAAIIIIAAAggggAACCCCAAALHRYBg5HFh5iQIIIAAAggggAACCCCAAAIIIIAAAgggQDCSZwABBBBAAAEEEEAAAQQQQAABBBBAAAEEjosAwcjjwsxJEEAAAQQQQAABBBBAAAEEEEAAAQQQQIBgJM8AAggggAACCCCAAAIIIIAAAggggAACCBwXAYKRx4WZkyCAAAIIIIAAAggggAACCCCAAAIIIIAAwUieAQQQQAABBBBAAAEEEEAAAQQQQAABBBA4LgIEI48LMydBAAEEEEAAAQQQQAABBBBAAAEEEEAAAYKRPAMIIIAAAggggAACCCCAAAIIIIAAAgggcFwECEYeF2ZOggACCCCAAAIIIIAAAggggAACCCCAAAIEI3kGEEAAAQQQQAABBBBAAAEEEEAAAQQQQOC4CBCMPC7McZ9ky5atNmPGn7Z69Wo7dOhQ3DuzFYEUFti7d2+inrv//vvP9u3bl8KtSJ3VJdZGV7F//37bvn176rwgWoUAAggggAACCCCAAAIIIIDACRbIfILPn+Kn//OvmXb1tc1D9fbv94E1bHhB6H3MhfkLFliTy64MrV44b7ZlzZrVv69X/wJb+88/oW0xF0455RQrV66sXXpJY7v33vaWOVOmmLvE+n7nrl3W+8U+NuqbMbZx48bQfqqzZo0zrOuTnaxatdND61PTwrLly+3Ciy7xTVq8cG6irjs1XUdy2vLpkKHW6cmu/tnSMxZfWbRosTVqcrnfbfmSBfHtnmLbp/wy1fLmyXPUs7Rnzx77oN/H9skng/0zrufuggbnW5vWd9qZdeocdX7t/3H/gfb5iC9s4cJFfnvp0qXsooYXWoeHHrAC+fMfdUxiVpQpXzm0+73t29kTHR8NvY+5cMAFQ2vUOst27tzpNw0ZNMDOPbeeX+7YqYt9NnRYzENC73WdRYsUtnPOqWsdH380YrsTaxOq3C3o5/r65i1s7rz5NuvP3y2Ps6cggAACCCCAAAIIIIAAAggggMARgXSXGXno4MEjV+eWvhnzbbT3Md+MGTM22qrEZCYqGDJ79hx7+dXXrU3be0LBkWgVRnizcuUqu/Kqa6z/gE9CgUgFdhQoUZ0KIDV127/6+psIR5/4VYkxOvGtPTYtOHj4OTt0MGGZrAcPRX8uj02rotfa7dnudnPL223FypXRN7h3L/Z5xV5yXwq2FyxY0D93Y74da9c1v8l+nPhTtP2VBXn9jTdbz94v+UCk9tezumLFSv8Mn3/BxbZm7dpoxyTnzRdfjowzU3PatN+i/awl7A5EtUg/X0uWLjMFk/WhxZIlS49qamJswg/WM/F4x84+EKn1/JyE67CMAAIIIIAAAggggAACCCCAQJRAugtGxryx34weE2uXUgULhn/xZcxDjnr/wvPPmbLZwr+UQfnDd2Pt9ltb+v2//+HHBNWlnT8d8pkPiCig89GH/7Oli+bZpB8n2N+zZvg6zzozKjPtgYcets2btxzVnhO9omCBAvZ01yet21NdLGOGDCe6OWni/EUKF7HOTzxuXTo/cdza+/sf0/25MsS4R39Mn24fuqxIlU9dVuH0336x+X/PtOuuvcavu/f+h0zZgUF5+533fNBd7wf27+f3n/H7VPvfO29Z8WLFfGCwc5engt2T/aoA6cxZs2OtRz/T8ZUrr2ga7edVP7vK4v11yiR77pmn/eEKpvZ55bVoVSXWJjhYbW7T7l5LSNuCY3hFAAEEEEAAAQQQQAABBBBA4GQUSNfByFCm4ZSpEe/t7DlzfHZXxI3xrFRX7vLly1n357qFuoFPnDgpnqOiNisDTeWZbl3t4osaWsaMR26D6ny225HAzsSfomepRdVwYr+r6+ndd91hd93ZKlrbT2yrUvfZ8+XLa+3btbG2be4+4Q19onNX3wZ1h65/uHtz9uzZ7aUXe4ayJL8dOy7UzpFffe2XFYBWV26VbNmy2aWXXmK9ej7v3//440+m8RWTW/QzqxL8jMSsT1maX3z5VczVCXqvYRSKFStqrW6/1Z7s1NEfo+DhgQMHQscn1kYHDvlsmGlIh+8mfB+qhwUEEEAAAQQQQAABBBBAAAEEEIgscCQKFnl7ml57Q/PrfPtHjR4d8Tq+GR3Vhfvaa66OuD2hK6uddprfdcaff8V7iCb/UDdRla1bt/nXmN+qV69mLW68werVO8e2bTt6IoxVq1Zb9+d72g0tbvFBkDvvbmtvv/tetGy2oE5NjvN63zetxS23+X2bXXO9aVy9nyb9HOwSek3ovv/++689+vgT9ljHTqbrCS8aG7HLU91M51GARm178+13bffu3eG72fr1G3wdatu2bdvstdff8F2KdYwyzEZEyFhV1prOq6+EBr5+njzFHuzwqDW+tKlvz91t2vtz6Zzhpd9H/X29kVyUYahz6joiFY1T2uGRx61Bw0Z2/Q03WS83FqiMwsu6det9HTKLWRJzP3WsxhhVN2NlzspL1noe/vlnna9aGX9q79LDz9n7H/Tz7xcsXOjdgzEfr776qmhNUbDuumujfhZGfjXKb9N9y5svnw9S1nPjLMYsFStUCK36Z13U+UMrkrAQ/Mx+6QKOkbo5636qq/UVTaPG30zCKfwhVaocGaNy5apVfp2eycTYBOd+onMXv3ha1So2+JP+wWqLmZEa2sACAggggAACCCCAAAIIIIAAAiexQLqbwCb8XipgoUk3RrtxIXt0f9ZncwXbNb7b0GHD/dsrr7jcZVuNDDYl6lVZVeqirVLBZTXGVzK5gM/ll13qM7/eefd/VrZMabvIZUfGnPzmxV49IlY1dux4a3vPfdG2qYuo2jDii5HW7/33TONPqmgyjZa33xHqYqt12vevmbP8JB+aeORh96WSmH2379hhnw//wh/Xq+eRdg74ZJA99fSzfn3wLWibJhX58P13rXKlSn6TZhtWHcqEUxacJvwIio4ZN/47mzNnrj3VtXOw2jTWZnDeZ57uGu1+hnYKW9CYmwrYhRfVrQw2ZbMN+2ywlSp1qt/8y9Rf/TnPqF49lP0XHLd8+Qp/3rpnn2X3u4mKwsvEnyaZvoKiQKCCl3q2Bn78YWjimK3btoba3ufFXsHulpj7qYPUbb+5G78xCGhrXXBPP/1sqI0cMcx2uGBd4KTtao++FHQPApZaX6Vy1L3QclBq1qjhF/WMqOTIkcO+HD7UL0f6Nt3NAh+UkiVLBotJftWEOPqZDa6pVs2o9gQVfj0q6oOFq6+6Mlldon/4cWJQpe9qrjfz5h95BhNiE1RQqVJFa9emtfNt5gLFm4LVvCKAAAIIIIAAAggggAACCCCAQASBdJ0ZWbtWzVC308lTfol2+QqiKMPswgsaWNGiRaJti/lG4+ft2rU79KXMLM0orSytFjffGgqk3XDD9TEPjfheMxYrCKfzt3YT32hmYAXNFCBbvHhJxGO0Utl1QSBSY+L98vOPtsSNgzfqqxGmgIiyuro+/UzoeHVBnT17jj+XAm/z5vxlP0/83ndT1U7KRty6davfPzH7hk4QtjDDeQaByKubXeXbtnjB3z7gp+CognQPP9rRNBNyeJGlApHqwjz66y9t7JhRvuu69vmg30e2YcOG0O4F3FiVGk9TX5kzxx9Hf+a55/2xre+601+3xkVU5prsFewa4oJ3KVE0oYtmdNaYhN9+85W/F7q3HV3GXKTsvuCcib2feg5bt23vA5G637rvi+bPsc8+/cSfU5bKiDzjjOo23Y3pqH1UFNjWe2XaKvtVRW2OlLmXN28ev13tj6vt2mmHC0q/9PIrfn8F/mMG1P2GRH7LmTOnBdmR4V3FVY2yNIOM2QsuiOouHlv1+w/sD/28Bj+7mmTnt9//8Jm7CniqaJxMdVFXSarNd2NH+zYn5Jn0J+IbAggggAACCCCAAAIIIIAAAiexQPwRnTSMk8GNxXijCxAqA3G0m1Vb4zMGZdQ3hzOsXOAsvvLc8y+YvuIqGoeu+XXXxrVLaNuZderYF8M/s/b33O8DSwoiKYsvmD1bk4K0dgHLu+6IPibjW+9EdROuWeMMe/21l0PBH2XzaTKRixpf6rP0prosPwWe5s9b4M/Z6OKGpqw+FWUCaiKVlStXWaFChVyw71/Lmzdvovb1FcX49t77H/o1ChS+/mqfUKBL5x3gMgQbXtzEB0YV9FRWW3jRpC7hYynq+DNcgFZFgcrChQv7ZY1XGIxZ6FfE8W3T5s0+2KtdbmpxQygD8rz651r3Z7uZAl267pQo7779Rsj3tNOq2vvvvR263kk/T461zYm9n3+6YQCU4ajSv9/7FmQiqvu0MkVb3naHz3pdu2atv16N66ii69SkQyoKIKoUKVzIv8b8Fm6irvBBoC7mfhq7sf29D/ggs4K7Gk8ypcqVTZvasM9HmLpqd3zskdC4pEEGqoKVytiMqyjj9LSxNePaxY95GZ55m1I2cZ6UjQgggAACCCCAAAIIIIAAAgic5ALpOjNS97bp5Zf5W6yu2sE4g8rOC7poN250UbIegTat77IRnw/xM/SGT0QTX6VVKle2CeO/tZFffG6PPdLBateuFTpEWXsaA7CdC1aGj204bdpvfh9lRepa1LU6+CrqJuYoX66s3z7777/9a42aZ/hXBTk1Q7ICgermq0COZvF+qfcLVrFihUTv6w8I+6Yu78FYi21b3x0KRAa7lCtbNjTG36wIsyRfckmjYFf/qglylLmnEj6rs1+RwG8F8ucPdb/VeJkaU3PW7Nmmtl5/3TU+YBgeAE1gtUftpnECg0BvsFHXq4xbFU2SFFtJ7P2cNz8quKwsxCAQGdR9/nn1bdy3o/yM7EHX82Bb+GvmzJnC3x61nClsMqXYMiMVtFNGrwKtKq++/JKfGOaoypK4on79eqHs1aC7uKoKgvXNYgSzE3uahg0v8Bm7CuDrOQlKStgEdfGKAAIIIIAAAggggAACCCCAAAKRBdJ9MPIMNxmMMg2VfRh01f7112n+vWYDDs8Ei0xk9nz3Z2zZ4vm+S/TMGb9Zrxeiuv9q/7/c5CWnVT0ttkPjXK/gpcbEe+D+e/24fHNmTvfjKiq7UEXjJvZ+6WW/rCBaMK5ij5697fTqtY76CsYRXLZ0uT/mkkaNTIEXFQUiFZCsdWZdP/HNh/0+9gZ+o/uWmH2DY4JXTfwhX5Wy5coEq6O9Bl2GI3VDL1a0aLR99aZAgagg0aGDh47altAVL/R4zu+qLse9X3zZrmx2nZ11znnWuctTpslwUqJUdkHlSKVs2SiHJUuWRtrsg6KJvZ9BYLNM6dIR61SAW1mKcRV1dVcJuiTH3Hdr2MQ+kbIP1bVcY1YGWYrvvNXXLm3SOGY1yXqvmeqbXXWFr2PsuPH+VQFQPcO6vmAG8LhOooC9fmb1peEJBg38OBScnjVrTihTNLyO5NqE18UyAggggAACCCCAAAIIIIAAAghEFkj3wUiNixeM5aiu2iqhLtoJzLDKmCGjz/bT5DMKXt58042um+wHvq5pv/3uZ5VWsDAhRQGooZ8Ptx9//Omo3XPlymWNG11sQ4cMCo3rOObbcX7sviCrUwcpAzIYOzHSa/7DgbycOXO44OZ79tKLPaN1UVeb1e38ymbXmsbRU0nMvv6AsG9ZsmYJvcuS+chyaKVbyJIlan2kTMegO3H4/imxrG75Gs9P2avBpD4KTA7+9DO7rvlN9r/DXcvDzxXpPu7fvz98l2jLsbVdAbW4SlLuZzA5SvbsUd2v46o/tm1Bl3dl30YqwRiikYKaGif16mub+6C4tmusyiDzOFJdyVmnYKKKMph1Tya4CZpUml9/bYLGC9W++tnXl4Kqyhz9fOinPuNWz8Add7cJjZeqfVWSYxNVA98RQAABBBBAAAEEEEAAAQQQQCA+gXQ9ZmRw8U3d7NV933jLj0OnsfVGfjXKb7qoYcNgl0S/KuPwnvZt/XiUytiqXv10u7d9u3jrUVZmt2e7+6DI779ODo2HF36ggp7XXt3M+g/4xI97+O+///pAibouK5Dy2KMPh7o9hx8XaVmTitzY/Hr/pQlAfnVdvcd/N8E+GfSpH69ymAv2PPTg/f7QxOwbfq7wrq7r16+38hFmFV+9erU/JAj4hB9/LJeVkdn1yU7+a+myZTZp0mT76OP+/tqVYXpry1t8IDZog2ZHj1lWHW57zPV6v2XLlkirbY0bt1GlTJnImaIKkCX2fpZxM6+rxBZInPD9Dz7oW91lA4ffE3/Q4W+Fw8aKVJZjzMmbgszVIDs3OHb+ggV2c8tW/vlTpvHA/v1CE+QE+6Tkq8bBVMBTz7u6an91+Gc2CFIm5VynnlrS+rjA/J13t/VjXT7w0CPW/6MPQsMKJNUmKW3hGAQQQAABBBBAAAEEEEAAAQROVoF0nxmpG6tJRYLMuF69+/guxZpFV9mAySkPP/RAKCCjbsCLFi2Ot7qg27SCLCO/+jrW/We4yUpUlAUZBPBOd9eh8s3oqAxP/+bwNwUar7/hJrvCZTsOHfa5X/tYx05Wr/4FPvCoFQqANbzwAuvR/Vm73AVoVab/+ad/Tcy+/oCwb8o+UwBMJVLbNK5lEAAOriHs8GOyqKBrs2uut4saNQmNO6mxHG+/raW98/aboXMqyKairFQVBVNjljlzosbgjLle79WVXvbhRdmFP06MynzV/YutBBaRzCLdz/Llyvmqxo2fYJpAJrwoa/Gu1u3stlZ32TyXfRte/gubwVxd4oM2BV2gw/cNZqs++/CER9r2zz/r7NrrW/jAoMbI/Hrk8NBzH35sSi5rZurrrrnaV/nZ0GH23YTvffD2zDq1k3UaZcve2vJmX4e6mn8+/ItQfUmxCR3MAgIIIIAAAggggAACCCCAAAIIJEjgpAhGSiKY6XrgoMEe5qoro7qBJkgplp3URbfPi71CW5/o3MV3KQ2tiLBQ1mXKKaCj0uGRx61n75dswcKFpkl1VDT+4lvvvGfPdu/h3wdBQ725847b/TplYqqrcVAUbHr5ldf8TMuzZ8+xKlWi6s+YMZPPonvltb6m7MqgKDiomZlVzj7rLP+amH39ATG+tb7rDr9mwCeDfIAu2Kyg2bPP9QiNKZmcbr0af3HAwEH+K1IGY3BOvSp7Txl1Gkezn8uEDA/I/fb776Fdq1aJGvNRWXMq73/4kc+a07ImcFF26veHuwhrXaTSsdOTofun632q23P+ehUAv6Rxo0iH+HWJvZ9XNL0slC2oexp0KVfX9zffesfXqWzCYEKd7Idn0w6yHbWDxilVRq/Ka33fNGWLBuWDfh95L2Vs3uFmhw9K9x49Q/fv1Vf6uPMeMmVVxvwKNw6OTc6rrlfl0yFD/euNN1xvyhpObnni8Ud9YFP1KEt5w4YNvsqk2CS3LRyPAAIIIIAAAggggAACCCCAwMkmcFJ009ZNveyyJqYAjooCNhpDLiWKJqBpfdedpkDO739M94GTlrfcFGfVnwz4yM+Urf3ffe99/xXpAM2afP9994Y2Nbr4It89W8FITcIy6NMhpslMprqu38q0VGnlgkg1a0TNot367jtMWWXadmbd+n6cSY1lOOWXqX5fOVx5xeV+OTH7+gNifLu62VU2fMSXfoblNu3u9ecq5gKCf7hrDLoVfzZ4YChDNcbhCXo7c9YsF+h71u977TXNLHfu3LEep0DgjTc091miylp986137bz655pm8w7a075dG58tqkrULV5d+VUaNGzk27902XJvJ6dggh6/Q4xvmuX5t9/+sDoua08zdq9YsdLv0f2ZbhbX2JGJvZ8KEj7ZqaN1eaqbHx5A2YLqEv/zz1NC7Xv91T6hMRU147aesZdffd1/vfv2Gz4jVrNRv+GCl2rnFVdd67NlNXbojBlRWbKaZT2wVVZoMMaqLuqyplfFuPojb78d/XUo0H5kbdKXzq57tv9ZDeyD4GTSa4w6UrO19+zR3dq2v9e7PeOC5W+98ZrfmBib5LaD4xFAAAEEEEAAAQQQQAABBBA4GQXSXWZkBpf5FalopuFgRmcFssKDRJqgJijqchyzKGMqrvLIww+GMq2e7Pq0bd4ceRzBoI5ChQrZp4MG+Ay1oE3BNr2qy3PnJx63N/u+elRXcq3r/mw3H6RRFqQCkwo2KmD2VNfO1u2pLqGqKleqZCM+HxLqQq3AVBCIbHD+eTb+21GmTE2VxOwbm9HHbvy9xx97xLdF51IQS4E/dU1XILJevXNCbYtUR2ijW9D4lSoZMh65H8reDEp890T7Pf9ct1AWoAJa6lKt9iioJ0MZB0VBvSHuniijUkXtl6uCrJqJWSVjWFZecP7bb23pM1ZVr+6FAnzly5X1s6MHXfL9wbF8S8z9VBXqYqzJk9TOhQsX2dix431ATcHXfh+8Fy0T89FHHooW/F2wYKFvRfbs2W3UyBGm2eTlonYrEKln6OmuT5qCpEEJurEH7+N6zRh2r+LaL65tgav28WOYumxIFV3fGdWr++WY3zKG/cwGbYgvg1IzgOv6VfScTp7yi19OjI0/IMa34PxaHd8zHuNQ3iKAAAIIIIAAAggggAACCCBwUghkcF1RD50UV5qKL1LjA6or7SH3X6WKFU0BkYQUdelWRlvhQgWtqAtOBQG8SMdu2rzZB8py5MhuFcqXD2XPJXffSMfrkVrr2qWgbOXKlUIzaUfa93isU5fu5ctX2LZt23xQS8HIuIq6H6tbuwLF4UHruI5RV+lFbszQYsWKmoLNMYtmUQ+yCpcviRqnMuY+ibmfOlb3dOXKVVa0SBE/EU1swS+N+Zg5cyYrUKDAURMm6dlbtHixZc+W3dvENjt4zLaeDO+xORnuMteIAAIIIIAAAggggAACCCBwvAUIRh5vcc53UgqoK32Lm2/12Yd/z5pxUhpw0QgggAACCCCAAAIIIIAAAggggMBJM2YktxqBEyGwfMUK08zew4YN96evWKH8iWjGcTnnrl27bebMmYk6V46cOUNjnCbqQHZGAAEEEEAAAQQQQAABBBBAAIE0KUAwMk3eNhqdVgQ0pmOPnr1DzQ1m0A6tSEcLy5cvtxa33JaoK9L4mj9MGJeoY9gZAQQQQAABBBBAAAEEEEAAAQTSrgDdtNPuvaPlaUBg6tRf7YeJP/nxPOu72bw1o3d6LRqTc+JPPyfq8nLnzuVn807UQeyMAAIIIIAAAggggAACCCCAAAJpVoBgZJq9dTQcAQQQQAABBBBAAAEEEEAAAQQQQACBtCWQMW01l9YigAACCCCAAAIIIIAAAggggAACCCCAQFoVIBiZVu8c7UYAAQQQQAABBBBAAAEEEEAAAQQQQCCNCRCMTGM3jOYigAACCCCAAAIIIIAAAggggAACCCCQVgUIRqbVO0e7EUAAAQQQQAABBBBAAAEEEEAAAQQQSGMCBCPT2A2juQgggAACCCCAAAIIIIAAAggggAACCKRVAYKRafXO0W4EEEAAAQQQQAABBBBAAAEEEEAAAQTSmADByDR2w2guAggggAACCCCAAAIIIIAAAggggAACaVWAYGRavXO0GwEEEEAAAQQQQAABBBBAAAEEEEAAgTQmQDAyjd0wmosAAggggAACCCCAAAIIIIAAAggggEBaFSAYmVbvHO1GAAEEEEAAAQQQQAABBBBAAAEEEEAgjQkQjExjN4zmIoAAAggggAACCCCAAAIIIIAAAgggkFYFCEam1TtHuxFAAAEEEEAAAQQQQAABBBBAAAEEEEhjAgQj09gNo7kIIIAAAggggAACCCCAAAIIIIAAAgikVQGCkWn1ztFuBBBAAAEEEEAAAQQQQAABBBBAAAEE0pgAwcg0dsNoLgIIIIAAAggggAACCCCAAAIIIIAAAmlVgGBkWr1ztBsBBBBAAAEEEEAAAQQQQAABBBBAAIE0JkAwMo3dMJqLAAIIIIAAAggggAACCCCAAAIIIIBAWhUgGJlW7xztRgABBBBAAAEEEEAAAQQQQAABBBBAII0JEIxMYzeM5iKAAAIIIIAAAggggAACCCCAAAIIIJBWBQhGptU7R7sRQAABBBBAAAEEEEAAAQQQQAABBBBIYwKZ01h7Y23u6tWr7Z+1a23vvn2x7sMGBBBAAAEEEEAAAQQQQAABBBBAAAEEThaBbFmzWrHixa1kyZKp5pLTRTBSgcgtGzbaaUXKWs6s2VMNLg1BAAEEEEAAAQQQQAABBBBAAAEEEEDgRAns2rfHlm5Y40+fWgKS6aKbtjIiyxUoQSDyRD3ZnBcBBBBAAAEEEEAAAQQQQAABBBBAINUJKGlPMTPFzlJLSRfBSHXNJiMytTxStAMBBBBAAAEEEEAAAQQQQAABBBBAILUIKGaWmoY1TBfByNRyc2kHAggggAACCCCAAAIIIIAAAggggAACCMQuQDAydhu2IIAAAggggAACCCCAAAIIIIAAAggggEAKChCMTEFMqkIAAQQQQAABBBBAAAEEEEAAAQQQQACB2AUIRsZuwxYEEEAAAQQQQAABBBBAAAEEEEAAAQQQSEEBgpEpiElVCCCAAAIIIIAAAggggAACCCCAAAIIIBC7AMHI2G3YggACCCCAAAIIIIAAAggggAACCCCAAAIpKEAwMgUxqQoBBBBAAAEEEEAAAQQQQAABBBBAAIHkChw6dCjWKuLaFutBqWhD5lTUFpqCAAIIIIAAAggggAACCCCAAAIIIIDASS2wY+dOGzb6S8ueLbtdd9lVli1rVu/x33//2dfffWvrNm6w5k2vtoL58qdJJzIj0+Rto9EIIIAAAggggAACCCCAAAIIIIAAAulNQFmPCkT+u2mjrVq72j53y3v37TMFIr8c940tXLbYtm3fZkNHjbADBw6kycsnMzJN3jYajQACCCCAAAIIIIAAAggggAACCCCQ3gQyZMjgMyKD61qz7h8fkFSW5JIVy4LVLlsym2XMmDZzDAlGhm6j2U4Xdd64bInt3rbVchUqbIUrVLKsOXKG7cEiAggggAACCCCAAAIIIIAAAggggAACx05AXbOVEalApErwGpyxYP4C1uKq6whGBiBp8XXfrp02oe9LNu/7cUc1/9zbW1u9lneauch0YsvuPbvt59+n2rzFCy2Hi2BXKV/Jzj3zbMuciRhwYi3j2v/3mTNs247tdnH9C+LaLUnblq1aYdNn/2XXXHqlZUzCM5Ckk6aig3bt3m05c+TwLfr1z99tz969duE55yW6havXrbVxP31vW7dtsxuuvMZKFi0eax3LV6803dNrmlxhWp4xZ6Zdf3mzWPePa4M+Nfpr7my71t2/hBb9vOqc/2xYZ2VPLW11qte0MiVLJfTwJO0X7jz6h3FWrlQZO61ilSTVFfOgkb+vtgpFc1n1UnljbrJdew/YyN/XWMNqRax4vuxHbY+5QvvnzHb8fn8l5nxf/rbayhU5xWqWyRez2bZt9377Zvpaa1S9qBXJm+2o7QlZMf7nH2zWvL/9vUnM85SQutkHAQQQQAABBBBAAAEEEAgX0BiRzZteEy0gGWwPApGnpOHkubSZzxncgRR4VSDyiy6PRgxEqvpfBnxgP7zzmlkcsxhFaoaCLzc/2Nqee/1F+3LsN/bJl0PtyZees7sev982b90S6RDWJVFgxNiv7f1P+yfx6LgPU1Dq1Q/fduMw7I97x3S4VYGXq+6+yT36UTN4DR31hfUb+kmSrrRd5w7+WAU04xvTQuav9XvH9jvz32ZO98tBGxJ78t9n/WmvfPBWgg974+P3rE2nB+3tgR/YWBc81bG3dmhrX303JsF1JHZHjQXS4blOocNe6/euP3doRTIXnhg000b9sSZiLRt37LO2//vd5q/ZFnF7+Mo/l22x6o+NTeyvwvAqErU8aNJyu+Od3xJ8TKfBM+3bP6M+NYx50Lote/x1Ll2/I+amBL3/xn1Qpd/l4yb9YEtXLk/QMeyEAAIIIIAAAggggAACCCRHIHOmTNG6awd1Zc2SNc0nuR2/FJdALRW9/ueCHQpErnHBj7jKn18Os8zuZjdoc19cu0XbNnDEENu4eZO90+MVq175ND/QqP4h+8JbL9vgkZ/bfS7jkpIyAg+0ausHc02Z2qglEJi3ZIHt278veJvkV2WtbnWD695z6112y9U3xFvPRec2sEplK0T8pRvvwcnYQR8SDP3mS2tQ91zrcv9jpk+ZNrihGx59vou99F5fu+T8hpYje1SWaDJOc9Sh0/7844Q9v8Xz5bAp3Ru5zMlTjmpXzBVzVm61Ddv2xlx9zN5Pmv+v7d3/3zGrPzEVz5o/xzK5PwTGfDzMJcknPks+MediXwQQQAABBBBAAAEEEEAgmKwmfIzIQGXt+qgxJJU5GcyyHWxLK68ndTBy8ZRJ8QYigxv5+7BBVuua5pa7cNFgVZyvC5Yutry58/hApHbUP2Qvb9jYfp3xmx08dDB07L+bN9rAEZ/ZgiWLrFCBgtb0oiZ2bp2z/XZ1L/3p18l23ln1bPiYr3xgqFnjpla7Wg37cOhAW+TGt2xY73x3zCWhIIke1CFfD/fdW9XV89ZrW9ipxUqEzhe+oOnglX2mgNPk33/1XVGvbHSZVXVjZaqMHD/aMrnBUBctX2qr/1ljt113k9WoWs3UXXH8pB9t1+5ddnqlqtaq+c0+cBPU/fNvv9gPv0yyLW7sTQWWGp13Yah92jbmx+9s8zaXZVX5dLvzhltC21a5c8hi2arlVqRgYWvsgj9Bl2B1ef9o2GCbveBvy5k9p515Ri1rceW1fnyEP1z2278u8HtH81t8l9wfp/5sDc8535QxuWnLZjun9lk+CBZ0s16xZpXp2ucsnOvbUMVd7xJ3jW1ubhVcwlGvf/4920a6Wat2uEzaerXPtpvc2AxBUGLStF/sx6mTTO0vlL+g7y6ua1aJq90xT/Ln37Nsyh+/WmnXJXjsxAl26YWN7MqLL/UD1MZ1Txe6Z+0b17VXz8M5tc70x8lPJa7nQQZ6FjVswPdTJnpL3X+Zq6vy6B/G+zoUQG95zY1+Wd8WO6vP3KxdCiyqG3NQlM2oZzO4Z1q/7t/19mb/9/0uE92zrF+oeo5UxxdjR9mSlcv8Npne3Ky5Zcmc2T+7oyZ8a1UqVPTbwr8dPHjQzyo2dcbvvtt8/bPOsesuvSp0L3bsdJnO7r7/6gJ86lqd65Rc4YfHuawu+Srnu5+3IN29sPuZ7HDXPT7zVmN0VChTzu8Tl6t2iOs59xUc/qYPKOYuUtB3v/V651Xr2L6D37LXdYf/n8v2/fPvmf7n96arrrfypcuGDk1o/cEBu/cftL5jFtq0RZusrOvK3OqCMlapeG7bseeAffbLytD7Ff/usve/X2IL1263Evlz2BV1ivuuzX+v2maf/7rKV9f1s1l290XlrLzr+j3bBSj7T1xmKzfussquPq0vUzgqsNl75DyrW7GAjZi2ynK5rt0Fc2ezvDmzWJtG5YNm2W+LN9lXLmuz2/XV3HN4JMg3esZa+3XhRtu97z97euhse+aGauZuvX02ZYX96q5hzebdVqpgTmvbuLydVjJPqL6drht5ry/n2swVW3239HuaVLD8p2QNbQ9f+GHOetdFfbX9u22fnVk+v7W7pILlzJopfBe/rMxVPW8qPd9+JfTcx/V78PWP3rU61Wq6n6FxfpiD9i3vssIFC/k69C0pv9vj+n9FUn93hBrEAgIIIIAAAggggAACCKQqAf17PTwQqa7ZyohUIFLFT2ozZqTd4v4dHcQmUtUFxNOYk7qb9hIXMAtKznz5LW/xEkd9hU9gs+y3X4Pd431VkFDZYG07P+S7eG7Y+K8/5pmHO5sy+VSUddXivrtsxLdfWwF3fv0DtWPPp312lrbrwVOm1iMuM0tlvgtYqqv3rQ+3NQXAcrrMLQWAFNRRUbfaVo/eYz+5bQpAKmCoLqZBkMXvFPZNgS91QX530EdWtFAR+27yRGvf5eHQ/gp49H73dT91vAIm23fsMHVjVXdFtS1H9uz26Vefu2u40wfdVLWmme/84nPuWua4YGxe6/P+m9Zb3dxdUVd1bVM3x3x58vpj1ZV9v5uKXkGq1k88aL9Mn+bH1lQQq2uf523ClJ/8sc+81ttZfOGvK7s7r7rRvvje637bFHeMgncqatfno0faQ67bqwKR6hL8nru+/w3+yG/XOp1HAYaC+Qr4Op95tacP5vkdYvmm7LgDro3K8tO5P/58sN9T16t7ol8EFcuUdwHOefbMa718cFc7xNXumKdSgO7Tr4Z7L3XzV3AxvnuqQGQb94zpF1XxIkVtkMu61fXJM75jdf/7/O8Ne+l/fX0W4mJnJ3ONkakgdPALTcHKzC5IGJQSRYv5gPIw92wGZfaCuT5gHjNzUHUoEB+UrG7cC40Decdj9/oAT4XS5Wzfvv0+2PfW4aCl7qEC1pG6cz/c/Ukf3FRQcvvOHfbah+/Ys85b5aDrTv5ojy4+iKdnU8HPwSOHBaeO97Va5ar+l/uLLgtSwSR1Fz/w3wE/ZqQynINAZHyucT3nMRshZ81+pvsVPgvaqO/H2rcTv7PCBQrZhMk/ua7jD7ng/25/eGLqD873yqj5NmzqSivmxoUc/PNyu/SFn/x4kdv37LfXRy+w1S64d+C/Q3ZFr0m+q/MZpfPZqk277ZqXJtvYv/5xgV/zX6ovc6aM/mvSvA12btcJNtwFKU8tkNPen7DEd+Oe4wKXKu99t9iavfiz/Thng33hxnPcd+CgPTLgT9uy88iQB69+s8BmLN0cLRCpYzO5E+o8Oib4EEHHtv/gD+dkVqlYLh9IrPvkd0fV97ELjmpcyJ4uKHlBtx9slwtoxiz9fljq2zZ39XYrkCurD3g2eu5H2//fkQ+KgmMyZcwUujf6OdBXfL8Hvxo/xv9emOE+YJj021TLli36OJWJ/d0e3/8rkvK7I7g+XhFAAAEEEEAAAQQQQCB1CWiYsnUbN4QaFYwRecMV15j+PR4U9caN9O/mYHtqfj0SYUjNrTxGbdviMuRUFIhsN/SbiGfRPh/dEZUVts0FiBJabnfZX/v27fMBOHXxVNEDdKN7eIKuqh9+NsBnJX7y2v98FpeCKa2feMAHu651k3cE5bE295sy1hTEUXBRwaHP3+nvN9/T5RGX1TbJ19nn/Td8MOXrD4f4DLPH2+2xK+5sYW8NeN9eerJ7UN1Rr+88/7KfLGO/y8665LZrfbCnT5cj+w96/X0/4YgyHTv1fsbqn3mO9e70jK9HE40oQKSu53feeKsPjtY6/Qx749kX/fZqVaraR0MHuczKtfbBkAE+o/G1p3v6bcq+0/h8X44b5bJB69pOl3XYxmWhabISWfR0GXkHD0YFEhQYOqfWWfbkfY/6YxWQ2X04OONXxPjW6Z6H7TKXWahy8wN3uyDnb6bspA8/G+gDp1/+b5C/H8qku/yO5jGOPvrt4+0etGaNL/cbmrW+2QXSfnNZnS1tjgvCKUszuKa2LgB95V0tfGD5PJe1l9h26wRP3NPBZ0RqWcFlffoR2z3VmIYKlnw7YLi/5wpyKHClsRnfG/xxnMeqfpUhb/SzYoWL2E6X6XrZ7df7a7v3ttY+k1fBzo7tHwoFJrW/Ao4X1K3vgmUT7FH3bCqI9pXLoj0l5yl2Vo3a2iVUlKH54B3tXEBtonv2r/VZsgrgFi9SzN7v9brPHtbON7qA9l/zZoeOi7SgZ02B0vDu3gO/+MwFmj922bm3+OzdvxfO98+IspAVsGztni9dQ0KKnD/q85Y96QLmCmjrS4HUmqdV9wbBpDtx/Zw9+/CTcT7nN7g0+vCiDFoFHde7Dys6tnsotEm/Kwa//oELEmfzzj3e7OMC7UtddmS5RNUfVKjJa8Z3vdCyZ8lkDU8vbDf3nWoL/9nhA3HBPso2XLZhp/2v7Vl283ml/c/gU5/Ndo6HrKrLPryu7qk2buY6e6Z5Nfc8mLV8Y6qVdVmQ03tfYllc4PC5G6tZhQdH27Ofz7GhHc711eq4X1w3cGU9KripAOGo6Wvs1gZl7N/te+1rlxX5fruzgiaEXi+tWcwHMNe6Nj3jsiIVlFzixnvs3bKG3dukot+vcY2iPliq8S7PqVTQryucJ5v99dKlli1zRmt5fhm72AUYh7nMz/qVo7ZrJ02K02XILLvx3FL2YfuoLPT2LivynC7f2dApK62la1t40Sx2+jlXYFH3SL8H9SFRbL8H725xmz88f958NuK9gf73dXh94csJ/d2e0P9XJOZ3R3g7WEYAAQQQQAABBBBAAIHUI6CknuZNr7ahrkditqzZ/KzZQe89P6mNy4hUIPIGt0+WLFlST8MT0ZKTOhiZNUdUd8JdLltupevWmcllbcUsG112WlCyuGyrxJTWN93uA1az5v/tg2Fjf5pg73zSzwUVllvXBx5zgZWZPiAWzNSrDKBLzr/IByPVlTgoZ9Wo4xeD/ZR1GRQFdf6cO8u/VSBKAaEX343KRNRKPZjKaoytKLAUzNqrfc+ocrrrontkf3U1D4IwyghT0dh5QanjAnEK4igzbqVrszK8wtt3/WXNTF9zFszz25SZqMBKeNG25pdf7bsxKtNTQaALXFdhBa8qlavgd73wnKjglwJ9559dz52jgdV1XZJjK3VrRZlpu7oSK+tPRe2Uo4I9KrlOOcV1Na/iuhMf+dTBb4jxrf6ZdUNrFJwKTDW24Mq1q31G6LKVK2zu4vl+v2CsxcS2WwefU/PIdcV3TzUcgIKh6t6soq68EwaP9MtP9Hom3udBDgpEquiXm56H3Xv2+PdxfVPA+KdpU3x36LNr1vYTe2hdkMUW17GaJVvd9xUgVpbsomWLXTBug5XIdOQTnkjH696pKOs2mERk89atfp0C2xpKQCUY5kBB0ssubJzgYKSOLV3iVNOHA+oSO9W1T8MX/Pz7VGv5UBvr//I7/tmJ656oXfoZiO05v6GpzhJ/URdfBSJVFNxXUXZchgxRWZSJrf9CF4BUIFLlzApRz/66rXujBSPV7blW2Xx+ohdlDl5Ru7jd5gJzCijGLDtd925NaPNQ08o+EKntmmW7qTtGXayDosBn0P361AI5rPEZRV1m5gofjNTs1ypX1Yk8jERQh16zuuDiqCca+HMOcJmPC9ftsMnzorLN94VlM17p6lIgUqV22fyWK3tmf0x4MHLxup2+e/q6rXt8UNLvfPjbX8u3HBWMDN+u5fh+Dwb713FDFuiDo7hKQn+3J/T/FYn53RFXu9iGAAIIIIAAAggggAACJ1agoEuaa3NTK5/8E96LTmNEqmu2MiLTaiBSsnH/S+nE2h/zsxcsW96Wuy6+Kp93fCDe8xU8PF5cfDuqK++A4UP8mIcaf1HBBH21u+UOe6JXNzdT7gSXafWgz9zSGIPhpVCBqECBui4HpUC+fMGif82XN2/ovTKUVJTVqJIzRw4//px/475pDMHs2WIPohY6HJQL9ld3cWWXBUXdqYOiLqsqRQpFjUeoZQWfcufK5X8QFCBRCbqz+jeHv8lERQEWjY8XlIvrX+DHqFTkX8Eezdis8SbVvVZfbd04jhpjsLPLiDxD41W6MfY0s62+wjMwg/qC11wuKBuUTGFdjNV1PqZ5vjz54g1G5smVO6jOd2EO3qi7trItFZDVGIdnnVE7ml9i26168x++3/HdU2WPKuhZ0T3HMUt8xwb754wxIYt+ySVk5mqNDalA9dcTxrjJV/b6ANzVlyQs0qbsxoeejZo9Wm3XBE/LVx8Jvgdti/mqLFYVzSgWPEOn5Mzpx+hUFtrcRVHPrQLMQVE36IQWPXca0kAZr3pGlI2sr4XuA4m7Hr/PdR0fb3ffGJX1FtvPWXzPeULbkid35OctqfXnc2M1BkVdriMV/S4Z3amBDZy03M2+vdaecmM16uvVVrWs9cXRnzE9eypFXXfo8KJu4OFFmYrh5fYLytrtb/3qx5j85KfldvuFZe0UFzCMr/znsjPvcjNra/zJiq6LtjIhL65exI85ebgpvopSBY9MMKQgaCE3TuXuGJPgbN11+HelC57udWNpBqVd4wp+nMngfWyv8f0eDI4LPvAI3kd6Tcjvdh2nLN+Yv7ci/b8iob87IrWFdQgggAACCCCAAAIIIJC6BMKHSwtvmeInaTkQqWuJ/1+B4VeczpZPb9LUprtZrxNSNHZkGTexRUKKMsw+d2mzy1eviNY9WoEeTSqjyRD0j8tT3RiVmnxlj5usIsiCmuzGF1NRQC8IriTknHoQldWWzQXFnnXjUgZFE9+ER9GD9cGrsvo0yYqOVdHEH5UPZyPqffixpxYvqVU+W0wT2agoo03pwU0aXBSaKEfjlwXZXMoi6vZaT3u09f1+/6oVKtsjre/zywq4qvuhTILswpZuUhR1c1Sd9z/9uJso5Qu7wWVIanbys2vW8d2/9+zd42c31uQfGlsyMaWCyxyc9td0H8RTAFGBN3X/VUA1sUUZcApE1nXt6tPled+V2QeiXVtVr+5rXO3WOJ2RSgaLihbFd08VCFZAcOHSRaFqdC9ve7i93X79TUl6HkIVhS0o7BQzfqVffuq2PtiNGarAp+6hsgoTUt5z43cqg3f4uwNCE8Vc1/62eIOgJYsV99WrC/b5Z5/rlzW2psbn03iZyvDV+KkzXeZkneo1/XZlXya06BnsN/QTn9mr6wlKKfdzqqLuyvHdk1Ilon5GYnvOgzqT+nos69fkNZog5q6Lyvuu0OpGffPrU+2tsYuiBSMP2SHLnSOLzzr8fvZ6e+CySqHLUVakJq0JSszn5tJaxfxxb7s6/3BjRb5wc1TWZ7B/bK+z3IQ0CkS+dVcdH8DUfuoyrhIERrU8e+U2vfii61G381Yu4BleShfK6d/WLJPPulx7ml/WWJG6TgU64yvx/R4MHa/obgqV+P5foW7kKgn93ZFCzaIaBBBAAAEEEEAAAQQQQCBJAglPG0pS9an7oMLlK9qFLkMxIeWa5/tY5gjduCMdq3HmNAuygo4PdOvoZ1TVxCyaVVgTlGisMWUrNnfdWlWefuUFH3gc9OUw+9FNuqFAXtDtNlL9sa1T91fN6KzJFdRdVOOaqduzAlRxle5vvOTPr/EHNW5js1gy3Cq6AKkmxlE3agV9NOFOt1d6+qo1hqBmi61SvpIfq1ATqiiYqvH11FVR4ycqC+6r78b4yWM0/qW6a+uaNdGNMg8VONU6BTNXrV3jZtzeagpAKVCrrrLP9X3RzS48y48/uXbDOj+eXwE3CU1iimYXV7m362OmSUJ0f4Iu1YmpR/tmcMFlBQPVfVbdvGX+WI+uvpogwJzcdsd3T3Wv9Jxp5mW5vfz+Wz5Ae557xuI7Nr7rzZsrqnvuGDertjJKYxadWwFZnf9qF9hPaNE4kgoor1yz2ttpEhpN8LTXZXnGVZRFq5+tV9ykS5qcRl2zn+jZzc/6XsQ9e+fUPtNnqGpSHmVfapIijZ0ZXj4aNshbha8LlhVQV/13uixI7aefWc2GfOdjUcFzbVeJy1U/H3E958G5wl/17Ot51/n0IUVcJSn1x1Vf+DbNdP2Km1Cm86cz/Wzay10w758te6xKiagszXyHZ6X+6vc1ftKY+10Q8rtZ60yT0Mxdvc2PFbnIjUN59VlRAdnwuoNlzVatsRzfdIG/kq7bdr2wsRyDfYLX/K49CkJqohxNMqOyyHXP1gQ4v7tZuB91E9qo7Nl3xEwBS3X/1izfHQf95be3qF/KvwbfFIxUd/E3v11og1wW6NL1O63Lp7NM42PmPXyNwb6RXuP7PRjpmOSuS8r/K+J6TtUeDTfQ3f1OTeiYqsm9Bo5HAAEEEEAAAQQQQAABBAKBkzozUgh1XBdglYnv9vWvkb7d+PLbVtKNy5eY8ljbB/yM0QoIKoCmokCHJlXRJAMqyu7SZBwKJCkQoaIsux6PP+2XE/utjRujctuObT4IqfMq809ZZDe58QRiK8qIVCZZ22kdfPvucBOB6BiVjG5ilPCibLg+XZ/3E3wocKmiYNzzj3W16m6sSZUXOj7lJrl5NjTTtYKTHR96yG/TpDearbnvR+/59+rG+OCd7Xw3ba3o6CaJeXvgh36mZb1X4EVjMqp0vvcRN4t3bx881Hu1+/lHu/igrbKB1LbYirrqBt111b34qQc7+nE5Ncu3xqRUFpyCh4ktykzs4CbcUcD3hntb+cMvdON5KuNTE9eoxNVuv0P4twiXEN89vdPdr/UuEKoMTH0pINz53of9mJjxHRt+6mBZXaCDbNgabmxMPUO93nnVOuy7x49XGGzT/hprUn4KZmhsxthKcG+CV3WDVuBUkxepyF9jpY7/+Qc/W3lwDr1qjMSg6Fl7/ele9tQrPfxzFBz7wuNP+edBz8Tr3Xpa15d7hLqBqwt4MNak9lc3f3XxVvf/mKVY4aI28NX3rMtL3X2GZLBdpm8+91KoO3x8rvE950G9wavGR1WWb0cXWNVkUfGVxNYfV316hlV8lq0L/r3b5kx7ZpjLLO003q+v57pD976lhl+uUz6/qdv1bW/+6iedeeSKyi4wuM/PRP20686tbd1bVHeZleX8/hrnMVK5yQUHNdO29gvOH2k/TVCjoGXTnpNsdp9L7enrT/fBUgU/NRZk1+tOt+dH/G2/L9lkl7mMS5XL3ZiV97gZt3fsOeD3Gf7oeaaxMJe4IKZKxsN91N9pfaY9+PEMPzu31muCn3fdumqnRgXgtS68BM+k1iXk96B+16dkiff/FUn43aGscj13ev6CsXlTss3UhQACCCCAAAIIIIAAAgjEJpDBdSdVL8w0XaZMmWL1y0f9gzmpF7L8j2n219fDbe3fs00T2uRyXWjL1T3Xal97oyV0rMjYzq2xFHe7TLASbrKZICATvq+6Ga5zmX6FChRKUkZkeF1a1phmytSL7XzB/p1d0FAZioP7fmD/bFhvyi4L/0d3sF+kV43fp2sqXCD6mJfBvtq+/8B+01h+MYsyNbVdQZ5IRV1vlS2W+5Sju0zK8j+XPRbbeSPVF75OGXU69xUXNwmtvuXB1j6o+k6PV0LrErsgPw0wG9u4Dcltd3z3VF2lN23dbJG6fsd3bFzXqkw9dT1XIDDSs6uZyjVpTg8XEExskYmCneFjPCa0js1bt/hnVe2KVJRpqfFOY7sfkY4JXyczzQCvn4lgCIPw7VqOzzW+5zy8PmWY7nI/F5Ge+fD9wpcTU3/4cQlZXrlxl2mcSXXHDi8au3H77gOmLMog/q+Zrjds22sl8ucIrQs/JubyD3PWW7MXf7Y5L19mQZfpmPsE7w/8d8h27zsQaofOr2zN4vmzxxrI1DGanCaufYL6d+37z13Pfjf2ZfSxLoPt8b3G93swvuMTuz0p/6+I7zlNbBvYHwEEEEAAAQQQQAABBNKmwJQlM61+/fqpovEnfWZkcBfKuNmS9eWL4rPBv7SDHZLxqklh4irKDtKs2ClV1C06mAE7oXUGMyondH8FkOIKIsW1TcGd2AI8On9cbY/PMr72a8ZlzWi+cu0qP3GKZoTWWIG3uqBzckp8fsltd3z3VEG3SIFIXVN8x8Z13QpOh09iFOyr7svK+HWu4wUAAEAASURBVNWwAE8/1DFYnajX5JhECnKHnzy2QHf4PnEtyyyYvT62/eJzje85D69XmXSJCUTq2MTUH36uhCwrmzBSyeQyC/OdEj1AqQxIdbmOr2gMx/FunMc3xy60a+uWjDcQqfo0CU14QFTnj+9cOia+fYK2qtu4vpJa4vs9mNR6YzsuKf+viO85je1crEcAAQQQQAABBBBAAAEEjpUAwchIsikYiIxUfWpZp+CVsmZOptLiyut8ZuSPU3/241WWcpPydLj7Hmt60ZFMyZPJI6nXOvan7/2YoZpsSBPHUBCIT2Cz69Ldof8MU9fvPrcmbtiL+OpmOwIIIIAAAggggAACCCCAQNoRoJt22rlXtBQBBBBAAAEEEEAAAQQQQAABBBBAAIFEC6SmbtqRZxhI9CVxAAIIIIAAAggggAACCCCAAAIIIIAAAgggELcAwci4fdiKAAIIIIAAAggggAACCCCAAAIIIIAAAikkQDAyhSCpBgEEEEAAAQQQQAABBBBAAAEEEEAAAQTiFiAYGbcPWxFAAAEEEEAAAQQQQAABBBBAAAEEEEAghQQIRqYQJNUggAACCCCAAAIIIIAAAggggAACCCCAQNwCBCPj9mErAggggAACCCCAAAIIIIAAAggggAACCKSQAMHIFIKkGgQQQAABBBBAAAEEEEAAAQQQQAABBBCIW4BgZNw+bEUAAQQQQAABBBBAAAEEEEAAAQQQQACBFBIgGJlCkFSDAAIIIIAAAggggAACCCCAAAIIIIAAAnELEIyM24etCCCAAAIIIIAAAggggAACCCCAAAIIIJBCAukiGJkta1bbtW9PCpFQDQIIIIAAAggggAACCCCAAAIIIIAAAulDQDEzxc5SS0kXwchixYvb0k1rCEimlqeKdiCAAAIIIIAAAggggAACCCCAAAIInHABBSIVM1PsLLWUDIdcSS2NSU47Vq9ebf+sXWt79+1LTjUciwACCCCAAAIIIIAAAggggAACCCCAQLoQUEakApElS5ZMNdeTboKRqUaUhiCAAAIIIIAAAggggAACCCCAAAIIIIBARIF00U074pWxEgEEEEAAAQQQQAABBBBAAAEEEEAAAQRSlQDByFR1O2gMAggggAACCCCAAAIIIIAAAggggAAC6VeAYGT6vbdcGQIIIIAAAggggAACCCCAAAIIIIAAAqlKgGBkqrodNAYBBBBAAAEEEEAAAQQQQAABBBBAAIH0K0AwMv3eW64MAQQQQAABBBBAAAEEEEAAAQQQQACBVCVAMDJV3Q4agwACCCCAAAIIIIAAAggggAACCCCAQPoVIBiZfu8tV4YAAggggAACCCCAAAIIIIAAAggggECqEiAYmapuB41BAAEEEEAAAQQQQAABBBBAAAEEEEAg/QoQjEy/95YrQwABBBBAAAEEEEAAAQQQQAABBBBAIFUJEIxMVbeDxiCAAAIIIIAAAggggAACCCCAAAIIIJB+BQhGpt97y5UhgAACCCCAAAIIIIAAAggggAACCCCQqgQIRqaq20FjEEAAAQQQQAABBBBAAAEEEEAAAQQQSL8CBCPT773lyhBAAAEEEEAAAQQQQAABBBBAAAEEEEhVAgQjU9XtoDEIIIAAAggggAACCCCAAAIIIIAAAgikXwGCken33nJlCCCAAAIIIIAAAggggAACCCCAAAIIpCoBgpGp6nbQGAQQQAABBBBAAAEEEEAAAQQQQAABBNKvQOb0dmkl7huV3i7phF9Pz7obT3gbTuYGtGrV6mS+fK4dAQQQQAABBFJQoH///ilYG1UhkL4E+Ls7fd1PrgYBBFKvQLoLRqZe6rTdspYtW6btC0ijrR80aFAabTnNRgABBBBAAIHUKtB5WsHU2jTahcAJEyAB44TRc2IEEDgJBQhGnoQ3PSmXfOjQoaQcxjEIIIAAAggggAACCCCAAAIIIIAAAgiEBBgzMkTBQlwCGTJk8Jt5Pb4Ocd0TtiGAAAIIIIAAAggggAACCCCAAAJpTYBgZFq7YyeovUFmJK9RGaLHy+EE3W5OiwACCCCAAAIIIIAAAggggAACCBwTAYKRx4SVShFAAAEEEEAAAQQQQAABBBBAAAEEEEAgpgBjRsYU4X1EgSATMOJGViKAAAIIIIAAAggggAACCCCAAAIIIJAAATIjE4DELggggAACCCCAAAIIIIAAAggggAACCCCQfAEyI5NveFLUQGbkSXGbuUgEEEAAAQQQQAABBBBAAAEEEEDgmAqQGXlMedN/5cHs2rFdKdujZt9Oqk9sx7EeAQQQQAABBBBAAAEEEEAAAQQQSIsCZEamxbt2AtocZEYquBgsB80If8/2lPcJnHlFAAEEEEAAAQQQQAABBBBAAAEE0roAmZFp/Q4ep/bHzHDkffSMx2PtcZxuM6dBAAEEEEAAAQSiCZxXuaB99+QF/qts4VOibUvImzPL5beiebP5XZ+5/nRfT9NaxRJyKPsggAACCCCAQDoVIDMyjht7SrbMduFphaLtsX3PAVvx7y5b7r6OV6l2ah4rVTCnffvXP/6UDU8rbGrHH0s3H68mhLIhgyzI5LzOmzfP9u/fH2p7xowZLU+ePFasWDHLkiWLX5+c+g8cOGBz5861EiVKWMGCBZNdnypITnuSc7xvPN8QQAABBBBAAIETJPDk1afZ6SXz+LN3uaaqtXn/jwS35MO2Z9nlNYvZLW/+auu2brCLTi9ilYrlsmqn5rXRf0b9XZvgytgRAQQQQAABBNKNAMHIOG5l9VJ57IM2Z0Xc458te+yhgX/apHn/Rtwe28pHmla2i6sVsStf+jm2XY5a3/vmGlanbD4rcd8ov61/+7Nt3ba9VvepCUftmxZWNGnSxDZs2HBUU3Pnzm3PPfectW/f/qhtiVmxY8cOq1u3rr322mvWrl27xBwa675btmyxzp0728MPP2yVK1eOdT82IIAAAggggAAC6UUgd/bMVqtMvtDlNKle1DK6IXsOHjoUWhcsVC6e29Zu3u0/MA/WNagS/UP9xwbNtNKFctjURZuCXfxrtiwZrXyRXDZ/zfaIdWun/Kdktbw5s9iyDTujHas3xfJltyJ5stmcVdvsv4NHt+2oA1iBAAIIIIAAAidUgGBkAvgX/rPDBkxabpkyZrDSLkOxboX8Vr1UXvvk3nOszpPjbeOOfQmoJWqX+y6pYFt3HckKTMiBY/5aa9t2J+6YhNSbmH2CzMDEHBPXvmeeeaa98MILfhdlMv7777/2/PPPh4J9F110UVyHx7lN2ZUKHNauXTuU0RjnAQnY+Msvv9jHH39s9913X4rVmYDTsgsCCCCAAAIIIHDCBB68tJK52KNt2L7X8uXMalkyZ7RWF5SxjyYuC7Wp9UXl7OnrTrfM7u9kFe3brM9kG3BPXcvlgpkqg+8/xwZPWWG1y+a300rktlfHLLSXRs33wcWxnRr4v6+1n2Kcw35dZR3cB/4qK964wtc7e+VW/7e31unv6POf/cH//X3nhWXtiauqWJ4cUT1rDrhAZMfBM23ILyu1KwUBBBBAAAEEUqkAwcgE3Bh9Avvhj0uj7dmnZQ27pX5pG3TfOXZZ70mhbfoE+SKX+aig5eQF/9qMZVtC25TdqD/UcmTNZBp/Z/KCjX6bPmHWeDpnlc9vWd0feRPmrDf90RWUMa4by59h9QTrw18buXOe4QKky1z38YlzN9jmnQkPkIbXc7yWCxcubA0aNIh2utNOO81nNI4bN84UjFSAcvfu3aaMyRkzZpgCmOrOraL1c+bMMWUsVq1a1U499dRQXdmyZbObb77ZChWK/mn8tm3b/DEKfp5xxhmWL9+RT/qDg7XP9OnTrXz58la6dGm/eufOnbZmzRq/vGTJEt+dPOj+rS7nK1assCJFiviMyZw5cwZV8YoAAggggAACCKRpgZvrl/LtV4Cwuhs26IKqha1do/KhYKSyIZ+9vpoPWC5at8NyZ8/ix4f81AUfv525zioWzeW3rdi4yw8vdHb5AtE8fuza0O+//8BBW7lpt8uOPMVurHeq69K9x3p+NS+0r84zftY6a1S9iA9gqqdRl6Gz7RkXBFWA9FMX6CyYK5s1qVHUnmtezQc0yZAM8bGAAAIIIIBAqhMgGJnEW6JuJteeVdJ/uhtU0ezMEvZGq9qWJdORyU3mrt5ml7/4s+1zf2QNe+hc/wdTXvdHk5Zru6xKjUs5uuP5oU90VZc+4f1q+hpr/+F0X3VfV2d4N+3gfHpV8HLqsxf77inBenWd6TDgL/t82qpgVbJfUzozUg2KWWemTJl8OxX807Y+ffrY119/7dctXbrUByN/+uknmzx5srVs2TJaV+/WrVvbiy++aApEbt261WrUqGGvvvqqtW3b1h8/bNgwu+OOO/xy8O29996zW2+9NXhrzzzzjL300kuh97Vq1bIRI0bYX3/9Zffff79f36JFC3viiSfsySeftDvvvNNvDw5QgHX48OG+ncE6XhFAAAEEEEAAgbQooA/KC+TK6rMV3xi7yKq4gKCCkfrAXRPZ6MN6ZSYqc/Jflw15wXM/+kDhCzdWt18Xb/K9im49r7TPjuz06Sz70X1Y3r5RhRCFAo/BxDbndPveNATSa7fV8sHI284vEy0Yqb+79Xftl4/Udz2UCtipBXL4ejId/pv7itrFbdrizfbUsDlHJRCETsgCAggggAACCKQaAWbTTsatWOU+wdWnsQoo5smR2Qci9QdZj5FzrUmvSfb7ks12mhvw+5Vba/qz1Hv6e9u7/6Ctd+M9ntnlO9uwbZ9pPEh1LXl3whKr/sQ4u/ejGaZPh5vVKeG7hcfXvNsblPGByK/+WGPVOo6z1u//bhncf5qtMCVLMFt0Sr0GbQvqW79+fajb9rnnnuv+sI0K6CoIWaVKFfvss898N+5NmzbZdddd57MaFWCcP3++PfDAA/bBBx/Ym2++6Y8LjtU5tLxgwQIfiGzcuLFNmzbNf1155ZV+PMm///7bN2XgwIE+EKm6VOfEiRPtzz//9G26+OKLbcCAAX6/77//3jp16mTqtq1Apcal1PiXqlfZmupqrhK0IbmvvjK+IYAAAggggAACx1lAH46r6E+yWb2b2Ocdzg21QBPZqCgwqbJi427/qi7U9308wwci/Yo4vp1TMSpLcve+/3wgUruOmxU1qU0u93d1eJm9KqrH0KbDQyNlzhT1Txh191bXbv0t3dhlTXa/oZpN694o/FCWEUAAAQQQQCAVCkT/P30qbGBqbtLe/f/55pUtnNMureFmgnafzo74bbW9NW6xX9/s5cm27PWmfhZBrdAYOspaPOjGs1nrPv1V0QzZ89Zss+dGRAXFxs78x5ZuqGjqjlIod1bXTWWv3y+2b+riraKZCU8vmdvPTNjijakpPsakMhWDTMbkvqq93377rZ1yyilajFYUaGzevLk/V3AeZUiWK1fOr/v8889NE9Q89NBDdvnll/ugX48ePWzIkCGmTMdHH3001E5VrDoUaFTp2bOnnX766X7dG2+8YaNGjbLBgwdb9+7d7csvv7Tq1atbr169/HZ1+/700099V3HN9h20NVeuXH7G74MHD/o6Fbhcu3atVatWzaZMmWI5cuQInT9of3Jf/Yn4hgACCCCAAAIIHCcB/U1br1JBf7b9/7lonyJ+rhxwXxpyKJjIRt2vVSoWjfqbTpPMfN/lQlu1aZc1f/0Xv03fMof1GgpW/jw/argiDV+kCWiUGdnkjGJ+8/YYY6Vv36Mzu/O7v6GDomSAJet3Wu+v59kWFwS90mVHnle5kM+avPC0wn7YomBfXhFAAAEEEEAgdQkQjEzG/SiSN7s/WhPcdLg8t1++7uySvvt2UO3hWGHw9qjXgT8vt2fd2Da/uU9xC+XOZppNMCjBp77B+0ivgyavsHsaV/AZmOr6razKmW68yQf6Rw38HemYpK4LsvyC45PzXsHF22+/3VelYF+JEiV8BqTGhQyCd0H9pUpFjVek93PnzvXHKFsx2K7jr776ap8duWtX1B/FQRv1qsxIlUiT4ixcuNBv++OPP6xp06Z+OfjWrFkzvxi0J1ivV2Vvavs777zjvypVquTfd+jQIbRb0L5gRXLfB/XwigACCCCAAAIIHEuBto3K+6Cjgn/lO4wOzVCtbtuzejWJNpHN7a5LtTITZ7zQ2A8fpIDkJjd2uXoD7f8v6sPbHq7rdsWiy6I1eaULZCrTUXX+6oYcCsaM1E79wibIiXZQ2JvcLnvy9dtr+Xb+NG+Drdkc9UG/4qYzVxwZez3sEBYRQAABBBBAIJUIEIxM4o1Qt2xlLmosSH0d/sDYfp7/r/21POF/AI167Dw/O+CWnftt6qKN9svCjT7Lsrab7CYhZefeA37syevrlrQW9UpZHTe+j8b4mfhUQyv30GifiZmQeuLbJ2ZALrnv1fX68ccfP+q0Qb161ZcyETWWZLA+mCBGQcdgnSrRJDcqGjNy794j2aTaR8FKFQUOg3Ep/Qr3LZjkRl2s//vvv1CdOm7fvn0+4KnZuYNzBa9ap6xKTXYzfvx4Gz16tL388su+6/bMmTOD6kOvwXHBisS+D47jFQEEEEAAAQQQONYCrRqU9af4ddGmUCBSKxQ8nLd2ux8zvc1F5fxENs8Mn2NPuYlkiroP6d2fT7baDWPUxg0bpDLWTWJz07mlrJTrzn1+lSMTC6qnkMoF3X/0Y6eru7fGkNTqIb+ssJe/ifog2e8U4Zv+jlImpWbO1tBEGstSRd3EP/hhaaqfyDHCJbEKAQQQQACBk0qAYGQSb/eHbc82dZH+9q+1vgZ9AqvuIZlc1xWNGami5XGdLzCNhRNeggw5ba/uZsDWH3YaLzIod15Yzi+qG0x85dErKpsG+b7adQkfPm21331cpwa+Xs3OPc0NIJ6eijIQVb777js/i7aW1WVaAUHNzh0EHrU+KAp8quTPn98aNmzolzVT98MPP2xXXHGF1a9f32rXru0nxlFAMghYPvbYYzZ06FDTDNpBCbpnjxkzxvr37+8DnJrQRl8aS1LjVi5fvtzKli0bHMIrAggggAACCCCQpgTqPjUh1vY26jEx2rb3XfBPXxpiSIFIfVAelEc++cteGjXfZ0wu//fo3iv6G1hjqqtnkGbenrt6e7QP0ks/8E1QlX9t+8Ef0d4P+WWlC16utMKud5G6ggfDIEXbiTcIIIAAAgggkOoECEYm4JYo0/Cjdmf54GPhPNn8H0u5sme2HW78ms6fzfY1vP/DEnu0aWWrV7GgffZAPRv+2ypr3bCc/+S4/6TlobOou0tBl1GpAbZf/Hq+H9tR3Vk0G+EK90dah8srhWYWLOi6rUT6wy1UmVuYsmCjP+8XD9e3V8YssHw5s/o/BvWJ84xlm8N3TdZyzEy+ZFXmDlZ9Ca0zfL8mTZr4QJ8mijlw4ICfNfutt96y2bNn+zEjw+sNljWLtmbJVhdqBRjLly/vZ95WQLNbt26+Hffdd5/ddNNNdsstt9i9997rA5D9+vXz40lqHEh9qSgbUjNqK8CpMSeVIaljNY6l6tOM2hpvMrzN/kC+IYAAAggggAAC6VhggcuYjFQSEiBUl+45q7ZFOjxB6zQuOwUBBBBAAAEE0o4Awcg47tXhOUr8WDaaoEZF3UfULXuyCwLe//H0UDcQ/RGlgboH3HO2NahayH9pwG/t13nIrNBZvp6+xm6pX9rudoFKdcl+/su51s11bdFYOiq7XBalZsZudmYJu+askjZ92ZbQseELQfcW1aGMSO3/opuZW0Xta/fBdDdOT1QXmPDjUsNy1qxZE9SMSFmO6oY9cuRIu+eee6xr166+npIlS1rfvn19IDFSxaVLl7axY8f6oGH79u39LmeffbafIbtChQr+vTIkX3nlFXvkkUfsm2++8d3DNbN227Zt/XZlTmqCG018s2rVKn+szqljNEu3StWqVe2rr74KZVb6lXxDAAEEEEAAAQQQQAABBBBAAAEEEAgJZHAZXKkzYhVqYuIWStw3KnEHHIO9ldFYulBOl5kYOZCoTMic2TL5rizB6dW1Rd1a1L0lqaVuhQJ+/JxgZsOk1hPzuJ51N5pmuVZRF/PwR+ZEvt++fbvPSCxevHioyWrP+vXrTUHG1157ze6+++5o7d28ebPv1l2wYNQMkTHbr2tTsFF1Zs6c+ajr3bRpk+XJk8dvCzyWLVtmefPmtXz58h21f8z6E/t+xIgR1qpVq9D1sYAAAggggAACCCRHQMPMdJ4W9XdQcurhWATSm4D+zcPf3entrnI9CCCQWgXIjDwGd2ajG/9GX7GVzW6Gwc07o2+NrWtL9L3ifncsx4dMbBDteOyvSWsUGFQAMTjf2rVrbcKEqHGOgslppBZsL1CgQLT9A9Fgu7IxNXt38D7mdgUxw8+n7WXKlIl1/5jHJ/V9cByvCCCAAAIIIIAAAggggAACCCCAQFoWIBiZlu/ecWy7AnD6UknNr5pI5osvvrBGjRr5CW3SSrvjcvXofEMAAQQQQAABBBBAAAEEEEAAAQTSgUDGdHANXMJxElC2oEpqfu3Vq5fNmDHDByQ1e3Zqb29C2ucvgm8IIIAAAggggAACCCCAAAIIIIBAOhAgMzId3MTjcQlBNuTxOFdyzlGsWDDRULoaCjU5JByLAAIIIIAAAggggAACCCCAAAIIpBoBMiNTza2gIQgggAACCCCAAAIIIIAAAggggAACCKRvATIj0/f9TbGrSyuZkSl2wVSEAAIIIIAAAggggAACCCCAAAIIIJDiAmRGpjgpFSKAAAIIIIAAAggggAACCCCAAAIIIIBAJAEyIyOpsC6igLIjNXkNr8fPIeKNYCUCCCCAAAIIIJAMgR8erJSMozkUgfQpMHXqxvR5YVwVAgggkAoFCEamwpuSVpoUzKodW3vZHjX7+LHyia1e1iOAAAIIIIAAAnEJVKlSJa7NbEPgpBSYOnXqSXndXDQCCCBwIgQIRp4I9TR4zmDMSL0Gy8FlhL9ne8r7BM68IoAAAggggAACCCCAAAIIIIAAAmldgDEj0/odPAHtj5nxyPvoGZAp7XECbjGnRAABBBBAAAEEEEAAAQQQQAABBI6JAJmRx4Q1/VUanv2Y/q6OK0IAAQQQQAABBBBAAAEEEEAAAQQQOB4CZEYeD2XOgQACCCCAAAIIIIAAAggggAACCCCAAAJGZiQPQbwCnacVtM7TJse7HzscCwHZjzoWFVMnAggggAACCKQSgTVvXZlKWkIzEEAAAQQQQACBYy9AZuSxN+YMCCCAAAIIIIAAAggggAACCCCAAAIIIOAECEbyGCCAAAIIIIAAAggggAACCCCAAAIIIIDAcREgGHlcmDkJAggggAACCCCAAAIIIIAAAggggAACCBCM5BlAAAEEEEAAAQQQQAABBBBAAAEEEEAAgeMikO4msPm8ZYHjAsdJEEAAAQQQQAABBBBIrwLPP/+8bdiwIeLl3XPPPVa1atWjtk2dOtU+/fRTa9y4sV111VXWo0cPW79+vb3wwgt2yimn+P1nzpxpNWrUOOpYViCAAAIIIIDAySOQ7oKRunWnnXbayXMHuVIEEEAAAQQQQACBNCswd+7cVNn2gQMH2oIFCyK2TYHGSMHIefPmWd++fS1Pnjw+GNmvXz9bsmSJdevWzbJly2Z33nmnjRw50rZt2xaxXlYigAACCCCAwMkhkC6DkSfHreMqEUAAAQQQQAABBBA4tgKjR4+2KlWqRDtJsWLFor1fu3atFS5cONo6vfniiy9s3759ljdvXtu7d6998sknljt37qP2YwUCCCCAAAIInFwCBCNPrvvN1SKAAAIIIIAAAgggkGCBUqVKWfny5SPuP2PGDGvevLnPftQOl19+ebT9brjhBp9duXHjRjv33HP9tu3bt1uGDBls4cKFVrFixWj78wYBBBBAAAEETg4BJrA5Oe4zV4kAAggggAACCCCAQKIF6tevb0WLFg19BVmSBw4csJtuuskHIhWE7NChg40ZMyZa/donKC1atAgW/b7qyk1BAAEEEEAAgZNTgMzIk/O+c9UIIIAAAggggAACCMQroO7XuXLlCu1XoEDUZJFLly4NjSmpcSCzZMniJ6sZPHhwaN/whU6dOln37t19N+1XX301fBPLCCCAAAIIIHCSCRCMPMluOJeLAAIIIIAAAggggEBCBRRorF69+lG7a5ZslXr16vlApJZr1aplsQUjtZ2CAAIIIIAAAghIgG7aPAcIIIAAAggggAACCCCQKIFgEps5c+ZY0B37t99+i7UOjRNJQQABBBBAAAEEJEBmJM8BAggggAACCCCAAAIIRBRo3769xRzfsXXr1nbNNddYnTp1bPr06VazZk2rW7euDRs2LGIdWpktWza/TRPYPPLII/bwww+bJsehIIAAAggggMDJJ0Bm5Ml3z7liBBBAAAEEEEAAAQQSJDB58mQ/MY0mpwm+VqxYYRkzZrRBgwZZ5cqV7e+//7bhw4fbAw884OuMmQWp99q/VatWfrvGjFy5cmWCzs9OCCCAAAIIIJD+BMiMTH/3lCtCAAEEEEAAAQQQQCBZAvPnz4/3+KpVq5r2W7t2rRUpUsQyZcpkffv2DR23ePHi0LIWPv74Y+vdu7efxCZnzpzRtvEGAQQQQAABBE4eAYKRJ8+95koRQAABBBBAAAEEEEhxgeLFiye4zqJFiyZ4X3ZEAAEEEEAAgfQpQDft9HlfuSoEEEAAAQQQQAABBBBAAAEEEEAAAQRSnQDByFR3S2gQAggggAACCCCAAAIIIIAAAggggAAC6VOAYGT6vK9cFQIIIIAAAggggAACCCCAAAIIIIAAAqlOgGBkqrslNAgBBBBAAAEEEEAAAQQQQAABBBBAAIH0KUAwMn3eV64KAQQQQAABBBBAAAEEEEAAAQQQQACBVCdAMDLV3RIahAACCCCAAAIIIIAAAggggAACCCCAQPoUIBiZPu8rV4UAAggggAACCCCAAAIIIIAAAggggECqE8ic6lqUihv0x/QZtnbtP5YrVy5reGGDVNzSo5v299x5tmTJUqtYsbxVrVLl6B1ScM0ff0y3SZOnWPPrr7Xt23fY2HHjrXGji6x6tWqJOsuChYtswYKFVqtWDTu1ZMlox86bP98WLVri74PuR3LL7t27LUeOHBGr+f6HH61smTJWvnw527Rps035ZWrE/bQyQwazyy+71DJmTFqc/+DBg7Z//37Lli1brOdIyIZt27bbT5N+jnXXs86sbcWKFfPbdc5Zs2bb2n/WWY0zqluJEsWjHXestwcn27Nnj3034Qdr0OA8y5snT7Ca1zgEVq5aZTNnzrLly1dakSKF/c9DoUKF4jji6E0yl/159etZ/vz5j9ph7969Nv677/36ppcn/dmOWfG+ffv8qqxZs8bcdFK8/33+Jtux54A1rFkk4vWO/nWtlSma06qVzRtxe2JW7tr7n+XMlinaIYvX7LC/Fm+xKqVyRzzHyvW7bNq8TVY0fzard3pBy5wpab/Top2UNwgggAACCCCAAAIIIICAEyAYmcDH4MCBA/b4E519MEqHjB39tRUtGvkfkQms8rju9v33P9gH/T62O++4/ZgHI0d/O9aGj/jSbmpxg038aZJ93H+gNTivfqKvt2DBAtaz14tWsmQJ+2TARxYELf755x+7u3V7q1//XLvyissTXW/MA+bOm2/3PfCQTRg3xgUTXTQxrIz/boK7709ap46P+WDk6jVrrOvTz4TtcfRik0saJykYqQDi/Q92sEcffshq1qxxdMWJWPPPunVxtvPll3r5YOT27dvt5patbNXq1f55XrduvfXu+bxd2uQSf7ZjvT38kl7r+6YN+WyYDRk8gGBkOEwsywryP9G5a7Stz7/Qy/T89ezxf/bOAk6qqg3jLyEp3Y1Kd4sg0kindItICBLS3Yh0SUl3N0t3KY3SHyAhICkdEt953uUMs7OzAezisvu8/nbm3nPOPffc/50ZnGfe6CVhwngVn7wMdNoZOHiI4L7PmDbJrRh5//4Dx2vpy2Jv9tp2Op1ubtu+Qwb8NFhGjRyqQr9rf0jYn7f5gpz7+76PYmTPqX9IjSLJ3AqFr8Pnj7O3pc6Pv8q+scX0xxIc22TYPlm5+5IkiBlBLt98JPWLfyQ962XQae8bgbRa710qVNr+lImjyILueSRGlJApHL8Ob44lARIgARIgARIgARIgARLwmwDFSL8Z6YjtO3Y5hEg0LF+xUr5pUN+fR//3w7JkySx169SSrOY5sA1edpEjRZL48eLJkSNH9XSpUqV87dPGihlTBvzY1wh0rWTMuAnSovl36jXYrkNn+TDKh9KtS8fXntPdAadOnfJyb+0YCDQ9evaxu/qcMUN6ObjvV0db6bIVJWfO7NK9a2dH25tu3L59Ww4bdgFpo0YMlc99EYJHjPpZT7dk0TwVhQYOHiq9eveTfJ9/LpEiRZTA7rfXCnEKQiTNfwSePXum9wmjy5QuJbk/zSknTpySaTNmytp169VDsmSJ4v6bzI9ReB3gswNCvX8FTj+mlOYtWvs1JMT3T+nwqcSK+vbi37Hzd+T67ccOnst3XVIhckan3PJFpjji8dtlaTRkr5T5LKHkSB1TFm69qELkpiEF5ZOEH8rvZ25LqU5bZezy09KxRlrHPNwgARIgARIgARIgARIgARIggTclQDHSn+QWL1mqIxEuDC+yWXPmqpeh85dzhDouWLhY/jhyRKJGjaYCQV7jvWdDbv3qR1jy0mXLNRT8k08+lipfVZI4cTxDLhHSuHTZCjl46LDcuXNHEidOpCJEurRpdF1+9b948ULHOYcP3zbzbDAek/tN+Hno0GEke7as6mlor2nGzNly7fp1qVC+rAocx4+fVMGqTu0aEj16dG/k6tRrIJjz3Lnz2leuYmXHdsfO3QTC2FgjKj40nOrUrikQG/0yCGk1qlWVyVOmGYEsr4YeQ7CbNX2KRIkSRQ8/evSYbN+5U/J+9pksX7lKhcVcOXNIxQrlHB6Kv/76m4aO497FMWGsX+T7XOf73+nTsnrNOp1n6LCRUvmripIkSWJBaHLX7j3ls88+1dBhv9bp3H/+/AVZuHiJnDt/Xj5KnlzvY4IEniHReA3MnjNPjhw9asLCI0nWrJmlfNkygvs3cfIUnWbm7LnywISNf5b7U1m5ysOEhf+q/alSplBvU3vdzud80+1Vq1ZLgwb1HN5ptWvVkJmz5siOnbukaJFCEtj9WDdC3zsYDz94ua5Y6YEmmh8ELl2+LPcfPNBRdevUlBSffCKlSpaQRyak+pLx3oUnNwwpBg6ZMO7cn+bS1xPacH+vXrum72ukH7B2+fLfJqXCevP5c1kyZsyor7XwJoT6+XPPzw58htjPEcwP72ekrogcOZLk+Sy3eb0UtlPpOMz162+/mRDwx3r+zz/Po+/5SVOmOsbBa7rEl8XkU7O+1/1scEzyH278df2hTFv7pyDkOb7xMiyWI74KfFjS4u1/yQPjZVjTeDdaG7bwpORIFUM+zxhHm54ZtvCQ3HTwqsSNHl5qFE6mYdPoXLf3b8mSIrppj6Bjz165L7M3nJMzl++rSFinWHJJFPtVaolTF+/KShPafeLCXcmTPpZ8mTO+3Lr7ryzb+Zce33fmUall1oLw73zm/BAiYcVzJpCkcSOZcZdUjMS1NCufUs+B/owfR5O0SaPqvNinkQAJkAAJkAAJkAAJkAAJkMDbEqAY6Q+CV69e03BjDB0yaIBUqV5LBZRdu391eJ1BTIIYB0HR2rz5C6R6tSrSvu0PKib51o8v9Q0aNraHqogwy4gG8+bM1DDlSZOnytjxv2g/vA7hSQZRa9XyJZrjz6/+Q0bEnDpthopzEPggGjb8tomX9S5bvkLFrzGjR6gHFIQwhDAvWLDIIXxgAXv37ZNpUyY61mo3kOsQYb2wmDFjaB46bGO91qbPmKVzlS5V0l9iJI77vnlT2W1EjebGQxICDHimS/fKQ+fPc+fk5zHjZerUGZLXXBuEEoSr3r9/Xz26PFavlY6du0qhggUkxccfq6A531zT+LGjJXasWA7BMmzYsII/2CwjCEKoXDR/zmuJkeBVvWYdzXFZoMAXKi7Pm7fAhB5PV5FzwMDBstaINF8Z0fPhg4fq3XbhwkVp1LCBfPDBB3puPGAb/Dt37WFE1fKaD3D23Hn6upg9c5pjnF8bEIKsaGXHhjH5LCNEiGBE7bvaByHLGrxZYX+bMO/A7sd5IG717N1Xw9Jr1qhOMRJQ/GGJEibU9xiE3K+q1NDPIYj1tWpUk6RJkzhmwOcKxMdI5j0IcRuGNArwWM6ZI7tDhEY70lBYQx7JXSY36tifR+r7GJ8dsGZNG+v7pWXrtrLd5IW1tnjJMqlXt7a0/L6ZNvUfMEjw+WfNw5wTYvqsGVP1RxXbvmTpcvO+SKJi5Jt8Nth5/ovnp89eSNVeOyV8uDBS6tME8seft6VWv90ypX0uKZQ1nmw5dFWu/fPYixgJ4fKDMKEcYiRyMuKvVtFkAo/FyavPypqf8qv4N3P9n/JCkqloiFDrkh23qmgIwXP+lgsyfd2fsqr/F5I8fmSBEFmu63aJYNZSMV9iGWe8GKes+VNGfZ9NQr9MPRHWnPeDsKE1NPzzDK/yiqI7XbKocvG6p7htw7UtUwiu8K4slM3zs8G285kESIAESIAESIAESIAESIAE3pQAM9L7g9yKVat0VLasWQThxmXLlNb9BYsWO45etnylCnvIIzl/7iwVEdG5zHgzouiNX/2DTHgsDDkdt2/ZIJUqllehaMq06dqOL+owiKHbTH+b1i1VaLtx86a/+nWQ08Pon8fpeiEQQFgcOXyIioa/7dkrixZ7eoHa4WmN9+WOrRt1DNrgmQgPP1eDSNa4UUNt7tm9q3Tp1EG3vzfh1fCKhH39dT0V3mLE8O5ZqQPcPEA4Qx5FiGrgW7XKV25GifTp3UN+MmHdYJQlc2aBWAw7Zor3oKgM2pt910QmThir7RBkUJSmWFFPj67mzZoIPBghKA8aMkx69ejm1gNUD/bhYbjJewghFmHPuEceK5ZK+AjhZcLEyXoEit8UK1ZEWrVoLp06tlNGMU3REFxjnVo1dUzN6lUlR/ZsxuvsoCRLltTkq/xBQ9QH9O8rOYyA9MCImP61Nu06SN58Bb385c6bXw+/eu2qPrt6WoIxXleB3Y+Tw+N479590qNbF4FISvMfAXg4DxsyyJG3FsJg/wEDpWyFr1TAxo8jr2t4za1bvdLxPt9tvIn3HzjobRp4zeJ8+JFh2eIF+nmHQfByxGcdRHwrRGKNG9etViES7ysUVRo/ZrRjTvzwgdyysDf5bHBM9B9s/H3rkZw3RV6+K5dCWldOLb+0ySnflv7EeJK+3mLWGvGxX4NMsnOk5+fQmKWvftCyM/WfdUxiRwsvm4cWlG510utYCI8jF5/SIQPnHlch8refi0iXWulkqgnxvnX3if6VNuHXsPbV0qon5Z/GwzJq5Fc/fKAvpgkHv2JyR7oaCt80H7lfPowYVr4p+ZFrN/dJgARIgARIgARIgARIgARI4I0I0DPSD2wI151rPNtg6dOnE1RxTpnC05Ns8+atWvgB4g3CbmEFC+R39ENUtJWefet/bIQDeNTB7t27J3PnLzSelP/qPjybYFmNEAoBoHWb9ioCfPFFPkFl2wxmTf7p10FODzuNoACrVbO6VlDGdinjrQgRAYIkwpWtlS1TyoRiRlZPKtsGYRACmrOhYretNA2xcs+efdoN7zdwQxXvBvXrOh/ir23kx5s4aYqORR7HJSaUvWL5ct6OhVhsDSLj//7n+aW+davvTejqZYGHJEKnsRbYE+PJ6WqoHNyhUxcNrfYt16LrcXYfAg5C+UeM/Nk2SSQTjn3o8GHd/7JoUc3rB5EHnpo4h095PBFKvsiEexcs/KUKmPB8+65JI2/cHSdys9H42298LIYTOpSn+GdDb+3h8HDFvQ3sfni09urTXwvmoBL0P//8Y5fAZ38QQOXzZUsWyq6du2XHrl0q9OH9AY/aeHHjqkexu2mem/eTOytfrqymhUBqCIjgSLdw5sxZL96TOO6ISYsAQ+XtdRs8q2xDgIeX5omTp4xH8j3txxwF8ufT7cmTJkhEvKZcBGeI/9Zz+k0+G3Ty/+ghYayIkuGjaNJy9AGZsf6cFM0eT6oWSCIo9uJfQ4GYNCYEGgZxsbgJrd5/6pa3w7f9fk29In+cfdzRh+rY+056/hi19+QtKWw8F23Fa+R63D+umI6FF6WrmY9kL/bv0xfeqm3fuPNY6g34TUPQZ3f5zOSvDO/lGO6QAAmQAAmQAAmQAAmQAAmQwJsSoBjpBzmIgfiCD4N3ovVQtIfZQjb37t3XpogRX+XwskIkOnzrf2IEMGu7TH7AMGHD6C6+zNv54KU3Ztx4zeEHIRBhj/iDB2K5sqXVi8+3fju/fb51y/MLb5w4nnnD0A5RFWZDrXXHPEB0gNkQZt1x81Cj1iuhERWorf340yAV6FYsW2SbXut5/ISJ6qE1zoSMTjTh6iiwAuHROd8dJrSssB3WqZIwxGR4jUEwwXHZs2YVCMnubJNphwCDXHnfNv7OMQT5M08ZcbNr51ehrI7OlxsQ8WBRonxohM5XnmnIlWeF25YtmmmIOXL5IQ8m/lD9GB6drgYhZ8okc8891ppQ8Q3Gi3CZikTTJv8i0aJFcx3udj+DKbhjw3NdB8Q2uTNhd27f8dIFUSlhggQS2P32vYTcg/izr7uevfpqaLqzIO5lgdyRffv2y8bNW0xu2qjqaYyUAB3bt5Uhw0YIXqvbd+zwIkY6C5D48cOdIfejNYiZECMhzrvaYxP6D8NnCFI7wOBdi7/Hjx9pegS0RXL6LLSCI9qDiyG8eV63PCbn43lZs+eKwHsRf30bZJTaRZO7vcxHT7wKwR8n+NDLuDgmP+QDIyw6279PPV0t4c345N9XbpcIBY9oBMnnRllEgZqUibzO5TyH83aSOJHUY9K57da9J5IsXmRHE0KzEYIOz8ilvT9/LYHVMQk3SIAE3msCo0ePlpMnT0qZMmWkSJEijmu5ZnIO9+nTR39cat++vfTv39+kC0oo2KaRAAmQAAmQAAmQgH8JMC7SD1LIaQaDMIgCEfYPXkkwFLKB517SJIl1H16F8KZEGwq4VKlWU1Bgxbd+5Ay087Vr21qWLpqv3mKoYNvJCAzIfbhr924Vh9auWWnyD07TdeCEEKj86teFuTzkzJVDWzZt2qLPWC8EMliqlCn12T74JULaca1afq+badOklk4d2uo2BE5sN2nsGb59/cYNFXdtgQ17rE/Pv/62R8YZMRLh6yhy0atnN/Wk6tipq+bh9Ok4247rghCJ4igb1nrIoJ9+1MId6H/hEk8JD0Hc52+/aaDVpBHqjT9Y/PjxjMdrCt326QF5HnG94cNHMKHVbRx/GdKn1zBViEDI35c4cUIVH3/duVU9U1H9+Nq1645pTZkQ3UZhHbSD3/o1q+THfn1UIMJrLCAMoikEWudQXOuhmzBhAhVVA7P/s9y5lbXlnMa8bmApzesPvGk+E7h7956+lsaMHW+KWh3SgXj9Is8nzP4QAm9E2M2XPz7gswJiuzuDVzPmgFezfY0hN6WrffrysyNRooT6WbVk4TyTq7K6tPq+ueQ2eSkTGc9gGF5Ldj09evURVJ63n6d2zmdPX4lzr/vZYOf4r54vXnugOR7Lf55Y5hpR8sD4L7UAzMRVZ3RJ4Ux+Roh81m7f/1fuPXxqd/X50Bmv3sDr912R1C6elcjzCA9KeE72qp/B8YfiNvCqRE7IjxNE9lJg5qEREct03uYoXoOT2c+VtCY/5I4/Xn3eQOzcffSGQ4yEEIljI0cIqzkpX8fT08vFcYcESOC9JvDA/PA9YsQIFRudL2TZsmXavs/kD8ePsBgza5ZnKiHncdwmARIgARIgARIgAd8I0DPSFzoo8oKQRxjy/yFM1hrCfkuWKe8oZFPGhDLDaw95CCt8VVXFAHgWQZiDyBLJeB351p8//xeaixEiW3lTvXq9CX+ER2bbNq31eHj3IVcjCtHkyJFNEOIKy5snt3rd+dZv1+z8XL5sWfUOnLdgofz+xx8qVlgP0Bo1qjoP9fd2lkwZdWzBgvlNuHoB6ffjQK2yW6XyV445ypX/SnM/Iq+mDXd3dLpsQJxA4RkwbPIyFyUKrPTo3sUU2+gkPxshxhbMcDnUsRvKfFGHwIgiRNev31ChBfkgYag8DIsaxTNMcsPGzfJprpzStMm32m4fxv8yUYoULuTIbWfb3T1Xq1JZho8cLRN+mSTFTZXgAwcPSrcevaVbl47qbYl8e6s8VkvnTu31NXLlyhUVV5FDEyH6MHjHxo0TVy5dvqTh3si3+cnHH8uFC57hlokTewrf7s7v2gbPXghQroaiIajEjjD9iROn6OsI8w42bCCMI3Qc7AKzHyG7RQoXdCztpAnxhbheo3oVDel3dHDDG4HcuXPp6xqfMfW+/la3rxvh2hYrKl7cM0Q3efLkeiwKNoUz3r77zevBJ8MYpFq4ft1TqIIQjfO45ijNYl4bMOSAbNqshQraqIIOIX7+nFmazgGpClC5vkSpso4UEzgGVbdhmBseuL37/mhy8JZUT9jX+WzQSf7jh6iRPpAxy/6nYczNK6RUofGqySNpw66TxYskczadl6U7/tIK2aik7WoQJ4fMPyGVvkhsxl6QyyZvY/e6GVyHSb3iH6nX5YhFp6RsnoSy58RN+WHMQfmxYSYdiyrcfWYc1fMgXHuWqbp96PQ/kjdDHEco9+rfrpj92MZrM5lU6LZDJnmckVK5E8qElZ7iadWCSXSu7lP+UE9LXBPOYy2WySuZJ31su8tnEiCBYE6gSpUq0q5dO9m4caNJdXNJvR9xyXPnztUrr1evnvnhML5JybNHi6Q547hj/v8ZPzrHjBnTuZnbJPDOCOD/Yc+Z70pJkyZ9Z+fkiUiABEiABF6PAMVIX3itW7dBexFi6BrqCs8xfLGGNxEKvqA4CkSjbj16qfcaDkToJHL2QXRJniyZr/11atVQEQAVsuE9hy/rEIKqm+IOOL5v754ydPhI9V60eRkR3lvbHBfGhCT71o+1hA7tGfqNbRhCgLFmCGfWGw6iX7euncVWVPYcaY41/6DD8A+7tVDyatu2HT/h+WU7bZo0Jnec53a6tK+qXttx/n3u1r2XChaTfhmnQoo9rmiRwurpiIIZ+fLmsc1enkOHCa3XDHYofjN46HApWryUjqnyVSW9d1aYQS5Q8EY14b6mCA68X13N+dpd+5z3cc/umIrio8eM0z/MCw9X5OODtfmhpfTr/5PUqvO17kPAGTL4Jw2BR+h1rpw51BP0qgmDameE6GPHTkgzU0XcGkRx3Ce/LHRoz/uDMHB3hnVCjKxRraqcPn1WGjVtrsNQxKRnj676mkNDYPd7WdvL15fra9XLGO4oAYT9jx45TAstIeUAREkYXm+NGn6jOU+xX9QUZ1pvvkhiDD5X8N5B+P227TvQ7cVQtd7mOsXrcvDAH/WHjnsuYnb48OG16FWnzt0cOWLh3fpD6xYmbNwzX+Kokeaz0Lx/8QMKct2iv6b5kQO5QWFVjWhvvTrTp3/zzwgvF/COdxA2PahxFvlpzjEp2HqTnj1H6pjS3RSYgVU3AuHWw9e0AAz2y+dNpDkm7XsTbcg5uWznX2KFyvbV0kiJXAnQ5cW+Kfmx/HPvXxk077j+oZhN4zKfSLVCnl+y6huxEgV1IEjiD/OObZXD5HkMJ5k/ia7FbxoP3SvDvsuq1bY7myI3PaYe0T94VaI9XowIeo61e6/ouSFKOluuNDEpRjoD4TYJBHMCycz/t+bLl0+2bdsmS5YskaZNm5pojWuybt06vfIKFSoIflDNmTOnZMqUyfxYfkhumB+R69evL8uXe0YVoX3mzJmSIUMGwY+gFy9e1JQsyEMOIfPq1asqZubIkUNKliwpHh4eJg3JPsmWLVswp8vLexcESpQoIQsXLjROHWnexel4DhIgARIggdckEMqE5XnGhL7mgUF1+M6dOyXtWwhgAXFd8Oj70PyPls0T6Dqnb/0IK4YHH4pIQEhzNfTDgzFWrJgmHNh7QQG/+l3nw/7t27eN0BjaISS4G+OfNng63bl7x1SkTiDIg4mKzPDwixQpon8OD/QxCHmOHj2aIJza1RBaj7yeCF32r/DoOofzPu7DNeNhhtx77uZDsZZn5pyx3HgNILQV+fsgMsMePnyo9yiumcvda8L5vG+6DY86hMxaMcl1nsDudz0f9/1PAOH/+IIY3YjZNjzb9Wi8psIYgR5fAH0zvG5v3Lipnz943eJ9gYI1tet6iucH9u728nrGvNCQXSuy23PA2xdzustxCs9z5LK0OWntMe/jM0KboxlxElWnXe2mqWqNkG13fXYsKllDOERItrV09T2kqanU3az8q7QZT5+9kKv/PDJh2xGVux1rnxFyjfNBWHS2Z89fqOcmvDntb0oYizDyuCZPJY0ESOC/JXDs2DHJk8f9j6uBsbKpU6dK3bp1/Zx60qRJ0qBBA8mbN69s375dJk+eLF9//bVUqlRJFixYoBEb8DyzYmSdOnVk+vTpAhEIAuTAgQMlVapUJmroiHpZDh06VFasWCHJkyfXfixg8ODB8u233+q/I/j/HAic7v6/yc/FcgAJOBGwr6ECBQrIsGHDTDFHz6gOpyFuN/373nB7MBtJgARIgARei4D3b06vdTgHuyMQO1Ysd82ONt/6IUDBK8knQz+8Mn0yv/rdHedOKHA3zq82eGXhD4YCMD4JFH7NE1j9EHh9Moh8PglxPh3jWzvug6uHqfP46NGjO+962XZdBwrzOBfngagKbwKfLLQ5t3+8J52P96vASGD3O6+F269HAO81hEX7Zq6vKZ/G4nVrvRcxZrLxPh45yrMyPM5h/+feHu/XvD6Jozg+mim+E1wsUWyff3CJGSWcn5cZ3+SEtIZiNPCoRAi3q1AYNkwoQRVvnwxipqsQibFhjKc0xFJnw1jX+Z37uU0CJEAC5cuXVzFyhymKdv78eUeIdq1atbzBQf5ICJGwXr16mR9/oxuv/M3q+XjgwAEpV66cQIxcs2aNpE79KsIDYeAQLGG1a9f29u+MdvCBBN6QAF6DPXv2lC5dutDj9g0Z8jASIAESCCwCFCMDiyznJYFAIrBh4yZBrk+fDDkwUYWbRgJvSwAel7BUKVNIu7Y/vO10PN4fBHYeuS4tRx/Qitxf5ozvjyM4hARIgAQChwByPsILEqGuY8aMUSERPzQXL17c2wmdfyRF6LazIedkqVKl9EfqxYsXS/bs2bUbAuXSpUvNj/CeResgftJIgARIgARIgARCBgGKkSHjPvMqgxGBaiaPKP5oJBDYBGxV+MA+D+d/RaBsnkSmSI3vnq6vRnOLBEiABAKXQM2aNVWM/PHHH/VE2HeXhihhwoTGsz6uRm4cP35cU3CguA2ib5ADMmzYsIKiOBMnTtTckRAiy5Qpo2IkwsEhcubO7VnkLHCviLOHJAII0+7evbu/w7RDEhteKwmQAAn81wReJaj6r1fC85MACZAACZAACZAACZAACQQZAvCCdE67U716dbdrQxoPeFHCWrVqJci9V7p0aW27/7IQGoreWCtatKhAKLKG0G8IljQSCCgC6dKlU49e/+aLDKjzch4SIAESIAH/EaAY6T9OHEUCJEACJEACJEACJEACIYoAclZbARKejyhmY821qF7v3r3V2xFVsdu1a6cekfPmzTNF0eLoIQULFrSHSv78+eWTTz6RxIkTa1vFihUdfdwggYAggNchK2kHBEnOQQIkQAKBQ4A/QQYOV85KAiRAAiRAAiRAAiRAAu89gXHjxgn+XC2RKWz24sULR3MsU8Bx2bJl8vDhQ3nw4IFg39kiRYrkZTz6Lly44DyE2yQuUNZCAABAAElEQVQQIAScX5cBMiEnIQESIAESCHACFCMDHCknJAESIAESIAESIAESIIGQSQDelPijkQAJkAAJkAAJkIBPBBim7RMZtpMACZAACZAACZAACZAACZAACZAACZAACZAACQQoAYqRAYqTk5EACZAACZAACZAACZAACZAACZAACZAACZAACfhEgGHaPpFhOwmQAAm8BwSuXbsux44fl5On/icxokeXXLlySJKXBQECc/mnT58x5z1hig8klCyZMwfmqTg3CZAACZAACZAACZAACZAACZBAMCJAMdKPm4kv2/jSbS1MmDASM2YM+eTjjyR27Ni22d/P9+7dkw8//NDf490N/PPcOfnjj6PaVaxoYQkXLpy7YV7aVnmslufPX0ihggUkUiTveXwCQlj4bc9euXr1mmTOlFGSJPGsjuhlEW+48+TJE9mzd5/cvXtP0qdP601oefTokfY/f/5csmTJLNGiRvVyJr+Ot4Mv/vWXHD78u5QsUdw2+fh869Yt+fW3vRIndizJkDGDhHe5B5cuXZbDv/8huXLm0NeLjxO5dOD1duf2bfn001xeepCI++jRY3L12jX5LPenEiFCBC/9rjsYf+zYcTl95qx89FEyyZA+vZchz549k/0HDsrt23f0fsWJ4/tr2S+GeE0eOXJUEiRIIJkMj7Bhff9oefDgoezavdu8FiPp+MiRI3tZn1/n8zLY7Ny+c0dmzJwtTRo1FNfqnq5j3e2vW79BPv7oI1PZ82N33b62HTp0WO6a9/XnefP4Og6dOE/UKFG83V8/D/RhAOZr276Tt96PzefTlIkTJGrUKN76AqoB7/cBAwdLmdKlKEYGFFTOQwIkQAIkQAIkQAIkQAIkQAIhgIDvikEIAODXJW7atEXG/zLR7bBWLb+XurVruu1zbXz69KnMnb9QZs+eKyuWLXLtfq390T+PU1EDB4UPH06KFins5/GdunTXMcuXLDQCkHehMCCEhVlz5srmzVulV4+uASZGLlm6XAYOGuK4vvumOmOnju2kyleVtO2PI0ekVp2vJbIRtWDhI4SXCWN/dohKfh2vB5kHiF+tf2in3mV+iZFz5y2Q/gMGqsh48+YtFWJGjRiiIjME0e9b/iDbd+yUePHiyt9/X5XSpUoYJt38FMkghn7TsLEUKlTQi1h15coV+ebbpoJ+COE4Z9s2raVm9ap2+V6ejxoRstUPbfXcdnypkiWkT6/uEipUKDn1v9NSr/43ApbghudhgwdKgQJfeJnH7vjFcKZ5TTvfI5xz1oypEj9ePDuFl+cVKz2kS7cejmsBp3FjRknyZMl0nF/n8zLZy52JE6eoAPomQiSmwP2sXbOG43Xj7hw+tS1bsdL8YHHWX2JksqRJpXnL1rJ00Xw/BWWfzmfbV69ZJx06ddFdfAbkNgL22T//lMWLl8oZI0KPHP2zdO7Y3g7nMwmQAAmQAAmQAAmQAAmQAAmQAAkECQLMGenP2wBPo5bfN5Mmjb+VHNmz6VFDh42QLVu3+WuG/50+rYLNg4cP/DXep0E3bt50CJEYM3/B2wmbPp0nKLQ/NgLhiFGjpVzZMrJpwxrZuH61QFTr1/8n49F3W/7991/p1qO3imgeK5fJhnUekjhRIhk4eKgu36/jna9xzLgJKkQ6t7nbvnDxogpXeB2s9VghEHdPnTqlQjPG79i5S4XIyRPHy5pVy6Vfn54C8W3b9h3upnO0QViqWq2WCoOOxpcbc4z4CU/MLRvXyvo1q1SIhfj3zz//uA7V/clTpkm8uHFly6Z1Or5j+7aycpWHrgsDRo0eI8k/Si67d2yRrZvXq5jdq28/4zn7XI93fvCLITwisZYSxb+U7Vs26DlTpUwprVq3dTsfPCKHDBsuNapV1bXhGNzHceM9BX+/zue8NruNe7Jw0WKpW7eWbXqnz99+00B69+zmr3OmSpXSeKJmEgjab2tDh4/QKb75up4MHNBPKlUsL21at5S+vXuq0Asv5bt37+oY/THEnLNdh87Ss3dfL58hjx8/lqHDR8q4CRNVzBw8dLi0addBIDLDg9ba9Rs3ZPjI0dK6TXv5ZdIUefDwoe1yPCNUHO8/jBk9ZpwghNzamrXr9Dy7dv+qa/jxp0Fy5e+/9bWJ8x88dMgO5TMJkAAJkAAJkAAJkAAJkAAJkEAwJkDPSH/e3NSpUkm9urV1dKOGDVQEW7Z8hX45z/9FPm2H4Lhj5275/fffjRdcGA0/rV6tijw0X9qnz5itY+DVhi/elb+qqMIZvrwvXbZcLl++ol5Z8PjzLWTWw2ONzgPRDZ5y8GiEIGS9yrTTPCB8E0LpBx98YMS80rbZ8QxhYeasOXLu3HlJly6tesw5Ol9u+LU2hA3Di+0fIwx+ke9z18M1THnDxk0a0l62jPc1eDvApeG08eBD6CwY2lD0L4sVUfHi4sW/JFz48OoB1r1LJ0c4ao3q1dRbDCLINRPS7Nvx0aJF0zPu3bdfIOBBUPNY7cnXZSmOXQgpMHjEIhQZ4eglSxYXvBYa1K8r8EqEpU2TWp9zZM+uzxCRfbIDBw/pmiuULyvHTZi2qyF0PHXqVGLXmy1bVpm3YKHcMmJkdJMj0Nkg9uH1VrtWTUe4Oq4Lnn9//nlOvecgpqdPn87hmYe58Xq5d+++crRCWdUqX4lf9+DM2T/19HUMD5t+AKIYQof/Z9IbpEqZwiG8Yb47d25LtaqVpXzZsuopimNSfPKJWZvnPH6dzzJwvubRP4+VL8x70Dk8/9dff5NtxjsV75E4sWPr6zPf53kdhyGEfu269Ubk/UfwmnI2iGYmyl0N76FYsWLKV5UqSOhQoZX7nTt39Zi8eT7TMYfN+x3v66pJvhJ7LNI5bNm6VT8HShQvpqH19hxlSpeUDh276PvS9f7ZMX494/UNr1tYbcPe2eDh6uzlipD9lkYchreutcVLlunnGX5ggVfw1GkztGuaeYanLGz9hk0qeH/XpJGKmlWq1dTrRN/GTZvx5MX27T8gDYxnrzWMmWU+Y+bNmSmJEiXUtAaLFi9xnAvjGn/7jVnXLn3fYQxzT1p6fCYBEiABEiABEiABEiABEiCB4EuAYuQb3tvy5cqoAIVwSHgdQdSoW88z9NVOCbEDol9NI5DBM80avvgXNIIBxATfvrzb8fYZosL8hZ6ekE0aNxQIChDSli5bIS2af2eHybQZM2XIUE+vKTRinLPBW+pthQXkyav7dUPHtLhWV4M4i2tFCOmbiJEQSX8ZP8bLtNbDMEmSJHLo8GHt+8gIltY+/ii5bkKI9Ot4DISw1K5DJ2n2XROJYoQxv8RI5IKEwOacsxFimvVQzf/F5zJm7Hjpa7w3ixYpJIuWLNX15M7lNQekNr58SJQwocybPUPgNfdt41f30Y4pbcSrXr37yaQpU02+zCSaNiBZsqTeBGiMRz7QUSM8PUPt8Tt37dZNePdCnK5dq4buw7MSuTgnT54qEOpsfkGP1Wvl36f/CsRDvxgeP3FS54r+UtjFjs0XeemvS8rKeb748eMLPAlh8GjcsmWbCuqtW32vbX6dTwc5PUBIg1fpwAH9Ha04X8fOXTU/aoqPP5at27br/Rk/drTm8IQQWadeAwEP5NJEWL2zIRcoRDOEj+fPl0+QbxViLTw4IZbhnN81bymLF8w1+TiNh6kRPhGmDV72WIS/Q6T+448j+jkxbcpE/XEC58mVK6cKfrt2/2YE8GJoem1Dfk4YzmNFWPwoMWnyNC9zQfi9aYRwCJEYO3vmNIH3aeWqNWTK1OlStfJXRkR+la8T4xsZgXDsuF/09bZnzz6RJmJ4LFUhEiH4SIPwzHjR1jfvfytc4qSDXnok169XR4V5/OiycNESmTJturdw8dEjhwk8MiHGFiqYX5IaUT9tmjRe1s4dEiABEiABEiABEiABEiABEiCB4EmAYdpveF+dvRcRanji5EnJkSO7NGvaWPbv2SXdu3bWmQ8ePKwhk8OHDtJ9CALIGQkRxPnLO8JV4VGGL/f48u7O4CEHT0ZYgfxfaPgytueZ8EsIDDA8WyES4ZtbN613iE86wDw4CwsL581WzyWsy9n8WtuEiZN1OIp2rF+7Sgb07+N8uG6nMd6k8CItbHIgBoTB0wqiH0KkIZxdufK3TusspkQxxUFg7jwRXY/HOHgMwsu0/kuvV7T5ZhAjXb3ZokT5UA+ByPtR8uTqYbnc5BGEyIUcmhA6EyZM4OO0cePGUSHSpwF5P/tMhbMRI382Hocd1Ru0m/EGRf5Hv+z8+QvSu08/TS2AwjfO1u/HgerBiNec9fpF/6Rfxsp0I565M1eG1gN0xqzZ+tq7f/++vr5w7P0H93UKn+arVr22DBoyTEW/4sXci3Ku53Nd0/kLF7QpeXLPfJPYQeEeeIMOGTRA2U+cMFbHWAEP7w8IygvmztL8plMmjdd+14epkyZoftLWLVvoDwcVypXVOfFexvtl2w6fQ++XmJyQyNc4ccI4nXbvPiPqvTQUO8L5z5w9a5te+zlGDE+PWNw7G0p9/foNFT7hpWv/rpofPI4YD2ZYjBgxZN2GjSrOQlSEnTh5Sp/tQ3lzjfBC/tRU5Ibd+ueWPp/63//0GfcJRX6w/oJGRLSGzx0UX4KhSBfy4z558q/uw2PS2eAVDq9SFNOC4ccKvKczZkiv+3wgARIgARIgARIgARIgARIgARII3gToGfmG9xdePdbCfRBOi1ekSPGJ7DAhhz169TWeSJ5CxfXr1wUhm/CygqHACsSv1/nybs+zxIRzw7JlzaJeZfHjx9N9CBJbTTgpvtT//VKgQ0c1E94M0a5ypYomTHyWjsWDq7CANggLyG0I88/ajh7zFDgQWhw7ViwTtlpUK+siXNUavNzwFxAG78/uPXsLzgeRFWaLlcBj1Bq8VGHOnovYd3c8POjgCYm8j7hHroaQbOew6bxGeA0d2rsAaM+JsPGx4ybonH1795DsJhx6w8bNmlMRnoOljKfcnLnzHaeJHDmSVDGeaX5Zy9ZtVHAa9/NIiWfuObxN4VFrvSl9Oh7iGzwtkyZNojkFLS87vmvnDiqeI/8f5kPRmXRp0zi42nH22R1D3F940yHkf4nxwMVrEdW0YXhdwFzPq43mAXk+zxpB7ifjUVehUhXNC2rD8THG3fnssfb57NlzuglB1xq8LCEa4/6eO39ejp/wFMmeGM9G5MVEbkJ479l1wdvRinN2DrxH4cUJgxcq7POXYd76fjb3Ad7Q7gxCnf2xAp6qeO8/evjq8wLHJDQhyfZ96G4Ov9oQWm/toPFSzm5C99OYthnTJmlzo8bNHF6Ljx95nht5RyFSwiDa4+/x40e6bx9sGLz1brXtCP+HRYsezTaZa3zF/InT5+GuXb9KmLCe7yewixgxouMYbMR1Os5LB3dIgARIgARIgARIgARIgARIgARCBAGKkW94my9evOQ4MnbsWIIcdY2aNtc2eIshVyBCl+2Xcsfglxuv8+Udh8DbyIZb7z9wUKrVqONlSngMQox89OiVuGC9BK0XlT0gIIQFKzpGjRrVTqtFU2y7ozEANiaaMOKRo36WOiYPYssWzRwikhV84JFovRWxDbNCLbZ9On7YiJHq4da7r2eILwQsGAQ85MmDqILCKNYSJ05shKV43grdINQbYhY83hDSC688FNqBoeL1BuONhnbkFv3lpUcp+iAS+iVGIpcoPM7gafupqZYM+6FVC30tbNqy1UePSvt6RH7IYUMGOvI54ngr3lpB6gcj3kGkQjgzxEh35hNDjO3Qro1JO5DfiH4nTY7O5MoIaQASmvBzdwZBEEIghPLMmTNJk0YNpdn3rYxIeFjDqHGMb+dznvOBET9h4Uz4uTXkvLTVziHcZ8+aVeChCkOINcy+XnTHPCB83dmcxc3QLz1Qo770unUe527b5s60fR+E/UBemP+cDT9g4IeKNzWI7Xk+yy0Iwe/bf4CMGj5UvW/hcQ0RHaKwNXg5IsQfORmRvxH3f8HCxZpLM2u2LHaYPruKkLbTCrL7TFqIpyY3Ku7fDqcclHgtQYRGCHy7tq01RydEYORQTW0KGjmbs+CMdhSjemQEU8wB8ZZGAiRAAiRAAiRAAiRAAiRAAiQQvAlQjHyD+4viERMmenoglS5VQr+YzzCeYTCE5Gp4tBF2IEY+e+pZjRbFL2DWS+l1vrzjuHXrN+JJxbMCRvixhlBYCC22kI315kL/QSNaQsBCXklnCwhhAYIrRLK9JudgThOeDhHShmnac0H0hDgYwXiDWo8r2+ffZ1T4RQ7G9m1/0EI2zsdBzIMdOvy7Cn3YPmAELRiqScN8Ox4Vne/ffyXaQGBBwRN4ykFQgoedzWWok5kHiMLwTISXGcJeYXv379dCOdhGXsFo0V4JtGjDvHfu3FFvuR3bNqHJ34b5YHi9WAtl5oPdNwVn3BnEqCbffa+iaI/uXVQkteOQJ7JUmQrSwoi6KJYEQ8Eb2AsjEroz3xgi7ynSCtSqUd2E9ubUw1GFGeYsCGuDebBrm29CpFMaT2IYCufArEjq2/l0oNODneOCKWgEj0SELEOIxPuyd8/uGsqOe4YK0bg+iHjIFQmxFkWIYBcuXHQUg3Ga2rHpKiQ6Ot5iA/lUbQGcN52mf99eUv+bRhq2X7JMeb1+5Kh1/kEAP0SkeVlMCQWpmjZrocI5vKDhsTl/ziuPad/WUbJEcS3yhM+ZSlWq62sK8zlbfpM6AmJkx05dpbzxYF5vRHi8Ptq2aa0Fk+zYUC7exT/+NFi9iTt1bOd4TdqxfCYBEiABEiABEiABEiABEiABEgh+BChG+vOeIpx3/4EDcu/uPS9eRy2aN9MZkhivORi84GCzZnuKkxCtYDZUER5LzVu0lm9NLkX/fnnH8QteeuhVMUUynIvVwMusbPmvVERDWCv6ihUtokIoPDVRmMQWfcE8sIAQFipVrCB9+v2oYh9ywrnLf7d67VotvAKPzYED+nme/DUeUa0bQqQNo0WlYms5c+TQAi65jdg6fORo9TKEqDVx0mQNwYX3lV/H161Ty06nz/CoQzGSpk2+9dLuvFOsWBHN9TloyHBljVyAEINt0RiwnTFztq45c6aMJkx7k4rB3zdv6jyNv7cTJ06kItPAwUME3noosoMCRbBChV6J0nZC5Gzs3LW7itaocL558xbbpbn+UGwH14BwcuS3jBw5sowb/4uOKVy4kD6DAzwIUejGL4bwToV3HvIVojIziqj8bKpbt2nd0uFt6Dxfrpw5NE3BYJMrsrXx8Pzb5FsdM268CmPg5df5XMOpISzCkBsTYiTyaEJsv3r1mq4JnsLISwl79DKUuGzpUjJsxCiBaJrdeAaOfXn9OugdPEAwPWMKX6H6+tsYBP5xP4+SCb9Mkl/37HF47CLEHEVyvq5fR1njHCig06lzN71X2Md76ofWLdQ71XoTo92mIbWCt01fANG3X5+e0qlLd81bi/uAUHdUobe5S+uY1wu8PWfPmadh+xhTq2Z1qW7C+J0tlIRy3lWxHg2u7V4GcYcESIAESIAESIAESIAESIAESCDYEKAY6cettF/OMQxePjB82c+SJZM0NuGlNlS4usnPePLUKRWe4CGI/WVGHIT4CIEmWdKkWkQEXooQB8uVLWPCjv335f306TNii2+U+LKYrsE+wOsOhW8gyKGQDcKLO7Zvox58EIlwLhSMgEfTuXPn9bCAEBaQuxH5+JCLEtcEcePTXLnUw8muzYoLVqyw7f59RpVkGHL84c/ZJoz72Xh4ZZeunTtKm3YdTM7BqtqNEGkUzYH553gd+BoPKFyCwiit27TXCukQXCBeopAPDAWM4BHaoVMXx6wQPevW9ip8OjpdNnA/nXlhf8jgn6Rb915aARrDsQbkpARzV8O9sJ5xqCjtbCgSAjES1ZLxmmrYyFMgxTWMHD5ExTyMt9WvIUb6xRBesV06dVBxr1TZCrq2iub1WMOEp1tzng/iFrw1UcEcodwwhPcilBxei36dD/fc2XAMRMjjx49LkcIFVdhCGDs8IYsWL6VD4QGKkOb9RjSH4X7Ag3DgoCG6j1Bum9NVG17zAffIXS5ROw1SNdhQb7Sd/fNP7XLO+6gNb/CAzx94FMJuG+9bnMfZi9ZOCcYonIWUAvhMcx6D7YP7frVD9RlMXNsgtCM3LIRnCON4nTr/MIJQd3gwQ4jGGKwNbKx169JR8OdqeC3jj0YCJEACJEACJEACJEACJEACJBAyCIQyoZEvgtOl7ty5U9KmTfufXRI8ISMZsSi8KWbizhDijerP1lMSY+Ap5e7Lu7vjX6cNudjCGoHAtVK2ncOe1woLtt352Y5xFRbsGHieQXyDoPVfGqpn4zohTr0Lw9sG9yxWrJheBBd7bhQ4sqKNaz5CO+Z1n+HBBnEbBUCcRZ7XnceOx2sVFY99u/92rH+eMR+89fyzNnj0Xr12Td8H0ZzyjvrnPK5jFi1ZKoMHD5MN6zy83H+816Kbgis+8Yf3510Twh0rZkzXKQN1v1//nwRh2qjy7Sw8B+pJOTkJkAAJkECQJXDs2DHJk8fzR813scipU6dK3bpv553/LtbJc5DAuybA98a7Js7zkQAJhGQCr9xWQjKFALx25BH0SYjEaSDqOQuRaNPqvCZ/m39EHIz3r0EY8kmIxBz2vL4JInaMT2uD+PdfC5G4FghK70qIxPnAzCeBFv14DaBgiE9CGMa8rsGDLb4poOPTvXjd+fBahUegb/f/debEfP5dG8bhWt5WiMT6ypUpraxtpWi7Ztwf3/gjlP9dC5EIY563YKEWeQko7vZ6+UwCJEACJEACJEACJEACJEACJEAC7wMBipHvw13iGkmABHwkAMG8nQkPRgVueFwGZUMVa6Q4SJM6dVBeJtdGAiRAAiRAAiRAAiRAAiRAAiRAAoFGgDkjAw0tJyYBEnhXBHJkzyYeK5b62zPzXa3L9TzI10mPSFcq3CcBEiABEgiKBPr06SPXTEoVGCIakIYIqZCqVasmYcO++68Qffv2NQXqrkq/fv20AF9AMtu9e7fMnj1bihQpImXKlAnIqTkXCZAACZAACZCAGwLv/v8k3CyCTSRAAiTwtgT8GyL+tud5m+MpRL4NPR5LAiRAAiTwLglMnjxZzpw54+2UAwcOlE2bNpk0Pe825/KkSZN0Pd27dw9wMRKF8EaMGCFRTR5ripHebjkbSIAESIAESCDACTBMO8CRckISIAESIAESIAESIAESCB4EPDw85MiRI7JmzRrJlCmTHD58WCAIutr9+/flpikoGBD2wBTsu3Hjhr+m8uu8ly5dMkUFr7ud6/Lly/L06VO3fWx8fwngx9/z58+/vxfAlZMACZBACCBAMTIE3GReIgmQAAmQAAmQAAmQAAm8CYEkSZJIunTppFixYjJlyhSdYtSoUfLixQvdPnv2rHzxxRfy4YcfSqxYsSS1yYu8c+dO7cOxEIbu3bun4+OZ4nXY37t3r/aXLFlS9/fv3y92bOvWrdXzMXbs2FK4cGGB2OjOfDsvxg8aNMgU6otnitwlMkUH48jnn3+uYd7oO3DggHzyySeSMKFnscF58+ahmRaMCJQoUULg8UojARIgARIImgQoRgbN+8JVkQAJkAAJkAAJkAAJkECQIpAxY0bHepC/8Z9//lEhctu2bVKoUCEpV66cnDx5UvLmzSvnzp2TypUr6/gtW7bI0aNHHWLg1q1bVaCE12XcuHEla9asjnnhgQkhEe0bN26UZcuWOfrshl/nhdjYtm1biR49uoZf586dW3bs2CFLly5VT0jkvUQIOgSrli1bCtZBC14E8Hpr0qSJHDp0KHhdGK+GBEiABIIJAYqRweRG8jJIgARIgARIgARIgARIIDAJOBeugSAIUfHixYsqPm7YsEGWLFkiNWrU0CXMmjVLxUnsQGDcvHmztuMBIqPdr127tpfibvC+/OGHH6RRo0Y6HmHWrubXeSFu4rhFixbJRx99pB6SmAPelPiDYAqDODl06FDHmrWRD8GGAF5jPXv2FHje0kiABEiABIIWAYqRQet+cDUkQAIk4CeB58+fy4qVHvp3585dL+PXrd+g7T7lx/Iy+A13bt++redYt37jG84gcvr0GZ3jID0W3pghDyQBEiCBd03g1q1bjlMmTZrUEQaLEGhr8IqEQfTDdpQoUWTx4sWybt06bYf35MqVK7UNDeXLl9d2+4BwbZgtkOMup6MNv/XpvPh3Cl5xGTJk0II0u3bt0jnx7yc8OmHwlvzggw90O0uWLPrMBxIgARIgARIggXdDgGLku+HMs5AACZBAgBH41yTb79Kth/79/fJLlZ28/4CB2n78hKfXh20PyOfLV67oOfoP+OmNp/1tz16dY+GipW88Bw8kARIgARJ4twTGjx+vJ4SQFzFiREmfPr3ub9++3bEQhEPDkJMRnpRVqlRR70l4IUKItNWqUR0bQiXmcrYIESLorrMXpnM/tv06L+bG+eB1CQF1wIABjinix4+v2yjKY4XOPXv2OPq5EXwIFChQQIstZcuWLfhcFK+EBEiABIIJgbDB5Dp4GSRAAiRAAiRAAiRAAiRAAgFMAOHSkSJF0hyQNrx5+PDhepY8efJobkcIkCg2Ey1aNIfHY82aNXVMhQoVZOLEibpdtGhRgUBkrVatWipY2n3/Pvt13uXLl+tUFy5c0NDx3r176/7du3c1bBviFEJ3M2fOLLly5ZL58+f799Qc954QQNGlMWPGSJo0ad6TFXOZJEACJBCyCFCMDFn3m1dLAiQQwgg8fvLE5OXaIgcPHTb5sy6bL41xpHKlipIqVUolMWPmbLl2/bpUKF9W1q5bb0LuTkryZMmkTu0amvgfg56YOebOWyCHDh8WeJRky+o9nA25w+bMnS8nT/1PEiSIL8W/LCYZM3h6zGCO6zduyMxZc8yX2fOmKmtaL/nB0L9123bZt/+AFCqQX06bogK7f90j0c2X2q++MmtNmQJD1LZs3Sabt2w11VUfSKaMGUxxhEoSPlw47bt585bMX7hI/ve/0/Lv038lrfkCUqFcWb1mDDhl2pcsXWY8dP6ScOaYnDmySbmyZSR8+PB6/MpVHrr+ggW+kCzmCyqNBEiABEhAtPALOMCLEUJi+/btVcBDW4wYMbRydt26dTUPJNpSpUolU6dOlcSJE2NXChYsqM94yJ8/v3pMog+5JitWrOjo82kD1bedDft+nRd5K+EZaXNVNm7cWMaOHWv+PdwsoUOHlpkzZ6qXJoqcQLBs3ry5jBw50tu/Tc7n5fb7RQBFiZBKgEYCJEACJBA0CYR6YSxoLu3NVrVz505Jmzbtmx3Mo0iABEjgPSAAgfHTz/LpSlt+30zFP7vsXr37yf0HD2TUiKHyed48MmLkzzJpylTb7Xhev2alxI4dW6rXrCPHjp+QyMbrBcdZg9A3bYqnJ0vzFq1l23bPsDvbj+eYMWPIxnWrtZpqxcrVBGKgsw0bMkgK5M8n8EQpV7Gyt36MLVO6lPTu2U2Gjxwtk6dM87YOjNmyca1620yZOl2GjRiFJoelT59Opk3+Rb9c1m/QyIiuh7zMkTZNapk+dZJWbS1VpoJeI9Zt11qrZnVp07qlztexczfxWL1GOnVsJ1W+quQ4BzdIgARIIDAJHDt2TODp964MQiHEw4C2+/fvy6NHjyRWrFgBPbWv8/l23ps3b6pXpw39dp3o8mX8SBdXwoQJ49rF/RBIILDeGyEQJS+ZBEiABPwkENrPERxAAiRAAiQQZAlAnGvfsYvjz1lQhEfj3Xt31ZPRY8VS2bltsyROlEiv5czZP71cU9q0aWTH1o0ycvgQbT/8+x/6pRLPVoiEuLhu9UrJkd1r7qWp02equJcrZw7ZvGGN9OzeVecYNHio4PeuRYuXaj9EwIXzZsu8OTNVMPSyAKed5UsWylqPFY4xx41YipxfVogcMmiAbFjnYTwfU8uRI0dl/YaNcubMWYcQOXPGFNn76w6pUvkr44Xzhdy4cdOM2aRCJNa+aP4cWb1qmZQuVUK9Jp89e6ZnL1QwvzRq2EA9Kp2Ww00SIAESIAF/EIgcOfI7FyKxLN/OiyI4PgmRODZBggQUIgGCRgIkQAIkQALvmADDtN8xcJ6OBEiABAKSAAS32LFjOqb8eYxncQE0IBS5Q7s2snfvPlm8ZJnsP3BALv71l461noH2wLJlSukXupw5stsmFe/OvhQtkyVLql6O6IQ34959+x3jDpkQcBiKDSw0wqMtCIBz3blzx4RH/0/7ixcrZsLzPtbtgkb4Q0VwVytcuJAkSeIZ2oexEEPvGW+b00ZstAYh9eyf50x4tWeRgz+MIPlFvs8dHpHlK1aRePHiSkET8l2oYAHdtmHpWHeBwl+qkFnA9JcqWcLxRbRokcKCPxoJkAAJkAAJkAAJkAAJkAAJkEDgEaAYGXhsOTMJkAAJBDqByianYsoUnzjOg7yNVmiExx9CrHfu2q1CXb58edUzEiJhmDBeHeORfwvmWr0UIXewWMa7xBo8HJ0NYeOw4ydOyF+XLuk2xEvYnTt35cGDh7odLXo0fcZDnDhxHNvOG85zQ0y1ZteB/eUrVtpmsedBVdeJv4yVMWMnCPJK/v33Vc1hCR5LFs3T/JIDB/STKdNmqDclQtPxt2jxElm1fIlDkHRMzA0SIAESIAESIAESIAESIAESIIFAIUAxMlCwclISIAES+O8JHDt+XIVIrGTdmlUmb1ZEzRGJ/efPn+PJYa4ipO1ImDCBbu4/cFBu376tuRt//W2P7dbnvJ99pgIfPCZbtWiu41avWWcK4SQVHG8Fw33GK/Fp/bqa33HHjp1e5rA7YX3I25U1y6uCMlMnTdDiOhAdIXRmzJhe/vrrklnDMcmbJ7cM6N9HPSqHDhuhgiPWkuez3HL12nVp/O03ksHkmYSHZI+efVS0ROEchJjj+h49eqxFGsCKRgIkQAIkQAIkQAIkQAIkQAIkEPAEKEYGPFPOSAIkQAJBgkC8uPEc65g4abJcunxFxTk0IuG/fwwiHUKe4WlYsnR5I/xlMJWuf/NyKATA8b9MlKnG6xCC3p9/ntf8jQVMVepcuXJKyRLFtTjNb3v2SqUq1bX6Napuv44hJ1juT3Ppub9u2FjFRVQCh82YNknixI4jQ4YO19ByVM1GcZ6/r17VfoSeY10DBw1RD9GqVSprtW3k10ThntSpU+m4H38azAI2SoIPJEACJEACJEACJEACJEACJBB4BLzG6QXeeTgzCZAACZBAIBAIHSqUj7PGiRNbWjT/TgW3iZOnyu8m/yKKtsD27T/o5Tg7Tyin+UJJKJOXMbwMHzpIw7sh3kGIbN6sqZdjM2fOJN27dtbzLFm63CFE9uzWRTAfwsj79empx5w7d16u37gh9evV0X3n86EhdOhXFU1Dh/b8J8qO6dOruwqSKFYDIRIel716dDWejulVMP3JhGGjQM38BYtMuPZ4DVf/rkkjyZ4tq+T7PK/80KqFxIsfT6uLT58xS6uB9+/XW6JFjaprcZzPXDeNBEiABEiABEiABEiABEiABEggcAiEMpVOXwTO1P/NrDt37pS0adP+NyfnWUmABEggCBJA7kjkkYQ4+TZ29eo1FfB8CunG3NdMKHS0aFG1eI7rubCO69dvaAVrKzC6jvHPPvJH3rt3T70f3Y1H6Padu3eMt2Rst7kgweKF+S+myZP5Nutwd262kQAJkMDrEjh27JjkyZPndQ974/FTp06VunXrvvHxPJAEgisBvjeC653ldZEACQRFAgzTDop3hWsiARIggQAkEMbkYXxbIRLLiRvXfdEZ56X6dh6sAyHfb2sRIkQQ/PlkyPfoW85H5yI5Ps3BdhIgARIgARIgARIgARIgARIggcAhwDDtwOHKWUmABEiABEiABEiABEiABEiABEiABEiABEiABFwIUIx0AcJdEiABEiABEiABEiABEiABEiABEiABEiABEiCBwCFAMTJwuHJWEiABEiABEiABEiABEiABEiABEiABEiABEiABFwIUI12AcJcESIAESIAESIAESIAESIAESIAESIAESIAESCBwCFCMDByunJUESIAESIAESIAESIAESIAESIAESIAESIAESMCFAMVIFyDcJQESIAESIAESIAESIAESIAESIAESIAESIAESCBwCFCMDhytnJQESIAESIAESIAESIAESIAESIAESIAESIAEScCFAMdIFCHdJgARIgARIgARIgARIgARIgARIgARIgARIgAQChwDFyMDhyllJgARIgARIgARIgARIgARIgARIgARIgARIgARcCIR12ecuCZAACZDAe0Tg7t27smXrdl1xjuxZJX78+O/R6rlUEiABEiCBoEqgT58+cu3aNbfLa9KkiaRJk8Zt35s29u3bV65evSr9+vWTJ0+eSI8ePSRhwoTSvn37N52Sx5EACZAACZAACQRRAhQjg+iN4bJIgARIwD8EPNaslX79f9Kh1apWlg7t2vjnMI4hARIgARIgAV8JTJ8+XU6ePOl2TJkyZQJcjJw0aZKcOXNGunfvLvfv35cRI0ZIpkyZKEa6vQNsJAESIAESIIH3mwDFyPf7/nH1JEACIZzAggWLHATmzJ0vzZs1lciRIjnauEECJEACJEACb0Ng1apVkjp1ai9TuPPCv3XrlkSIEEEiRoyoY7EfPnx4ieTm36RLly5JuHDhJHbs2I55Fy9erB6R0aJFUzHS0cENEiABEiABEiCBYEeAYmSwu6W8IBIggZBC4OjRY3Ly1P/0cmPGjCE3b96S9es3Srmypb0gWL9hk2zessV88QsvZcuUlEOHfpeb5ktig/r1JGrUKPL06VNZuGiJ7Nt/QCJHjiR5PsstRYsUdsyxcpWHnqdggS8kS+bMjnZukAAJkAAJBH8CSZIkkY8//tjbhT579kzChg2rfenTp5fly5frmIEDB8qePXtk3rx5ut+7d2/p0qWLbg8aNEjQj3BsWN68eWXRokUSN25cqVy5snpi3rhxQ/v4QAIkQAIkQAIkEHwJsIBN8L23vDISIIFgTmDZipV6hRXKlxWEaMPmzPX88qc75mHmrDnSpl0HWbHSQxYtXiL1vv5Whg4fKVOnzZDbd27LixcvpGXrttJ/wEBZu269LF6yTNq27yTDRoyyU8j2Hbt0vBU+HR3cIAESIAESCPYE8uTJI/HixXP8uXpJIrQaOR579uypLNq2bSvHjx+Xbt266X7Xrl0FXpIHDhwQ9EWPHl1DsHPnzi07duyQpUuX6jj8MEYjARIgARIgARIIGQQoRoaM+8yrJAESCGYEHj58aITH+XpVJUsUlxJffqnbx46fkOMnTug2vhwOHDxUtxs1bCBbN62XenVr67592LFzlxEbd2po97LFC2T+3FnaNWXqdLl8+YpuFyqYX3B82gAuVmDXwGcSIAESIIGgSyBOnDhaHA2h2fhDURlXmzFjhoqPUaJE0a7x48erOJkuXTrd/+uvvyRr1qyC8Gx4Qn700UcqbqLz7NmzOoYPJEACJEACJEACIYcAw7RDzr3mlZIACQQjAhs3bXZcDXJE3n9wXxInSiQXzRe+RYuXSacObeXKlb8dYypXrqQh2fCghNBo7YgJ9YbFiBFD1m3YqNs25PvEyVOSIEF8Ddl2DtvWQSH84eyff8rmzVsdFFKk+ETDFY8bMdha3rx5JFXKFHaXzyRAAiTwXhKA52KGDBl8XbvN/Qjh8u7du4LQblgi8+/S0aNH5fnz53L79m1BFW7rCYnQbBj6aCRAAiRAAiRAAiGLAMXIkHW/ebUkQALBhAByPFqrUbue3dTnefMXSIvvv5PnL159wQv3QTjti2CKCTjb40ePdRchdMuWr9BteLbg7/HjR85Due1E4MyZs/LLxMmOlgoVyknoUKFN7s3FjrbEiRNTjHTQ4AYJkEBwJWC9IZ2vD4VrXA3VsiFE1q5dW8O0lyxZIvXr13cdxn0SIAESIAESIIEQQIBiZAi4ybxEEiCB4EXgz3PnZP+Bg3pRxYoWkQ8++MBxgSg2A1u3boOUL1dGrJfjps1btLCNx+q1jrHY+DRXDpk0ZarxXkko8+bM1BySCxYuljimwmnWbFl0LLxZHhnREl84I0XyrJLqZZIQuFO4UEHBn6u1bvW9axP3SYAESOC9JtC4cWPjWR/VyzV88803Uq5cOS9tfu2g0jbswoULAiEShW1g8KSkkQAJkAAJkAAJhCwCFCND1v3m1ZIACQQDAsuWeRauSZsmtfz0Y18vVwRvFBSqmTtvvoqRJYp/qUVsuvfsLcNHjtKK284HZMniWR0bxWmaNmuh4iWK3cSLF1fmz/HMH/njT4PFY/Ua6dSxnVT5qpLz4dwmARIgARII5gRQZMbVihUr5trkZT90aM+09PYZnTVq1FDPyDVr1pg0F5sFIufYsWN12/ngUKFCifNxzn3cJgESIAESIAESCB4EKEYGj/vIqyABEgghBJ49e6ZCIy63fLmy3q66XJlSKkaikM1Jk/Px++bfyb//PpWVK1dJpIiRpGWPZtKth6c3Svhw4QXi5bQpE6VT526yc9dunS9L5szyQ+sWmmMSDfZLYSgJ5e18bCABEiABEgieBE68LIbm29W9ePHCS/fp06e97K9evdrb/s2bN42XfSSBp+SYMWMc/c7HIo+x69yOgdwgARIgARIgARJ47wlQjHzvbyEvgARIICQRCBMmjOzYtsnHS86cOZMc3Pero3/AwMESN05s+WXCWFMNO7XcMF8CrcWKFVM3M2XMICuWLZI7d+6KcUjRcGw7Bs99e/fQP+c2bpMACZAACZDAmxCIGdPz3543OZbHkAAJkAAJkAAJBA8CFCODx33kVZAACZCAWwLPnj6TUT+PlclTpkm2bFnliKlqCsvzWW6BsOlsUaNGcd7lNgmQAAmQAAmQAAmQAAmQAAmQAAkEOAGKkQGOlBOSAAmQQNAh0PCbr+XR48eyYcNG2bZ9h+aERB7Jlt83CzqL5EpIgARIgARIgARIgARIgARIgARCDAGKkSHmVvNCSYAEQiKBOCZEu1ePrvoXEq+f10wCJEACJEACJEACJEACJEACJBC0CHiWugtaa+JqSIAESIAESIAESIAESIAESIAESIAESIAESIAEgiEBipHB8KbykkiABEiABEiABEiABEiABEiABEiABEiABEggKBKgGBkU7wrXRAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQALBkADFyGB4U3lJJEACJEACJEACJEACJEACJEACJEACJEACJBAUCVCMDIp3hWsiARIgARIgARIgARIgARIgARIgARIgARIggWBIgGJkMLypvCQSIAESIAESIAESIAESIAESIAESIAESIAESCIoEKEYGxbvCNZEACZAACZAACZAACZAACZAACZAACZAACZBAMCRAMTIY3lReEgmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkERQIUI4PiXeGaSIAESIAESIAESIAESIAESIAESIAESIAESCAYEqAYGQxvKi+JBEiABEiABEiABEiABEiABEiABEiABEiABIIiAYqRQfGucE0kQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkEAwJUIwMhjeVl0QCJEACJEACJEACJEACJEACJEACJEACJEACQZFA2KC4KK6JBEiABEiABEiABEiABEjgvyPQs2dPuXnzpi6gffv2kjBhQt2eOHGiHD58WLdr1aolOXPm/O8W+ZpnHjBggFy6dMnbUSlSpJDmzZtL37595erVq9KvXz958uSJ9OjRQ68b108jARIgARIgARIIOAIUIwOOJWciARIgARIgARIgARIggWBB4JdffpGLFy/qtWTNmlXq1asnL168kE6dOqlgh45cuXK9V2LkpEmT5OTJk97uT758+VSMRP+ZM2eke/fucv/+fRkxYoRkypRJKEZ6Q8YGEiABEiABEngrAgzTfit8PJgESIAESIAESIAESIAEgjeBDRs26AUeP37cIUS6u+Jbt27J5cuX5dmzZ+66te3KlSvy9OlTb/045sKFC3L37l1vfRiPeX0zeDQ+ePDAtyGOvhUrVsjp06cdf3PmzNG+xYsXy549eyRatGiOsa4bd+7ccXiMuvZBrIWA6+4aXMdynwRIgARIgARCMoFg6Rl57NixkHxPee0kQAIkQAIkQAIkQAIkECAE4saNK0uXLpXnz5/Lli1bdE60Qfyztn79emnRooUcPXrU0Q/BDyHcM2bMkNq1a6tn5datW9XzEIMWLlwoFStWVGGyfv36eg4r4jVu3FhGjhwpYcOGlblz50rDhg1V4Pv4448lffr0snz5clm3bp0UKVJEQ8arV6/uOHelSpVkwoQJEiNGDLs8b8+JEycWzOVqlStXVs/JGzduuHYJ2rBOnBsGj8mZM2dKhgwZVHxt1aqVrtVyadCgga4jVKhQ3uZiAwmQAAmQAAmEdALBTozMkydPSL+nvH4SIAESIAESIAESIAESCBACX375pUyfPl1+//13gegIK1GihEydOlW3Ec5cs2ZNFScHDRok+/fvl1mzZsmwYcNUrNNB5mHKlCnSunVr9SrENsRLiJHjxo1TwbJUqVJSuHBh+fHHH2Xs2LHy/fffS8SIEaVatWo6RbNmzeSvv/4SeC9ae/TokVSoUEEFTvT//fffMn/+fIFY+vPPP9th3p6//vpriR49uqMd14ecmO48Nu0giI0QInHtECAHDhwoED6PHDmia4J4CjET14RzI7cm1obropEACZAACZAACXglEOzESK+Xxz0SIAESIAESIAESIAESIIE3JVCwYEEVI9euXSv4g0fhRx995JgucuTI6k2IEGuEaUMQhJ06dcoxBhsQ5QYPHqyh1BAjbT5KeEFC8Hz8+LEcOHBAYseOrcLmuXPnHKHZZcqUUU9JhEHHjx/f4ZW5d+9eFSJTpUql4ibESYiRY8aMkdGjR4tPXokQTJ0Nx/lm//77rzLAmF69eqmQuXnzZg3pxpoRug1bvXq1rh+enIsWLdJt7eADCZAACZAACZCAFwIUI73g4A4JkAAJkAAJkAAJkAAJkIAlgOIusN69e2uoNCpoOxvCt+ER2adPH21GCDTMNW+kDYuOFCmS9tuHEydOqEehDfGOEiWKduH4a9eu6XbatGn1GeIiQr9Xrlyp+/CUhKEoTcqUKXXbPiCsGsKmOzt48KBkzpzZXZfbNht6jU7X6uGozo0wcawJXpsQQvGH64AnKYr80EiABEiABEiABLwSYAEbrzy4RwIkQAIkQAIkQAIkQAIk8JJAkiRJ1BvS5nOEp6SzwcsQQmS6dOkE3oybNm1y7nZsu4qQtqNDhw6a73HUqFHqHYkwZ1jo0KEld+7cuo054RWJAjVWiERH9uzZtR/nhkcmhMF58+bJvn37JFasWNoXEA8I4UboNwxFfHAu5MTctm2bFC1aVD1CmzZtKrt379YQdYRygxdCt2kkQAIkQAIkQALeCVCM9M6ELSRAAiRAAiRAAiRAAiRAAi8JFCtWzMEib968jm1shA8fXvevX78uKFADUQ72zz//6LNfDxEiRNAhEPngUWhzUd67d08+/fRT9TBEhessWbJ4CQ/HQSlSpFChFF6VEET79esnVapUEQicAWnwyER+SBhyR2KNpUuX1jbkzESBH4iSLVu2VI9Q65FpvUEDci2ciwRIgARIgASCAwGKkcHhLvIaSIAESIAESIAESIAESCAQCECIy58/v86M3IzwEnS2jBkzqgiHUGZUzYYHJEK1z5w5o7kdw4QJ4zzc23b79u21MjU8I7t27So2DHzXrl0qdKJqNkKjz549q9WzbUEYK4IiNBqekfBCxBwQBSEW+pQv0tsC3DTgWHhmOhvC1JG70sPDQ9q1ayfZsmVTL8w4ceII8l6iOA+uGQzWrFkjTZo0kTZt2jhPwW0SIAESIAESIIGXBEKZkIcXpEECJEACJEACJEACJEACJBD8CUCoq1u3boBfKEKonzx54qVK9euc5MqVKwJhz1m8PHbsmIqMyZMnV7EPfXny5NFwaBTIgWekNRTPCRcunKCgTmDaw4cPNVzcpzDwy5cva5GdtxFDA3P9nNtnAoH13vD5jOwhARIggZBLgAVsQu6955WTAAmQAAmQAAmQAAmQQIAQgEekT3kh/XMCVMl2NRSlgZchPA7HjRunYieqcMMTEgKls8WIEcN5N9C2I0aMKPjzyRIkSOBTF9tJgARIgARIgAReEqAYyZcCCZAACZAACZAACZAACZBAkCMQNmxYLRQzfvx4QdVteD7Wq1dPvvvuO0EfjQRIgARIgARI4P0kwH/F38/7xlWTAAmQAAmQAAmQAAmQQLAnkDZtWhk6dGiwv05eIAmQAAmQAAmEJAJeMzOHpCvntZIACZAACZAACZAACZAACZAACZAACZAACZAACbxTAhQj3ylunowESIAESIAESIAESIAESIAESIAESIAESIAEQi4BipEh997zykmABEiABEiABEiABEiABEiABEiABEiABEjgnRKgGPlOcfNkJEACJEACJEACJEACJEACJEACJEACJEACJBByCVCMDLn3nldOAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAu+UAMXId4qbJyMBEiABEiABEiABEiABEiABEiABEiABEiCBkEuAYmTIvfe8chIgARIgARIgARIgARIgARIgARIgARIgARJ4pwQoRr5T3DwZCZAACZAACZAACZAACZAACZAACZAACZAACYRcAhQjQ+6955WTAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQwDslQDHyneLmyUiABEiABEiABEiABEiABEiABEiABEiABEgg5BKgGBly7z2vnARIgARIgARIgARIgARIgARIgARIgARIgATeKQGKke8UN09GAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiGXQNiQe+m8chIgARIgARIgARIgARIgAXcE+vTpI9euXdOu0KFDS6RIkSRt2rRSrVo1CRvWf18h+vbtK1evXpV+/fpJ5MiR3Z3GS9u5c+ckZsyYEiVKFC/t3CEBEiABEiABEgheBPz3fxLB65p5NSRAAiRAAiRAAiRAAiRAAr4QmDx5spw5c8bbiIEDB8qmTZtUNPTW6dIwadIknaN79+5+ipHDhw+Xli1byvHjxyV16tQuM3GXBEiABEiABEggOBFgmHZwupu8FhIgARIgARIgARIgARIIQAIeHh5y5MgRWbNmjWTKlEkOHz4sEBed7fnz53Lp0iV5+vSpc7PbbZ/Gzp8/3+34O3fuyM2bN932sZEESIAESIAESOD9JEAx8v28b1w1CZAACZAACZAACZAACQQ6gSRJkki6dOmkWLFiMmXKFD3fqFGj5MWLF7oNETF69OiSKFEi+eCDD6RHjx7y7Nkzt+vyaWyTJk1kx44dekyaNGn0PDdu3JCyZctKtGjRJFasWJI5c2b5448/3M7LRhIgARIgARIggfeLAMXI9+t+cbUkQAIkQAIkQAIkQAIk8J8QyJgxo+O8yAV57NgxqVKlirZ169ZNsmXLJj179pQFCxY4xtkN38YWKlTIkSeydu3aAkGyVatWsnz5cilRooS0bdtWPTIrVarkL+9Le04+kwAJkAAJkAAJBE0CFCOD5n3hqkiABEiABEiABEiABEggSBFwLlzzzz//yOLFi3V9lStXFoiIrVu31v3p06d7W7dvY3E8QsBhnTt3luzZs4udo1evXvLtt99Kzpw55eTJk3LgwAFvc7OBBEiABEiABEjg/SLAAjbv1/3iakmABEiABEiABEiABEjgPyFw69Ytx3mTJk0qFy9e1H0UqsGftbNnz9pNx/PrjIXXpTWIkM6G3JQ0EiABEiABEiCB95sAPSPf7/vH1ZMACZAACZAACZAACZDAOyEwfvx4PU/u3LklEANCIQAAQABJREFUYsSIkitXLt1v2rSp/P3333L06FH1lly2bJm39fh3LPJNJkyYUOLGjatzoLo25l6xYoVs27ZNihYt6m1uNpAACZAACZAACbxfBChGvl/3i6slARIgARIgARIgARIggXdGoFGjRlq8JnXq1NKhQwc97/Dhw/XZCoMIqZ4wYYK0aNFCKlSoIHPnzvW2Pr/Gfvjhh3pM//79ZePGjYL8kDDkjpw6daqULl1a2+7fv6/tfCABEiABEiABEnh/CVCMfH/vHVdOAiRAAiRAAiRAAiRAAoFKAFWu161bJ5cvX5YCBQqIh4eHwyMSFbRnz56t5+/SpYvs3r1bGjZsKO3atfOyplChQmm1bd/GVq1aVY+ZMWOG7Nu3T3r37i1lypTR82E+FMeZN2+exIkTx8vc3CEBEiABEiABEnj/CIR6Yez9WzZXTAIkQAIkQAIkQAIkQAIk8LoE4GVYt27d1z3Mz/FXrlyR2LFji3ORG58O8mns7du3BWHaMWPGdBz68OFDefDggcSKFcvRxg0SCAwCgfXeCIy1ck4SIAESeN8JsIDN+34HuX4SIAESIAESIAESIAES+I8JxI8f398r8GlstGjRvM2B3JT4o5EACZAACZAACQQfAgzTDj73kldCAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAkGaAMXIIH17uDgSIAESIAESIAESIAESIAESIAESIAESIAESCD4EKEYGn3vJKyEBEiABEiABEiABEiABEiABEiABEiABEiCBIE2AYmSQvj1cHAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAkEHwIUI4PPveSVkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkECQJkAxMkjfHi6OBEiABEiABEiABEiABEiABEiABEiABEiABIIPAYqRwede8kpIgARIgARIgARIgARIgARIgARIgARIgARIIEgToBgZpG8PF0cCJEACJEACJEACJEACJEACJEACJEACJEACwYcAxcjgcy95JSRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiQQpAmEDdKr4+JIgARIgARIgARIgARIgAQClMDUqVMDdD5ORgIkQAIkQAIkQAKvQ4Bi5OvQ4lgSIAESIAESIAESIAESeM8J1K1b9z2/Ai6fBAKeAEX6gGfKGUmABEjAJwIM0/aJDNtJgARIgARIgARIgARIgARIgARIgARIgARIgAQClADFyADFyclIgARIgARIgARIgARIgARIgARIgARIgARIgAR8IkAx0icybCeB/7N3F2BWVG0Ax19g6e6QbkkRCREEpLtRkTAQsRMRpFFRCUUwQRGUEFBACQEJKYkPkFYQJKWRRqS+855lrnfv7h0WdpYN/ud5du/MnJkzM7+Zuzv3vScQQAABBBBAAAEEEEAAAQQQQAABBBDwVIBgpKecFIYAAggggAACCCCAAAIIIIAAAggggAACwQQIRgaTYTkCCCCAAAIIIIAAAggggAACCCCAAAIIeCpAMNJTTgpDAAEEEEAAAQQQQAABBBBAAAEEEEAAgWACBCODybAcAQQQQAABBBBAAAEEEEAAAQQQQAABBDwVIBjpKSeFIYAAAggggAACCCCAAAIIIIAAAggggEAwAYKRwWRYjgACCCCAAAIIIIAAAggggAACCCCAAAKeCoR4WhqFIYAAAggggAACCCCAQJwXePPNN+XQoUO+80icOLGkT59e7r77brnvvvt8y6Nj4vfff5fx48fL+vXrJU2aNFK5cmV5+OGHJSTEu48uu3btkgwZMkjq1KldT+Hvv/+WPn36SI4cOaRr166u65KJAAIIIIAAApET8O4/euT2x1oIIIAAAggggAACCCAQywXGjBkjW7dujfAoP/roI3nyyScjzIvqwkmTJknr1q3DFDN69GgZO3aszJs3TxImjHrDrqFDh8oLL7wgv/32mxQpUiTMvgJnTp8+LR988IGUKlWKYGQgDvMIIIAAAgjcoEDU/5vf4I7ZDAEEEEAAAQQQQAABBGK3wPTp02X79u02MOnUDBw0aNANHbTWMjxz5kzQbQ8fPiyPPfaYzX/ppZdky5YtMnPmTFt7ceHChTJx4sQw2168eFH2798vV65cCbPcf+bs2bNy9OhR/0WiAc+I0qVLl2TPnj1y6tQpX3a2bNlk1apVtqamb6HfxIEDB0SPIzD9+++/rsd2+fJl0fP1T1oT9ciRI/6LmL4BgQQJEsju3btvYEs2QQABBBC4WQIEI2+WNPtBAAEEEEAAAQQQQCCOCeTKlUvy588vhQoVkvvvv98evdYW1ACgBik18KPNqJ1Ut25du2zt2rWyc+dOO33vvfdK7dq1bbPoVKlSyWuvveasHuZVg4QaCGzSpIkMHjxYihYtKvXq1ZOvv/5aPvvsMylXrpxd/9y5c9K+fXvRpuPafDpt2rQycuRIX1l6zHpcGtBMmTKlZMqUSWrUqGEDoVqjc+nSpXZdLf/LL7+0wcR27drZZui5c+e2TcN1PQ0yarBR9/vggw/abfRYtOxHHnlEChQoINmzZ7fH8d1339l8DWh2795dkiZN6ju2KVOm+I5Nt9Wm5xUrVpQsWbKIBnb13IoXLy5Zs2aVzJkzS/ny5eXYsWO+bZi4fgG9b7TmKwkBBBBAIHYKEIyMndeFo0IAAQQQQAABBBBAIMYFtO/IZ599Vjp27CiNGze2x6PTGlTT2n2RSYsXL5ZkyZJJv3797OrvvPNOhDXXtm3bZvMrVaoUpljd7+OPP26Df5rx0EMPyVdffSWFCxe2NSk1gKn5U6dODbPd7NmzbbBPg37z58+X77//3vZ36fQTqQFIDUh++umnNuCpQdMhQ4bYIOEnn3wizvGEKfTqjAYxmzZtavuy1EXPP/+8zdEm5QMGDLDH1rdvX0mePLk0b97cBmavbmoDrlqjs0qVKjYI+cQTT9gs7SezU6dOtiamBmNJNy6wefNm25XAunXrbrwQtkQAAQQQiDYBgpHRRkvBCCCAAAIIIIAAAgjEbQFtGj18+HD5/PPPZe/evTJw4EDp1avXdZ2UBv8mT54sPXv2tDUCdWOtcRiYnObUGsALlrQZs1PTUJtPa43IESNG2NW1L0v/pAHDl19+WZxg319//SWtWrWy/T/qeq+//ro9ns6dO9vAowZJtWai1qTUpIPcBEsNGjSwtTc//PBDu4raaNK+LTVprcw2bdrYwKnOOzUndVqT1gJdtGiRrXWq8xo80/O688477bQGgUlRE9Cm/RoQXrNmTdQKYmsEEEAAAc8FGMDGc1IKRAABBBBAAAEEEEAgfghorUZtrqy1E7UGok5rE2T/pE2TnXT+/Hln0veqTZmTJEli5zXYpymifhYLFixo83bs2GFfnV8//fST7cuxfv368ueff9rFGrTT5s6atFmzJu1j0j9pc21NOmq2poj2qct19G4NUmpAUJNTc9L/vGyG3y9tuq4pRYoUfkvFVwNSA5z+yQlWOstKlixpJ3UAHQ2Y9e7d2/aJ6fSLqTUznSCqsw2vCCCAAAIIxBcBakbGlyvJeSCAAAIIIIAAAggg4LGABvyqVasm48aNsyV369ZNFixYYKdDQkLrNTj9G2o/khENHKL9RDrJ2caZ93/VZsuatBbmpk2b7PQ///xjg3KPPvqobYbtjH6ttd1Onjxp11m5cqV91X4X/ZM2DdcUbJ9OsFH7sNRApNYA1WCqNqvW5DZyd2AQ0m5gfmlTb03ajPzgwYOyZMkS0ebi6uafnIDu8ePHbX+WP//8s+hgQdokXpPWPo1sM3j/cpn+T0DvWw3yauCahAACCCAQuwQIRsau68HRIIAAAggggAACCCAQ6wQaNmzo6x9RB4/RUbGdmodbt261QZ8OHTpIYK3G6zmR6tWrS7NmzWwNzBIlStjAnvb3qGXqIDLaV2X69OntoDZarrNM+4vU9Mwzz9jXa/1ygqPat+O8efNsf5a6jQ548vHHH4v2+6hJB+q53qQD+Gjq37+/bbL9wAMPSJ06dcLV2nQCnVrTUwcA0pqZ2oxcR+/WpAMGOevYBfy6LoFixYrZa1m6dOnr2o6VEUAAAQRujgDByJvjzF4QQAABBBBAAAEEEIjTAs7gLtrk+K233rI1Dp0+E3VwGg0aNmrUyHeObsG0YHk6iIvWVNSm0tpEXJMGG7WmYaJEiey89j+pg89oEFRrUeq6o0aNEg2YuiUddEeTMyq4joy9evVq6dq1q+1HUmtGar+Wbdu2tev98ssv4QKCzjHYFSL41aJFC1ueHpv2G6lJy3VqTDpNwJ1jKVOmjD12DULq4DXaj2Xr1q3toDoRFM+iSArMmjXLDk4UydVZDQEEEEDgJgskMM0prtzkfbI7BBBAAAEEEEAAAQQQiAEBrfWnNRi9TNq0WWsRZsyY0bNi9SOKNnPWPiaDBQC1D8hDhw6J9knpBPciewAnTpwQbabt9Cep2+mgOm77i2zZup4e2+HDh+2xRXY7HZxHm8U7/WtGdjvW80YgOt4b3hwZpSCAAALxT4ABbOLfNeWMEEAAAQQQQAABBBC4aQLa/6HTB6JXO9XgotNkOViZ2hdkjhw5gmW7Lk+bNm24/GvtL9wGLgv02DRIej3JGcX7erZhXQQQQAABBOKiAM204+JV45gRQAABBBBAAAEEEEAAAQQQQAABBBCIgwIEI+PgReOQEUAAAQQQQAABBBBAAAEEEEAAAQQQiIsCBCPj4lXjmBFAAAEEEEAAAQQQQAABBBBAAAEEEIiDAgQj4+BF45ARQAABBBBAAAEEEEAAAQQQQAABBBCIiwIEI+PiVeOYEUAAAQQQQAABBBBAAAEEEEAAAQQQiIMCBCPj4EXjkBFAAAEEEEAAAQQQQAABBBBAAAEEEIiLAgQj4+JV45gRQAABBBBAAAEEEEAAAQQQQAABBBCIgwIEI+PgReOQEUAAAQQQQAABBBBAAAEEEEAAAQQQiIsCBCPj4lXjmBFAAAEEEEAAAQQQQAABBBBAAAEEEIiDAiFx8Jg5ZAQQQAABBBBAAAEEELhBgdGjR9/glmyGAAIIIIAAAghEXSDBFZOiXgwlIIAAAggggAACCCCAAAIIIIAAAggggAAC7gI003b3IRcBBBBAAAEEEEAAAQQQQAABBBBAAAEEPBIgGOkRJMUggAACCCCAAAIIIIAAAggggAACCCCAgLsAwUh3H3IRQAABBBBAAAEEEEAAAQQQQAABBBBAwCMBgpEeQVIMAggggAACCCCAAAIIIIAAAggggAACCLgLEIx09yEXAQQQQAABBBBAAAEEEEAAAQQQQAABBDwSIBjpESTFIIAAAggggAACCCCAAAIIIIAAAggggIC7AMFIdx9yEUAAAQQQQAABBBBAAAEEEEAAAQQQQMAjAYKRHkFSDAIIIIAAAggggAACCCCAAAIIIIAAAgi4CxCMdPchFwEEEEAAAQQQQAABBBBAAAEEEEAAAQQ8EiAY6REkxSCAAAIIIIAAAggggAACCCCAAAIIIICAuwDBSHcfchFAAAEEEEAAAQQQQAABBBBAAAEEEEDAIwGCkR5BUgwCCCCAAAIIIIAAAggggAACCCCAAAIIuAsQjHT3IRcBBBBAAAEEEEAAAQQQQAABBBBAAAEEPBIgGOkRJMUggAACCCCAAAIIIIAAAggggAACCCCAgLsAwUh3H3IRQAABBBBAAAEEEEAAAQQQQAABBBBAwCMBgpEeQVIMAggggAACCCCAAAIIIIAAAggggAACCLgLEIx09yEXAQQQQAABBBBAAAEEEEAAAQQQQAABBDwSIBjpESTFIIAAAggggAACCCCAAAIIIIAAAggggIC7AMFIdx9yEUAAAQQQQAABBBBAAAEEEEAAAQQQQMAjAYKRHkFSDAIIIIAAAggggAACCCCAAAIIIIAAAgi4CxCMdPchFwEEEEAAAQQQQAABBBBAAAEEEEAAAQQ8EiAY6REkxSCAAAIIIIAAAggggAACCCCAAAIIIICAuwDBSHcfchFAAAEEEEAAAQQQQAABBBBAAAEEEEDAIwGCkR5BUgwCCCCAAAIIIIAAAggggAACCCCAAAIIuAsQjHT3IRcBBBBAAAEEEEAAAQQQQAABBBBAAAEEPBIgGOkRJMUggAACCCCAAAIIIIAAAggggAACCCCAgLsAwUh3H3IRQAABBBBAAAEEEEAAAQQQQAABBBBAwCMBgpEeQVIMAggggAACCCCAAAIIIIAAAggggAACCLgLEIx09yEXAQQQQAABBBBAAAEEEEAAAQQQQAABBDwSIBjpESTFIIAAAggggAACCCCAAAIIIIAAAggggIC7AMFIdx9yEUAAAQQQQAABBBBAAAEEEEAAAQQQQMAjAYKRHkFSDAIIIIAAAggggAACCCCAAAIIIIAAAgi4CxCMdPchFwEEEEAAAQQQQAABBBBAAAEEEEAAAQQ8EiAY6REkxSCAAAIIIIAAAggggAACCCCAAAIIIICAuwDBSHcfchFAAAEEEEAAAQQQQAABBBBAAAEEEEDAIwGCkR5BUgwCCCCAAAIIIIAAAggggAACCCCAAAIIuAsQjHT3IRcBBBBAAAEEEEAAAQQQQAABBBBAAAEEPBIgGOkRJMUggAACCCCAAAIIIIAAAggggAACCCCAgLsAwUh3H3IRQAABBBBAAAEEEEAAAQQQQAABBBBAwCMBgpEeQVIMAggggAACCCCAAAIIIIAAAggggAACCLgLEIx09yEXAQQQQAABBBBAAAEEEEAAAQQQQAABBDwSIBjpESTFIIAAAggggAACCCCAAAIIIIAAAggggIC7AMFIdx9yEUAAAQQQQAABBBBAAAEEEEAAAQQQQMAjAYKRHkFSDAIIIIAAAggggAACCCCAAAIIIIAAAgi4CxCMdPchFwEEEEAAAQQQQAABBBBAAAEEEEAAAQQ8EiAY6REkxSCAAAIIIIAAAggggAACCCCAAAIIIICAuwDBSHcfchFAAAEEEEAAAQQQQAABBBBAAAEEEEDAIwGCkR5BUgwCCCCAAAIIIIAAAggggAACCCCAAAIIuAsQjHT3IRcBBBBAAAEEEEAAAQQQQAABBBBAAAEEPBIgGOkRJMUggAACCCCAAAIIIIAAAggggAACCCCAgLsAwUh3H3IRQAABBBBAAAEEEEAAAQQQQAABBBBAwCMBgpEeQVIMAggggAACCCCAAAIIIIAAAggggAACCLgLEIx09yEXAQQQQAABBBBAAAEEEEAAAQQQQAABBDwSIBjpESTFIIAAAggggAACCCCAAAIIIIAAAggggIC7AMFIdx9yEUAAAQQQQAABBBBAAAEEEEAAAQQQQMAjAYKRHkFSDAIIIIAAAggggAACCCCAAAIIIIAAAgi4CxCMdPchFwEEEEAAAQQQQAABBBBAAAEEEEAAAQQ8EiAY6REkxSCAAAIIIIAAAggggAACCCCAAAIIIICAuwDBSHcfchFAAAEEEEAAAQQQQAABBBBAAAEEEEDAIwGCkR5BUgwCCCCAAAIIIIAAAggggAACCCCAAAIIuAsQjHT3IRcBBBBAAAEEEEAAAQQQQAABBBBAAAEEPBIgGOkRJMUggAACCCCAAAIIIIAAAggggAACCCCAgLsAwUh3H3IRQAABBBBAAAEEEEAAAQQQQAABBBBAwCMBgpEeQVIMAggggAACCCCAAAIIIIAAAggggAACCLgLEIx09yEXAQQQQAABBBBAAAEEEEAAAQQQQAABBDwSIBjpESTFIIAAAggggAACCCCAAAIIIIAAAggggIC7AMFIdx9yEUAAAQQQQAABBBBAAAEEEEAAAQQQQMAjAYKRHkFSDAIIIIAAAggggAACCCCAAAIIIIAAAgi4CxCMdPchFwEEEEAAAQQQQAABBBBAAAEEEEAAAQQ8EiAY6REkxSCAAAIIIIAAAggggAACCCCAAAIIIICAuwDBSHcfchFAAAEEEEAAAQQQQAABBBBAAAEEEEDAIwGCkR5BUgwCCCCAAAIIIIAAAggggAACCCCAAAIIuAsQjHT3IRcBBBBAAAEEEEAAAQQQQAABBBBAAAEEPBIgGOkRJMUggAACCCCAAAIIIIAAAggggAACCCCAgLsAwUh3H3IRQAABBBBAAAEEEEAAAQQQQAABBBBAwCMBgpEeQVIMAggggAACCCCAAAIIIIAAAggggAACCLgLEIx09yEXAQQQQAABBBBAAAEEEEAAAQQQQAABBDwSIBjpESTFIIAAAggggAACCCCAAAIIIIAAAggggIC7AMFIdx9yEUAAAQQQQAABBBBAAAEEEEAAAQQQQMAjAYKRHkFSDAIIIIAAAggggAACCCCAAAIIIIAAAgi4CxCMdPchFwEEEEAAAQQQQAABBBBAAAEEEEAAAQQ8EiAY6REkxSCAAAIIIIAAAggggAACCCCAAAIIIICAuwDBSHcfchFAAAEEEEAAAQQQQAABBBBAAAEEEEDAIwGCkR5BUgwCCCCAAAIIIIAAAggggAACCCCAAAIIuAsQjHT3IRcBBBBAAAEEEEAAAQQQQAABBBBAAAEEPBIgGOkRJMUggAACCCCAAAIIIIAAAggggAACCCCAgLsAwUh3H3IRQAABBBBAAAEEEEAAAQQQQAABBBBAwCMBgpEeQVIMAggggAACCCCAAAIIIIAAAggggAACCLgLEIx09yEXAQQQQAABBBBAAAEEEEAAAQQQQAABBDwSIBjpESTFIIAAAggggAACCCCAAAIIIIAAAggggIC7AMFIdx9yEUAAAQQQQAABBBBAAAEEEEAAAQQQQMAjAYKRHkFSDAIIIIAAAggggAACCCCAAAIIIIAAAgi4CxCMdPchFwEEEEAAAQQQQAABBBBAAAEEEEAAAQQ8EiAY6REkxSCAAAIIIIAAAggggAACCCCAAAIIIICAuwDBSHcfchFAAAEEEEAAAQQQQAABBBBAAAEEEEDAIwGCkR5BUgwCCCCAAAIIIIAAAggggAACCCCAAAIIuAsQjHT3IRcBBBBAAAEEEEAAAQQQQAABBBBAAAEEPBIgGOkRJMUggAACCCCAAAIIIIAAAggggAACCCCAgLsAwUh3H3IRQAABBBBAAAEEEEAAAQQQQAABBBBAwCMBgpEeQVIMAggggAACCCCAAAIIIIAAAggggAACCLgLEIx09yEXAQQQQAABBBBAAAEEEEAAAQQQQAABBDwSIBjpESTFIIAAAggggAACCCCAAAIIIIAAAggggIC7AMFIdx9yEUAAAQQQQAABBBBAAAEEEEAAAQQQQMAjAYKRHkFSDAIIIIAAAggggAACCCCAAAIIIIAAAgi4CxCMdPchFwEEEEAAAQQQQAABBBBAAAEEEEAAAQQ8EiAY6REkxSCAAAIIIIAAAggggAACCCCAAAIIIICAuwDBSHcfchFAAAEEEEAAAQQQQAABBBBAAAEEEEDAIwGCkR5BUgwCCCCAAAIIIIAAAggggAACCCCAAAIIuAsQjHT3IRcBBBBAAAEEEEAAAQQQQAABBBBAAAEEPBIgGOkRJMUggAACCCCAAAIIIIAAAggggAACCCCAgLsAwUh3H3IRQAABBBBAAAEEEEAAAQQQQAABBBBAwCMBgpEeQVIMAggggAACCCCAAAIIIIAAAggggAACCLgLEIx09yEXAQQQQAABBBBAAAEEEEAAAQQQQAABBDwSIBjpESTFIIAAAggggAACCCCAAAIIIIAAAggggIC7AMFIdx9yEUAAAQQQQAABBBBAAAEEEEAAAQQQQMAjAYKRHkFSDAIIIIAAAggggAACCCCAAAIIIIAAAgi4CxCMdPchFwEEEEAAAQQQQAABBBBAAAEEEEAAAQQ8EiAY6REkxSCAAAIIIIAAAggggAACCCCAAAIIIICAuwDBSHcfchFAAAEEEEAAAQQQQAABBBBAAAEEEEDAIwGCkR5BUgwCCCCAAAIIIIAAAggggAACCCCAAAIIuAsQjHT3IRcBBBBAAAEEEEAAAQQQQAABBBBAAAEEPBIgGOkRJMUggAACCCCAAAIIIIAAAggggAACCCCAgLsAwUh3H3IRQAABBBBAAAEEEEAAAQQQQAABBBBAwCMBgpEeQVIMAggggAACCCCAAAIIIIAAAggggAACCLgLEIx09yEXAQQQQAABBBBAAAEEEEAAAQQQQAABBDwSIBjpESTFIIAAAggggAACCCCAAAIIIIAAAggggIC7AMFIdx9yEUAAAQQQQAABBBBAAAEEEEAAAQQQQMAjAYKRHkFSDAIIIIAAAggggAACCCCAAAIIIIAAAgi4CxCMdPchFwEEEEAAAQQQQAABBBBAAAEEEEAAAQQ8EiAY6REkxSCAAAIIIIAAAggggAACCCCAAAIIIICAuwDBSHcfchFAAAEEEEAAAQQQQAABBBBAAAEEEEDAIwGCkR5BUgwCCCCAAAIIIIAAAggggAACCCCAAAIIuAsQjHT3IRcBBBBAAAEEEEAAAQQQQAABBBBAAAEEPBIgGOkRJMUggAACCCCAAAIIIIAAAggggAACCCCAgLsAwUh3H3IRQAABBBBAAAEEEEAAAQQQQAABBBBAwCMBgpEeQVIMAggggAACCCCAAAIIIIAAAggggAACCLgLEIx09yEXAQQQQAABBBBAAAEEEEAAAQQQQAABBDwSIBjpESTFIIAAAggggAACCCCAAAIIIIAAAggggIC7AMFIdx9yEUAAAQQQQAABBBBAAAEEEEAAAQQQQMAjAYKRHkFSDAIIIIAAAggggAACCCCAAAIIIIAAAgi4CxCMdPchFwEEEEAAAQQQQAABBBBAAAEEEEAAAQQ8EiAY6REkxSCAAAIIIIAAAggggAACCCCAAAIIIICAuwDBSHcfchFAAAEEEEAAAQQQQAABBBBAAAEEEEDAIwGCkR5BUgwCCCCAAAIIIIAAAggggAACCCCAAAIIuAsQjHT3IRcBBBBAAAEEEEAAAQQQQAABBBBAAAEEPBIgGOkRJMUggAACCCCAAAIIIIAAAggggAACCCCAgLsAwUh3H3IRQAABBBBAAAEEEEAAAQQQQAABBBBAwCMBgpEeQVIMAggggAACCCCAAAIIIIAAAggggAACCLgLEIx09yEXAQQQQAABBBBAAAEEEEAAAQQQQAABBDwSIBjpESTFIIAAAggggAACCCCAAAIIIIAAAggggIC7AMFIdx9yEUAAAQQQQAABBBBAAAEEEEAAAQQQQMAjgRCPyok1xRw8eEg2btokv2/dKnv27JX06dJJkaJFpPI9lSRjhgyx5jg5EAQQQAABBBBAAAEEEEAAAQQQQAABBG41gXgVjJw67Xt5/sVXIryGKVOmlD69e0jrli0izGchAggggAACCCCAAAIIIIAAAggggAACCESvQIIrJkXvLm5O6QsXLpIOj3a85s4mThgrFcqXu+Z6rIAAAggggAACCCCAAAIIIIAAAggggAAC3grEmz4jZ/442yfTulVLmfnDVNm88VeZMHaM5M6dy5c35quxvmkmEEAAAQQQQAABBBBAAAEEEEAAAQQQQODmCcSbZtpr1q71qTVqWF+KFy9m5+++u6K89MJz8sJLXUSbau/Zs8e3njOxe/cemT33J/n999/l3Ll/JHeuXFK/fh0pWaKEs4p9PXfunEyfMUvWr98gBw8fkmRJk0mOHNmlTu1aUuaO0r5112/YKMuW/WLnGzaoL6fPnJF58xfIpk2bbWC0Vs37pOydd/rW14mjx47Jt99OkT937pQjR45KqlSp5K6yd5qya0qmTJnCrMsMAggggAACCCCAAAIIIIAAAggggAACcVEg3jTTfvb5F+X7H2bYa6BBx4fbt5UaNapL6VKlJCQkeMx10uTv5JVXX4vw2r34/LPygvnRdPnyZXmwbQdZvnxFhOsOevdtadWyuc0bPeZr6dWnn53WZbqPwOS//s5du6Rq9VqBq9h5PZef58+RzJkzR5jPQgQQQAABBBBAAAEEEEAAAQQQQAABBOKKQLxppt2+XVuf+RlTE/HDjz+V5i0fkFJlyslTzzwvP86eIxcvXvStoxM64rZ/IDJjxoxSokRx3zrvDR0my1estPPfTJzsC0Rmz5ZNmjdrKoUKFfSt27tvf7l06ZJv3pnQQKQGFBvUrye6nZMGvDPQmZSBg97zTWu5GgQtX+4uu0zP5bXuPSWedO3pO08mEEAAAQQQQAABBBBAAAEEEEAAAQRuPYHgVQbjmEW5u8rKsKHvmcBdD9EAnpN0esbMWfankmmyPeLTj2wTaM3/YNhHzmryeMdHpWuXlyVx4sQyaMj7Mmx4aN4vpiZkxQrlJUGCBDYAuXv3bvn4w2GSJUtmG9zUYKfuQ39Onz4tadOm9ZWpExqInDd3lg1E/vXXX3J35Wo2/+jRo3L27DlJmjSJafo90y7TdTuYGp2lS5WUZ55+Uvq98ZZkzZpVbi9aRC6ZmpkhiRLZ9fiFAAIIIIAAAggggAACCCCAAAIIIIBAXBSIN820HfxTp07JtO+ny9x580RH2A5MVSrfI1+PGWUXV6lWQ7S/SE0rli2WbNmy2mkNLB48eEhy58kdLgB4/vx52bx5i2zYuEmW/bJcZvkNnLPylyUmeJhF/JtpP/Jwe+nTq4ctV3/579NZv0HjZrLRlOckDUrWrlVTqlWtItWrVQ0X4HTW4xUBBBBAAAEEEEAAAQQQQAABBBBAAIG4JBBvakYq+oULF2wNxrYPPSj6o4HDNWvWyicjRvoCk4uXLJUTJ05ISjNAjBOI1G0zZf5vkBgNBubPn08X+5KW9dbb78qXo7/yLQuc0NqTgSlw8JmUKVL4Vrl85bKd7tu7p7Ro9YBvuQZDp0ydZn/0WHr16C4P3N/Kl88EAggggAACCCCAAAIIIIAAAggggAACcVEgXvQZqYPKFCtZRgoWKS41a9e3QUm9GEmTJhUdTXv0FyNF+4N0ktZq1CbPGuhz0ulTp51JO1jNoUOHffM68dIrXX2BSO37UZt1j/r8szD9RiZKFJ4zaZIkYcpJFMFgOjpq9rLFC6TLKy+F6bNSN9TAZNdur8u2bX+EKYcZBBBAAAEEEEAAAQQQQAABBBBAAAEE4ppA+OhZXDsDc7w6kIwG7TTtP3BApkz73k47v7Zv3yHaR6OTcmTPbicLFy7kLDID1fw3SvaChT9LuYr32ADnq6+9bvt2dPp11A1mz/pBenR/zTah9g9iRjjITAS1JX07NRPaz+SSpctkvtln1ixZZMb3U2T92lXy6cfDJXfuXL5VN23e7JtmAgEEEEAAAQQQQAABBBBAAAEEEEAAgbgoEC+aaWutR+0LUptga+ryajeZNOlbqVr1Xtm6dZv8NG++79pogM9pgt2wQT1Zu/ZXm6c1Hzdu2iwFTPPsD4Z9aJdpgDNv3txy7txZ3/Y6se2P7VKoYAEZ+cWXNvjpZJ426wc2y3bygr3u2btPHmr3sC87depUUvmeSpInTx7xb9KdxQQqSQgggAACCCCAAAIIIIAAAggggAACCMRlgXgRjNQLMPDdAVKjVj1fDcmVq/4n+hOYtP9FJ3Vo11YmfDPJNoHWwKMzgraTr4HLhx58wA4gU6JEcd8gM/79Ozrr6uv+v/ZLXhNEvJ6kI2W3btVSJk6abDd74slnwm1epswdUr58uXDLWYAAAggggAACCCCAAAIIIIAAAggggEBcEogXzbQVXPtx/GnOTHnwgdbh/LVvSK05OXf2DKlVs4YvP3HixDLtu0l2sBvfwqsTDRvUlwljx/hGsv5w2PtSulTJMKs1b9ZU+vfr7Vv207wFdjpBwv8GskmUMCyx/3zCBKF5A97qL11ffTlMH5ZOoToa96iRn4Ub1dvJ5xUBBBBAAAEEEEAAAQQQQAABBBBAAIG4IpDA9HN4Ja4cbGSP89KlS3Lo8GHRQWiyZc0qWbNeu4nzRbPN3r175eKFi5IjRw5JkSJ5uN0plZZ57O+/JV/ePJIsWbJw60RlgR73kSNHzc8RSZcurTnurBISwYA3UdkH2yKAAAIIIIAAAggggAACCCCAAAIIIBBTAvEyGBlTmOwXAQQQQAABBBBAAAEEEEAAAQQQQAABBIILhG1DHHw9chBAAAEEEEAAAQQQQAABBBBAAAEEEEAAgSgJEIyMEh8bI4AAAggggAACCCCAAAIIIIAAAggggEBkBQhGRlaK9RBAAAEEEEAAAQQQQAABBBBAAAEEEEAgSgIEI6PEx8YIIIAAAggggAACCCCAAAIIIIAAAgggEFkBgpGRlWI9BBBAAAEEEEAAAQQQQAABBBBAAAEEEIiSAMHIKPGxMQIIIIAAAggggAACCCCAAAIIIIAAAghEVoBgZGSlWA8BBBBAAAEEEEAAAQQQQAABBBBAAAEEoiRAMDJKfGyMAAIIIIAAAggggAACCCCAAAIIIIAAApEVIBgZWSnWQwABBBBAAAEEEEAAAQQQQAABBBBAAIEoCYREaetYsvH06dNjyZFwGAgggAACCCCAAAIIIIAAAggggAACCPwn0LBhw/9mmBJqRnITIIAAAggggAACCCCAAAIIIIAAAggggMBNESAYeVOY2QkCCCCAAAIIIIAAAggggAACCCCAAAIIxItm2lzG+CWQMGFC0Z8rV67ErxOLgbNJkCCBXL582f7EwO7ZJQIIIIAAAggggAACCCCAAAIIIBBGgGBkGA5mYlpAg2chISGSNm1aSZQoUUwfTpzf/6VLl+TEiRNy4cIFgrtx/mpyAggggAACCCCAAAIIIIAAAgjEfQGaacf9axivzkADkAQivbukeHpnSUkIIIAAAggggAACCCCAAAIIIBB1AYKRUTekBI8EtFm2/lAj0iPQq8Wop2PrbcmUhgACCCCAAAIIIIAAAggggAACCFyfAMHI6/Ni7WgUoI/IaMQ1ReMbvb6UjgACCCCAAAIIIIAAAggggAAC1xYgGHltI9a4SQLaXyQp+gTwjT5bSkYAAQQQQAABBBBAAAEEEEAAgcgJEIyMnBNrIYAAAggggAACCCCAAAIIIIAAAggggEAUBQhGRhGQzRFAAAEEEEAAAQQQQAABBBBAAAEEEEAgcgIEIyPnxFoIIIAAAggggAACCCCAAAIIIIAAAgggEEWBkChuH282X/vrOvlj+w7f+SRMkFCSJksqBfLnk6JFCktk+ts7e/aszJg1W9KmSSO1a9WQHX/+KavX/CrFb79dihUr6ivbbeLwkSOy8OfFdpX6detIypQp3FYPl3fs2DGzTUpJmjSprFn7q2zf8adUurui3JYje7h14/qCTZs2yc6dO32nkSxZMklj7EuUKCHJkyf3Lb+ZE84xlS1bVrJly+b5rvfu3Svr1q2TggULSpEiRTwvnwIRQAABBBBAAAEEEEAAAQQQQACB6BQgGHlVd9sf2+XnRUsitG7UsL7UrV0zwjz/hef//dcGEjXwp8HIffv22/nUqVJFOhi5dNlyXzAyS+bMUvXeyv67cJ1esHCRTP5uqvTu0U2yZMksW7f9IYuXLLPB1PgYjNyxY4esXLkynMns2bPl4Ycflpw5c4bLi+4F27dvl1WrVtlgYXQEIw8fPizLly8XDbwSjIzuq0n5CCCAAAIIIIAAAggggAACCCDgtQDByABRDTxWKH+XXLl8WTZu3iLfTPxWNMgXmWBkQFHXPXvx4kVZtHipb7ufFy2We6vcE65W5pUrV+TkyVOmFmDqMHlaE9I/1a5ZQ+6uWEGyZM7kv1gumXM7fep0uO39V/rXBFYvXLgYYc3M06dPi9mxpDI1MGNDqlmzpq0Nee7cOVm6dKls3LhRpk2bJk899VQYH3U7c+aMpDLBYS/ShQsXRK9ZZGthqpvWWo2olm3oNT1py0qSJEm4w3O2DZfBAgQQQAABBBBAAAEEEEAAAQQQQCAOCRCMDLhYKVIkl/Tp0tmlua7WrEufPnRem1D36feW5M+XV15+8Tm7zocffyabt/wm3V59WVKmCh6cO3PmrAx+b6gcPHRYGtSrI/XNT2DauGmznD9/XkqWKC77Dxyw62oz64IF8vtW1WDlN5O+tfPaFPueShWledPGdtmOP3fa5X3fGCDtHnpQdu/ZY2t7du70mC1Tg2fjJkySlav+59u+ZfOmphl3BTvfo1c/+fv4cbmvWlWZv/Bnu6xwoYLSuVNH0+w7iSxZ+ossNAHS/fsP2Lw8uXPJ008+YQOWly5dkude7GKbhw8ZOMDm36xfGuDLmDGj3V2LFi1k27ZtcsD46U/27NltwFCDk7/+GhqsVbd69eqJNqU+bs538ODBkidPHunYsaMcMdd46NChtqx+/fqJnlffvn3teXXv3t2ue/LkSalUqZIsW7bMrpc/f35p27atJE6cOMJTXrx4sQ2SaiBUk25bq1YtCQkJEQ1Cfvvtt/Lbb7/Za6/55cqVk0aNGtmg5f79+2X8+PHy999/a5YULlzYvvILAQQQQAABBBBAAAEEEEAAAQQQiIsCDGATcNVmzJwtbwx4V/qZgN6gIaFBqRbNmti1NHB0I0lrGX7y2UgbXNRm1xEFIrXcpb8st8VXrFDO1mi0y0yzbSdt+e13G3TUYJo2A8+UMYPMX/CzCS6uFg0a6nJN5cvdJdmyZpHLpgakfxo15msbiMxqmnBrP5Ia+Bw7/htZt36j/2qy5fffbYBTaxBqU+8Npm9GDYaN/2aSXe+RDu2k8j13y67de8z+F4bZNlhALsxK0TijAb7bbrvN7sEJ4E2aNMkGIjNlymQDkHreU6dOlS1btkg6E3jOkiWL7Nq1S7Rm5c6dO31H99dff8nu3bvtfLFixSRhwv/eLn/88YfUrVvX1nTU5uIaTIworVixQubMmWMDohpk1MCpBjHnzp1rV9dm5toHpAZDNUCq+drMW4Oier9NnDjR2msQUoOYW7dujWg3LEMAAQQQQAABBBBAAAEEEEAAAQTihAA1IwMuk9Ye1J9//jnvy/nf6jV2IBvfguucmD13nt1Ca1S2atEswq114JnNm3+zAcXixW4XrZX5w/SZNniotRd1IJs1a9fZbRvUrys1qle1NRp37NgpefPklqwm+KjNybV2ZL06tWyfkctXrvLt67Splbdu3QY7/+orL9o+B/PlzWODkYuWLJHSpUr41tValVrr8dw//8isH+fIieMnbJNtXUFrRa5bv0GKFC4kPbt3NYO0ZLXbJUqUSD78YIivjJiccIKy/5jj10GFNm/ebA+nc+fO1jdXrlw2GKmBwtvN4EIlS5aUefPmyZ9mwCENMjpJA5O2SbpZULx4cWexfW3evLkNeuo+Fi5caJrNnwyT78z873+htVDbtGkjWoNSA4pa81IDknXq1JHy5ctLoUKFbLBSa0FqMFJrUGqNTQ1+alBS00MPPWTn9XjWr1/vFM8rAggggAACCCCAAAIIIIAAAgggEKcECEYGXK6mTRrKvZXvsUu1afW7g9+zzZMrlC9n+hoMbYZ92a+G5AXTZ2BkkwYKNciUPn36cJto7UZNWmuvb/+wzZw1GKo1KnVbTVqzUVNmU9NPfyKTjhwODWrlypXTBiJ1mzwmiKnp4IFD9tX5lT5dWjuZ4uqI1NpUWQfEaWiCoNNn/mhH6Xb6p3zw/la2lqSzbWx4dWpEaq1HDfJqypEjh6/mqFNzUgeD0VS0aFEbjNTajRqM1FqIWlNSazw662gg0T+lTXvVKEXoaOeBtVB1Xa3ZqE3FNTn71NqZGizV66wBTA18T5gwQQ4dCr0GTiBVt3WadWvw1KmVqc3OCUZaUn4hgAACCCCAAAIIIIAAAggggEAcFPiv3WkcPPjoPuRkyZNJ0quDiWgNtUQJE9ldnjO17TRpwMgJfNkFQX5pjcjGjRrY3KnfTw+3lgaytD9GTZkyZZQkSRLbH6fvSh3IRvelwTVNe/fu871+PmqM/LJ8hZ13fkUUGNNgoqY9e/aaWp//2Oldu0KbIGfPns3OO7+cptZa29FJ2oS5SJHC8sJzT8uTT3SUalWr2KwfZsyyx+asF9Ov2qzaCQDqaNZOX5La5FoDgJr27Qv1y5o1tFanrpcmTRpZu3atXadgwYI2QKlNovX6lihRIlx/kNocXJMTJLQzAb90oBoNgmpy9qnBTec4dJ/ahFsDkQ0bNpQ+ffqYUdeL2fV1W2egHc3X6+9fjp3hFwIIIIAAAggggAACCCCAAAIIIBDHBKgZGXDBFpqmzhs2bpKLZiTpw6Y2oQ7ooqlQoYI2YKXTOgiN1hA8evSYaUZ7VBe5Jm12rc2ql5k+If+3eq0ZIbtymGbfv2/dZvejwcc+Pbv7RlvWviZfe723byCbO8uUtmVoAPD4iROm/8BtNk+Xa0qWLJl91Wbh2u+kf0phavAVK1bUNgV/d9B7UqBAAVuWrqO1Lq+V9FwHv/eBDZA1NiOOp06d2m6iI3Vr4MwZwEbP4Y1+va5VnKf5OoK2NsXWgOnevXtt2dr/op6zJq3pqIHFTz75xPbNuHp1aC3UChVCB+7RdUqVKiVLTHN1Tfny5bOjWmtfjpqcAKGduc5f2gRcA6Hjxo2z+3CajFeuXNkGMp2gpga7tf9IDYhq0muvNWg1mKnbDx8+3Nau1JHCSQgggAACCCCAAAIIIIAAAggggEBcFaBm5NUrpwE1TRpo1L4bdeAWDURqs+bnnnnSjrCdyPThd3/rFnY97UtRA0g68rWTEkhoGc6879WUrUGn5k2b2EWTvp3iy9KJ5StW2XkdGds5Dl2QxNTKdIKKWvvx9qJFpHXL5nbdxUuWyZmz5+xANneULmWX3XnnHfZVR8vebQaXcZJT5uOPPmwHt9Fz1MCoNgnW/iFLFA+tjeesH/iq2+fMeZtdN22a1GZE7om2P8s7y9whbR5sHWb1syYgeLOSc156HXQEbQ1Eai1HrWV49913+w7jgQcekDvuuMNeLw1E6nlrn49FihTxraNNtTVpntaYzJs3r53XX5EZwdo5Ft9GVyc06OiMnK0D02jT63vuuUdq1Khh16hSpYo95uXLl9um4qVLhwaWtYanltmqVStTWzaTrT2pgcyKFSsG7oJ5BBBAAAEEEEAAAQQQQAABBBBAIM4IJDDNP29siOhYdIrTp4dv+hydh3fR9BN5/vy/dlCZ6NxPsLK1GfapU6dNTc3UYYKXur7WDrx8+YrrsV0y258Osn2wffov18FwkptamP7NuP3zb3Rab0UN2mbOHNqk/EbLCbadlq8DwDi1OoOtF13LT506ZWuWRhS41OPSwWsiytPjuVb+tY5Zm4frfRus/GttTz4CCCCAAAIIIIAAAggggAACCNyYgFaaIv0nQDPt/ywiPaUBM6d5baQ38nBF7acwbdo0EZaY/OqgMxFmXl2oNTyDbe+2nZOXygTN4mLSQFxMBSLVy23fTv+QwVyvlR9sO5YjgAACCCCAAAIIIIAAAggggAACsUmAZtqx6WpwLAgggAACCCCAAAIIIIAAAggggAACCMRjAYKR8fjicmoIIIAAAggggAACCCCAAAIIIIAAAgjEJgGCkbHpanAsCCCAAAIIIIAAAggggAACCCCAAAIIxGMBgpHx+OJyaggggAACCCCAAAIIIIAAAggggAACCMQmAYKRselqcCx2tOdLly4h4aGAejKKtoegFIUAAggggAACCCCAAAIIIIAAAjcsQDDyhunYMDoE/v33Xzl58qQQkPRGVx3VU11JCCCAAAIIIIAAAggggAACCCCAQEwLhMT0AbB/BBwBrb13+fJlOXfunA1GXrlyxcni9QYF1FQDkWqZMCHfPdwgI5shgAACCCCAAAIIIIAAAggggIBHAgQjPYKkGG8ENGCmAcmzZ8/aABoByRt31UCk/iRKlIhA5I0zsiUCCCCAAAIIIIAAAggggAACCHgoQDDSQ0yKirqAf/BMA5E6T7oxAccPwxvzYysEEEAAAQQQQAABBBBAAAEEEPBegGCk96aU6IGABtAIokUNEr+o+bE1AggggAACCCCAAAIIIIAAAgh4L0Anct6bUiICCCCAAAIIIIAAAggggAACCCCAAAIIRCAQL2pGZsiQIYJTYxECCCCAAAIIIIAAAggggAACCCCAAAIIxCaBeBGMVNAKFSrEJleOBQEEEEAAAQQQQAABBBBAAAEEEEDgFhdYsWLFLS4Q/vRpph3ehCUIIIAAAggggAACCCCAAAIIIIAAAgggEA0CBCOjAZUiEUAAAQQQQAABBBBAAAEEEEAAAQQQQCC8AMHI8CYsQQABBBBAAAEEEEAAAQQQQAABBBBAAIFoECAYGQ2oFIkAAggggAACCCCAAAIIIIAAAggggAAC4QUIRoY3YQkCCCCAAAIIIIAAAggggAACCCCAAAIIRIMAwchoQKVIBBBAAAEEEEAAAQQQQAABBBBAAAEEEAgvEBJ+UdxccuXKlbh54Bw1AggggAACCCCAAAIIIIAAAggggAACt4gAwchb5EJzmggggAACCCCAAAIIIIAAAggggAACCMS0AMHImL4C7B8BBBBAAAEEEEAAAQQQQAABBBBAAIFbRIBgZMCFPnv2rEyePFk2bNggly9fDsgNO5s/f35p0qSJ5MyZM2wGcwgggAACCCCAAAIIIIAAAggggAACCCAQToBgZACJBiJTpEghffr0kUSJEgXkhp1dvny5jBs3Trp06RI2gzkEEEAAAQQQQAABBBBAAAEEEEAAAQQQCCcQb4KR16rFGO7MgyzQGpEaiMyQIUOQNf5bXKdOHVmwYIHs3btXcuTI8V9GDEydPXtOJppA6saNm22NzqJFi0jLFs0kQ/r0MXA07BKBqAvs2bNXvho7LmhBTRo3lOLFigXNJwOB2C6wes1amTdvvuzctVty584ld1esIFXvrXJDh71m7a+ycuUq6fzE4ze0fUQb/bxosSxd9osvK2nSpJLLtARo0KCepDRf2pEQiEhg7LgJkjFjBqlbp3aY7Nlz5sr+Awfk4fbtwiy/npnJ306R1KlTSZ3atcJtduTIEfls5Bfy3DNPyebNW2T9ho3S8bFHJPC9sWv3brntttsk5BpfOIfbAQtueYF3Bw6Wi5cuhXO4p9Ld5nnkdt/9d/rMGfli1Gh58flnJXny5OHWZwECsUlgx44/ZcLESdK6VQspWKCA79DOnTsn7w0dJm0evF/y5snjWx5sYufOXZI377XXC7Y9yxFA4NYTIBgZcM01qHmtGpH+myRMmFAuXrx4zSbd/tt4Pa0PRi1a3S8nT502H2QrS0hIiIwe87WMH/+NjP36S8mWNavXu6Q8BKJd4N9//5UTJ07a/Zw+fVrmL1gole+p5Pui4Pz58zH6vot2AHYQrwVmzpotXbp2k7J3lpHSpUvJpk2b7d9tDaQ80anjdZ/7bhNgWb5ipXR6/LHr3jbYBmtMsPTb76ZKzRr3yZUrV+TQoUMyzvxfecd8IP9u8gQbmAy2LctvXYEZM2fJ7bcXldq1aoZBWPW/1TZI2L7tQ2GWX8/MwkWL5Dbz5W+tmjXCbab/L+bOnSedOj4qG00wcvqMmfLoIx3E/72xffsOadyspaz8ZbGkTJkyXBksQMBNYNTor6RUqZLhAjP//POPfV5x7r9Dhw7LV1+Pk6c6dxL9EoeEQGwW2L1nj71f9QvS8V+Ptp8j9Xj1OVvv4xr3VZfcuXK5nsKUad/LN99MkgnjvnJdj0wEEEDAXyDeBCP1g1JMppjc/6+/rrM1ayZNGGs/AKjD008+IdVq1JEfZ8+VDu3+e/DXfywXLlyQVKlSheHS4z98+IiEJA4JWptS89NnSE9tgjByzESXgH67+tYbfW3xe0ztYw1G6oO9fhBw0rXed5dMoP748eOmlk5GZxPfqwbxjx09JpkyZRT9UoGEwM0UmPztd1KjRnUZOmSQb7cDB78nI7/4Uh55uL0kTpzYLnf+NqdPn863zLeBmdBAfZIkSaRRwwb2x/894XaPa42Hk/eII/wAAEAASURBVCdPSebMmVzv/+zZs/neh7rfA6ZmW8dOT0q37j1l9KiRvm3djtNtX/oF4PETJ4L+3/E/V6bjloD/vWiP/OpjmrNcX48ePWprjkUUGNTg4rl/zkmWzJl995mWo9vpl8DHjv1t/34nSJDAFq//M36aM9NOO790Xf/3hr5fNOly/SEhcL0CrVu2kKZNGkW4mXP/7ftrv833v8+8+Hsc4U5ZiEAUBZy/hVqjfOTno3xfiDrL/e9j3ZWOr6BJuzVz0t/m73Hgepqnf8dDQhLx5Y8DxSsCCIQRiDfBSK+aaYfRieSM7jsm968fRDVtNDVrChUqaB/atZn5N+bbqVSmOZMem9Yy69Wnv8yc9aNdV5sDvtGvj/0gOsL84xk2/CO7XH/dWeYOGTZ0iGkKlVpeeqWrXL5yWX79db158D9m1xky6B1bU8a3ARMIRLOA8/5y3mv6QbRy1Rq2OZ42H9GkNV6atbxfpn03SYZ9+LEJtJy07wl9aMqbJ7e8M+BNG6zXhyUN+Dj3vD5M9e75utSrG7ZJYTSfEsXf4gLadG/P7j1y8OAh+3dYOR43TUrvq15NNIiuNfQXLV5i/247f3u1ltezTz9p8/Rvswb5tBm13sPPPfuUTJgwUb6f+q39QOB2j+u9r3/3ndTz9W7SqmVzZ9b36nwQcd5/mpElSxZb+7J7j96yb99fprlrDtfjdNvXqC/HyKcjPrcfbAqb/12vvfqK3HVXWd/+mYi7Anrv+N83eiYm/GdPSJdrU+knn37OdHOzzy4rc0dpGfTu2/a9sMJ0N9CjZx85aGriaspq7jl9JtHuZ7TcFaYG8N2Vq9n7Rp913h/yrtxRurRs32H+B7S4X+bNmeX7UKz7mjT5O1O7Z6x8NXqUtGn3sC2zQqV7ZcCb/aXb6z1l4vivbdmaoc3Ah3/0iSlj5nW1krGF8uuWEIjo3tYT97//nHtfX/XvuRd/j28JXE4yRgSc+1W/8Nfn56pV7xX9n+wsd+55fc7+bOTnMuvHOfY4K1euJP1695RNJog5+L2hdlmJ0mVl/dpVok22u3bvIVu2/GaXVzNl9u3TU9KnSxcj58hOEUAgdgoQjPTguugfa+cPtgfFXXcR+g+jebMm0rf/m6I1a2qa2jYVypeTKpXvkTRp0thje/+D4bYJ32effCgF8ueTF15+VT4Y/qE81OZBG5Tp37e3afZ0n+1jqVPnp+WneQtE++TTNH/+QvMhYYDoh4V3Bg6Rd94dbD8wX/eBsgECNyjgvL+cByKtyag1E6b9MF0euL+VLXXmj7OlhOlDMo8JPGpauep/8vZbb0j5cmXN++J9ee6Fl02gZrIsXrLU3vNv9u9j++jTD59du70uRQoXEq1ZQ0LgZgh0evxRU8PwKalRu56ULFlCKps+xyqZn9JXa/7u27dPnnnuRWn30IO2pqQ2n+rStbvtW7Jp40b2A64GIjXIniJFcvlrf2hNHH2v/DRvftB7XGtcaiDy/SEDpWKF8jJuwjfS/80BNhjvX8tBDfT95rzn/E2KFiliZ3fs+FPXCnqc5cqWDbqv5ctX2r6o+poPMvoh5ZPPRkivvv1lyuRvIqwB6r9/pmO3QLD7xn/556Y/vRzZs8u4r760QcU27R4xXQJMkYc7tDN/j3uYJt415JmnOsuRI0flmedflK/HjZd+fXrZE9+67Q/Rv9/6xenAIe/LCy+9KrOmTzWtPi7afH0P6L406fTFS6HLU6VKKfoMpM84c3+cYbr8SC+fmvtO/3cUNn//NWlTw+ZNG4vWtnT+79gMfiFwVeDHOXNMoGWnzyO96Zu9rfk7Hez+m/vTPE/+Hvt2yAQCHgs4fy/bmS40Fi1aIt3NlzRjzd9m52+gvuqPfpbU1nX6f/rY339L/zfeMp8935LBppKKtsibv/Bn+XzEJ/KvWeeFl7vYWu363H3i+Anp3e8NGTjoPVMRprfHR09xCCAQlwXiTTDS+UMaUxcjJvevgRlbs6VFc1nw8yIbbPn+hxmiD0gfDXvffuO/0Cxv1LC+lLta6+RtUyPgxMkTktN04q79gxQsWMDWUNAmrfqB9IRpNqfnpD/aV4j+aKprOo2fM/cn34N+THmz31tLwHl/Ofeknn3DBvVs/3X6Ta0GIDWoqB9enXW0M/k6tWtaKP2gMMt84NSaC7Pn/CR5zGAheUxn3H/tPyAVTS3hjz75zNbucgKZt5YuZxsTArcXLSozvp9i7zsNKo7+aqx8/OkI8wXRA3bQg0UmaK6pSpXK9j7NbgI3GnyZN898UdSoob3PdbAbDdpomjg5tEak3v9u97g2WdU0Zer3cvnSZWnRrKnoBxAdzEO39U/OvPPq5KVNm8ZOnjl7RtyOs2qV0MF4ItrXLytW2JoXjRuFHo++d/X/jH7gCdyfs19e446AXsPA6+jM62u6tGlljvlbrH2SahB+5g9TbN962pT1k4+GmUBlNjllmlRrX2aZTDcbf/993Jan22rwvn69uhajfds29gvTLb/9Zpp7hzYZ1HX896UrOvPJrvbflzx5MtuKpKV5btLA6NPm/ttnamluMIPe9O3Vw7d+3BHnSG+WgHYPsMMvGJnTBF4C7znnftNXr/4e36zzYz+3noBzvyZKlFD69OkhLVu3sQMwOV/2a/6ff+4UHdRu5Gcf2y/u9cv7Fmag1MFDhsq/5/+1XyImNF/iJE+WTPQLox07/jRf7DSx3cEkMJ9T77m7ohmUcrz06fU6tc5vvVuMM0YgqEC8CUZqM4iYSrrvmNy/9qd30dQI0Cba+qOdt+uyV00tmmEffSyDTdMnbQpVpHBh33FmzZpF9Eebb483HQ5/b2qYadLaj5r0A6Gek/4D0j71nPNLkjSJzddvxuhnz1Lw6yYI6P2oybkvdbpwoUKS39TynTV7jh0E5G/zLW31avf67ltttufctxp81KTNSvW9scs0j9XakE7SpqZnzOiXzvrOcl4RiA4B7bv3961b7T3coH5d0R8NwkycOFmGvP+B1DIDxvx1tc8xrfHun7QTeec+zZYtq2/aeY9onts9riMRfzR8qA3AvNSlqy26makJ9uorL4Wrkeh8QHH25xzHnqtNa7XJtjbP0hTRcbrt648/tkupkiV9x6+DPNxhBvLRFLg/u5BfcUYgnenf9KjpjzfwOmofpdpaQ5c/9sjDtpsBraU7dNiHtin2G6a2oz6D/LJ8uamxGNp8X//G6/slRcoUdju9J0ubYKRTdoH8BazLkcNH5bacyey05un7Qdd1pjUjcFrntUXIIFO7cpWpSb9u3Xo7IrKObK95JAQiEtA+I/XLff8U0b2l+brcq7/H/vtjGgEvBZznB33VUbN1IL0PTHcuTh/tulyfWTT5f5bUL1U1ad+//s8LBw8ctMt18Jvx30y00/pLn7W1j2j9MoqEAAIIqEC8CUY6fwRj4rLqvmNy/1On/SALTdX4iWYAGydAqDUete+x6WZUy5CQEFvbUf+R6IO3pvUbNpgaOUtDq9CbQOSITz+SEiWK29oxVe+rbR+gnHPS5krOtP+rMx0T5uzz1hJw7jV9daZVQL911Qed46bWjNYQ035OnfzNW7b4pn/7PfQhKleunPZDb1LTz6p+u+skHeVV3zPOts5yXhGIDgEdefXRjp3NwDD9fH+TE5maA9rdhgYj95tBYjJnymR3/dWXn9v7Wmd+v3ofO++DRAn/q83o3Lv6qn3sBbvH/za13/VLqI9NQFI/FMyePdf29VTt3ntNDbWKAacb+n5zynYytaaj1qDXLj82btxkF0d0nG770oFzNm7e7HvP6bFox/ntTE03PX5S3BXIZz7M6oBjGohxnkn0HtLai5VM7Rid/mP7dmllaiW++PyzJqC92TTZH27vw16m/9L33h8m3bp2MV0H1DG1HZOJ9k+qA88496EGw51pLVNT5iyZfcucPF2u0858RNPa56TWMJ43f4HtyqZDu7a+9XV7EgKBAv73kX+e/33mLNdl3v09dkrlFYHoEXDu7QdNX+za3Uufvm/YHely/Z+tSZ+ttZWGJuf/fyaT52yrr9oFhqZePbubrpLustMHDx60FWN0sDJdh4QAAgioQLwJRjrf6sTEZdU/qjG5/+rVqsroMV/LK692s/3n6YdYfUDX6vCtzaAEemx169SSWbNm2w8COjrq0A8+9HXYrma2lqSpfTDaDICgA37oh1Xdzvnn4pyf8w/EmY8Jb/Z56wk495u+OtOqUOO+arZWy2TT15j2gefk6X269td19gOm9m+n387myZ1TcplaZfdVryq9zQOWBlR0eoEJ5L854F0Z9fln9n1w6+lyxjdbIFWqVKaD+ComyNLLDrSkzU7/MYPRfDNpsj2UO+8sI6dOnbLT2nT74fbt5IB5kH/s8c42eKM14DX5/+8J/dsc+r/I7R5Pdymt6WOviw321DHdbmiAXpPWPHPeP3aB+aWfF86cPiNr1v5q96W1j3VwkWnf/yBdXnnRjuJdsWJ5u3pEx3mvaWIebF9VKleWnr372prNFcuXNwM8jBL9UuD5Z58OdxzO8fAaNwTKmz6rR43+Sga8M9COZK3dv8z9ab5t5qeDFOl99sP0GbZWrXYZc5v5IiitqTGpA5M592DGjBkkUUgi2+2M9rmn7wnN0/tcmwrq3/esJgCpzz5a26ZggfzypxkwQZOzXtjp0PdG0mRJ7TrrN2y0NXG1Rq52+aH9sWrS5ynnGOwCfiEQIOD/d9c/y7lv9NWZ1nW9+nvsvy+mEfBSwLlfnXtXm1v36tFdHniovd2N3seFCha0FVi+HPOVZDDdgOmXjVOmTrVf5tjm2cmTmy9SD9rm2fny5bXP3CNGfmG6DEsn+syjf2OzZc0qZUwg09mfl+dAWQggEDcFCEYGXLd8+fLJctNEqE6dOgE54WfXrFljg3aZTPAvJv+w6sAbH3/4gbw7aIg8/ewL9kC11orWsnnssUfssXXu1NF2BP/Ek8/YfK012d70E5YkSWL7YN+4aUu7XD883n13BfshQc9Ja0VqzQbn/AJfw6uwBAHvBfRBSFPgh4B06dKJ3rMbTO2ssmXv9N2num5uE2Tp98YAG1wvUqSwDBr4jugDU03TBHb3nr3y1tvv2h/9IPvKSy9IUbOOc3/r9iQEolNA+6XT5qnaFEq/ANKkAZXRX4yQNKaGr/5ooKafGVxGRwPWv+nanLp586b2Pg19T/z3RZjO69tE72G3e1z3o/f7J5+NtMEine/Q7iG53YxUHHj/a5mHDh8W5/+GHoOOTN+j+2u2abmuf1uOHEGPU/uhDLYv7dNV+3Dt1bufHoJpsl3CBEhfYeAQqxG3f2lze+0X7AvTF6O23NCk97YOQKPXWe+bRzq0lz5mQINmLe+3+fny5RUdSE9r27Y0/ZDpl6ua8uXLa+dnmi9T9UtSTRqY1CC3vm/077cOVKbPKaHvif9qQ+q87sv/vZE9Wzb7v0EHNHtnwBv2/4cO5KT39j2mZrAOchP4PrA75RcCVwWc+yoQxP/+c+4hffXq73Hg/phHwCsB597V+9W5d7UPde3LefhHn9hlOvjdwHfesl8itnrgIbtrff7u1aObzdfWdfqF5f1t2smsGdPkTdPyQ2tWtmn7sF1Xa8W//OLzvvK9OnbKQQCBuC2QwPwBCv2UH4fPY9myZbbGkxencNh88Jo+fbp9yHWaFwUrVx+MGzRoYAZ/Ca2lEmy9m7lc+3I8bkYt034eNZAYmM6a2jf6iVUfvP2T1sIJCUlsm0T5L2cagdgu8PyLr9h+bR57pIPvUHv06mvfA888/aStYZbeBC0Dk/bRpyP8aQ0cEgIxJaD/gjXgp10MpDA1CwKT5uuACWnTpbXdaATmu8273ePahPbIkSOS0XyZpkHDqCa343Tbl9aG04FKInqPRvWY2D7mBU6cOGn6Ig3tKiaio9Fnj8uXr4gzKJKzjvYTec50ZxCsbzG3e9spI9irftjWQKY2F9TnJJ2uXa+RrV1/l/lSi4RAdAi43bNufyOj41goE4GoCGitSB2oJpn58U/6/1w/G/t/xtS+gjWQqV1ukBC41QX27NljukSqdKszhDn/eBOM1GY+XqZDhw5d89ubzJkzMyKYl+iUhcB1CCxeskx0FOKZs36Uyd+MFR1Mw0k9TW0rDchrk08SAggggAACEQnoKPTLli2XY6ZGz5emq45rfQkdURksQwABBBBAAAEEriWwb98+gpEBSPGmmbbXFTw10BiZ5PV+I7NP1kEAAbHfvp48eVIGvTvAdKz93+AFalPurrK21gvvT+4UBBBAAIFgAjr4WcaMGeWVl1+wtST5nxFMiuUIIIAAAggggIC3AvGmZmT27Nm9laE0BBBAAAEEEEAAAQQQQAABBBBAAAEEoiCwf/9+akYG+MWbmpHa3woJAQQQQAABBBBAAAEEEEAAAQQQQAABBGKvQLwJRjqjf8Veao4MAQQQQAABBBBAAAEEEEAAAQQQQACBW1sg3gQj6efn1r6ROXsEEEAAAQQQQAABBBBAAAEEEEAAgdgvQDAy9l8jjhABBBBAAAEEEEAAAQQQQAABBBBAAIF4IUAwMl5cRk4CAQQQQAABBBBAAAEEEEAAAQQQQACB2C9AMDL2XyOOEAEEEEAAAQQQQAABBBBAAAEEEEAAgXghQDAyXlxGTgIBBBBAAAEEEEAAAQQQQAABBBBAAIHYL0AwMvZfI44QAQQQQAABBBBAAAEEEEAAAQQQQACBeCGQMF6cBSeBAAIIIIAAAggggAACCCCAAAIIIIAAArFegGBkrL9EHCACCCCAAAIIIIAAAggggAACCCCAAALxQyDeNNNevXp1/LginAUCCCCAAAIIIIAAAggggAACCCCAQLwQKFSoULw4Dy9PIt4EIzt06OClC2UhgAACCCCAAAIIIIAAAggggAACCCAQJYFly5ZFafv4uDHNtOPjVeWcEEAAAQQQQAABBBBAAAEEEEAAAQQQiIUCBCNj4UXhkBBAAAEEEEAAAQQQQAABBBBAAAEEEIiPAgQj4+NV5ZwQQAABBBBAAAEEEEAAAQQQQAABBBCIhQIEI2PhReGQEEAAAQQQQAABBBBAAAEEEEAAAQQQiI8CBCPj41XlnBBAAAEEEEAAAQQQQAABBBBAAAEEEIiFAgQjY+FF4ZAQQAABBBBAAAEEEEAAAQQQQAABBBCIjwIEI+PjVeWcEEAAAQQQQAABBBBAAAEEEEAAAQQQiIUCBCNj4UXhkBBAAAEEEEAAAQQQQAABBBBAAAEEEIiPAgQj4+NV5ZwQQAABBBBAAAEEEEAAAQQQQAABBBCIhQIhsfCYYvSQzp49K+PGjZP169fL5cuXXY+lQIEC0qJFC8mdO7frejcz8+KlKzJu7nZpUjm3pE2V5Gbumn0hEC0CZ8+ekxQpkocr+9Chw7J4yVJp0bxpuDwWIIAAAggggAAC0SUwb/4CyWOe/wsWLBDhLnbv3iNr1q6Vpk0aR5jvLDx67JgsXfqLZMmSWcrcUVqSJk3qZIV51WeeJUuXSoIECWyZ+uqfdu7aJWvWrJWcOXNK+XJ3ycGDh2TpsmX+q0jq1KntPjJlyhRmuf/Mj7PnSC5TRvHixfwXR3r6ypUrsmHjJtm27Q8pUCC/3FG6lOu2P82bL+s3bJT8+fJKsmTJfPueMXOW5M+fX24vWsR1ezIRQAABBOKuAMHIgGungcjkyZNLnz59JFGiRAG5YWeXL18uo0ePlp49e4bNiMG5Xp+vlmHfbpbKpbISjIzB68CuvRHYaB5o2z/SUVavXGYfwJ1Sz58/L52efFr0YZ9gpKPCKwIIIIAAAghEt8CcuT/J4088JYPefTvCYOS///4rnTo/JVt++901GDnmq7HSs3dfyZgxoxw9elTuKnunfPnFCBs0DDyHP3fulBdfftUuzpcvX7gg36efjZRx47+Rli2a2WDk9h07fOsHljX6i5FSrdq9gYvtfJ++b8j997e6oWDkho0b5fFOT8n+Awd859SsaRN5b/C7YZ7hnB3PnPWjPPn0c6ZSRy7R9SZOnOzbd8/e/aTjYw8TjHSweEUAAQTioQDNtAMuqtaIrFevnmTIkEHSpk3r+lOnTh05c+aM7N27N6CUmz974Ng5adv/ZxuIvPl7Z48IRI+APsjrA7p/0ofdJs1aytq1v/ovZhoBBBBAAAEEEIg2Af0idMj7H9hApNtOdB19fnFLu3bvtoHIl154Tlb+slh+XjDXbjPm63Fum9k8rb3onzT4Oe376f6LfNPTpkyWXTu2yo5tW+SXJQulTJk75LXuPURrMEaUxn71pbRt80BEWddc9vEnIyRb9myybs0q+d+KpdK/b2+ZMnWaLFj4c4Tbao3IlClTyqIFP4k6RGXfEe6AhQgggAACsVqAYGTA5dGm2deqEem/ScKECa/ZnNt//eia7vjOYlm28aC82sa9OUR07Z9yEfBa4PetW+WH6TNssW8OeEe0CdLFS5ekYePmkszUXtZv//3Tsl+Wy9vvDpJLZh1NJ06ckLfefleWr1jpW00fir+ZOMk3zwQCCCCAAAIIIBAZgRGfj5KhHwyXnj26BV19+fIV8vEnn0mTxo2CrqMZixYvsfmdHn9MQkJCJG+ePKZ2YGOZPPlb1+2q3ltFpk79PkwwccnS0ObYhQoVDLqtfrbJkSOHNKhfz9Zc1G6pIkqzTKBz06YtNmvYhx/Lqv+tFj3vzk89K7379pcdO/6MaDM5Y8o7c/aMdOr4qKRLl1b081GTxg3tutsj2GbS5O9k4dUg5YB3BtpnPP99B+5Ea4bqM53WSNVnvX379vlWOXfunDXXY3y5S1eZ8M0k37OgbyUmEEAAAQRinQDByFh3SW7sgF5sXUI2jmkuNcvmuLEC2AqBWCaQMEFCSZAwtE+kxCGJJbF5WNe5UZ9/JlMmfyPaTMk/JUmSxD6Mbtnym138i/lA4DRb0gVaC6D/m2/L4SNha1r6l8E0AggggAACCCAQkUA1EwhctXypPNKhfUTZ9kvQp559Qbq88pJtch3hSlcX7t27zzZB1q6hnFSkcGHZ8edOZzbC10YNG9hg4rr1G3z5P0yfKY0bNZAUfmU5mcePH7ctTA4cOGgDi+PGjZf7qlezNRKddfxfvzY1M9euW2cXjR07Xlq2flDGfPW17dNS99OwSXPRvrwDU8oUKUSbf9evV9eX9fOi0IBroQj61QwJSSSJzHOdphATKNVnPP99+woxE9plT7X7asusH2dL7ly5ZOKkb6VW3YY2gKnr9TZNyzVwqs29kydLLl27vS4DB7/nXwTTCCCAAAKxUCD0v0AsPDAO6foEahCEvD4w1o71AvoNf8P69c0354vk1S4v+fob0ofoiNIdpuN3be6jNQRKlCguS5aE1hTQztG1xvPvW7fZB/Ia91WPaHOWIYAAAggggAACQQX02UKT0wIjcEXt51ADYp2feNwMhjkhMDvMvAYj06dPH2ZZmjSp7fzJkyclTZo0YfKcGT0G3Yc21dbBYbRW4HdTpsq4r0fL5s2hNRqddfW1g+l3OzB9PuLTwEVB53UAmRk/TLWtxurUriVt2nYwzcm3SNk77wy6jWZoTUZtDl6xYgW5t0rlcOtqH5EbN262y1/t8nK4fP8FWhNS+9Vc8NNsW4u0yysvSqUq1WW4CUBqv52LFi2Whg3qS/fXQvvUvP32onLWuJAQQAABBGK3AMHI2H19ODoEEIikgH6zrs2PFvy8yH4Q0CDkk5072dqS2/74wzYHyp4tG52hR9KT1RBAAAEEEEAgcgLTfphu+m38wfb9qM8j10oJr7b88F/vwoWLdjbYiNrOui2bN5PxEybKq6YG5kLzzKNfxFaoUN7JDvPav19v0RqXFy9elEOHDsnIL76U6jXryKKFP9nRwMOsHMFM5Xsq+bqvypsnt13j3Ll/Iljzv0Vaa/PBh9qbFix55aPhQ22T7f9yr39q8ZKlNgCrQUknpUyZQlavXmNnGzasLyNGfiGrVq2SOnVqS/VqVaXcXWWdVXlFAAEEEIilAjTTjqUXhsNCAIHrF6hV8z7R/pq0U3QdzbF92zb22/QVK1bJbDP6ZZMm7n04Xf8e2QIBBBBAAAEEbnWBAQPetUHBbt172kDciM+/sCQalFu9JjRo5m+UPXt2023MEf9FcuLkCfvMcq1gZN26tX1NtbXp9ANm9OtgAdBSJUtKhfLl5J5Kd9sRq7+4Wity9uy5YfYdbCZ16tDampqfKFFoHRZtbRIsaeuUxk1bSMmSJWTC2DGS0QwIGpV04cIFu7nWFNWBepwfDTjWNjU1NWmNyGFD35NixYrZL6BbP/CQPPv8SzaPXwgggAACsVeAmpGx99pwZAggcFVA+3tMkCC0/0g3FH3Y1jTI9BWUP19e21n7fdWryuRvvxP9pv71bl1tPr8QQAABBBBAAAGvBB55uL2cPnPGV5wOGLN79x65y9TQ8w/oOSsUyJ/P9mt99NgxX8BOvzh1G4TG2VZrOuozjj7bzJg5S76b7N4k3NlOXy9dCq19efHqq39eVKd1UJ52HR61g/cMfOctuVZQNTL7S5w4sWirlmRJk0q/Pr18m2jTdB0kR0c41xHItSbkh8Pel8ED35aBg94zNUBHSa8e3SVr1iy+bZhAAAEEEIhdAgQjY9f14GgQQMBPIG3a0D6TtG8kDTSmTZvWLzf8pDZV0j4l5y9YKPrBQJM2MdJRGzWvTJk7wm/EEgQQQAABBBBAIAoCT3TqGGbrMV+NFW1e/PKLz9vlFy9dkrfNaNDanLpWzRq2j8O+/d+S/m8MkNdefUWWr1ghc0wLDh0EJjKpRYvmJug2xAbqytwR/NnmZ9OMe8+evXYQv+MnjpvBaMba4mvWuC8yu4n0OqdPn5YXXupin7Vq1KhuzmWeb9vChQvapuK+Bdc50aF9WzuC9rDhH0kjM1DPqlWr5ZVXX5O333rDBjz1HKdO+17e7N9X0pianPv++sseR8aMUauVeZ2HyeoIIIAAAtcpQDDyOsFi++oR9UET24+Z40MgmEDpUqVsk6Unn35O3h8y0DYxctYNdq/XrVPLBiOdWpJOP0o60mSwZkxOmbwigAACCCCAAAJuApFpqRG4/WUTjBzx+SgbPNNgpH5B+tknH0qnzk/LlKnT7LOOBi6rVbs3cFM7r7UANTnPPvVM34gajGzRvKmvT8aEpjZm4LENef8Du53+0n1q8+ke3V+TwoUK+Zb7TyROklgSBmmJ4pTtHIv/dstXrLSDBOqy5wKaSL/0wnMRBiMTBPSbGbjvhAlCz7njY4+YJuwnZdCQ9+2PDmajwd/7W7e0h9CzRzfp0bOPNGkWOq81KUd8+pEd7Mb/GJlGAAEEEIhdAglM88crseuQrv9oli1bJpUqVbr+DSPY4r33QvscqVOnTgS5YRetWbPGjJY3znzT+Tb/8MLSMIeAZwI6aqV+4679BTkPwp4VTkEIIIAAAggggEAMCejHsEOHDkumTBl9A8XE0KHE+t1q7VIdhEeDjRE9Dx77+2/RoG+mTJli/blwgAggcOsJeBmzii961IwMuJItWrSQ0aNHy4IFC3zfNAas4pvVTpQffPBBApE+ESYQ8F5A+126VvNs7/dKiQgggAACCCCAQPQKaFCNfg0jZ6ytW3KYgX+CpQzp0wfLYjkCCCCAQCwUIBgZcFFy584tPXv2lL1794rbaHG6WY4cOQhEBvgxiwACCCCAAAIIIIAAAggggAACCCCAQDABgpFBZHLmzBkkh8UIIIAAAggggAACCCCAAAIIIIAAAgggcCMCoT0D38iWbIMAAggggAACCCCAAAIIxHOBXr16yf/ZuxN4mer/j+MfW7bssie0IJVWpVKiaLGL9n37t2rxU8ravm/ahFS0KRUpFBIla6UUIioVKmuhCP/z/l7fce7cuXPncu+47ry+D9ec5Xu25zlzZs5nvov+lHjdvRzy+aXJ4SGAAAK7rQAd2Oy2p44dRwABBBBAAAEEEEAAAQQQQAABBBDIywJ0YJPx7FAyMqMJUxBAAAEEEEAAAQQQQAABBBBAAAEEEEAgFwQIRuYCKqtEAAEEEEAAAQQQQAABBBBAAAEEEEAAgYwCBCMzmjAFAQQQQAABBBBAAAEEEEAAAQQQQAABBHJBgGBkLqCySgQQQAABBBBAAAEEEEAAAQQQQAABBBDIKEAwMqMJUxBAAAEEEEAAAQQQQAABBBBAAAEEEEAgFwQIRuYCKqtEAAEEEEAAAQQQQAABBBBAAAEEEEAAgYwCBCMzmjAFAQQQQAABBBBAAAEEEEAAAQQQQAABBHJBgGBkLqCySgQQQAABBBBAAAEEEEAAAQQQQAABBBDIKEAwMqMJUxBAAAEEEEAAAQQQQAABBBBAAAEEEEAgFwQK58I6d8kqp0yZsku2y0YRQAABBBBAAAEEEEAAAQQQQAABBBBAIDGBAluDlFhWciGAAAIIIIAAAggggAACCCCAAAIIIIAAAjsuQDXtHbdjSQQQQAABBBBAAAEEEEAAAQQQQAABBBDIhgDByGxgkRUBBBBAAAEEEEAAAQQQQAABBBBAAAEEdlyAYOSO27EkAggggAACCCCAAAIIIIAAAggggAACCGRDgGBkNrDIigACCCCAAAIIIIAAAggggAACCCCAAAI7LkAwcsftWBIBBBBAAAEEEEAAAQQQQAABBBBAAAEEsiFAMDIbWGRFAAEEEEAAAQQQQAABBBBAAAEEEEAAgR0XIBi543YsiQACCCCAAAIIIIAAAggggAACCCCAAALZECAYmQ0ssiKAAAIIIIAAAggggAACCCCAAAIIIIDAjgsU3vFF886SEz+ZZCtXrsx0h+oecIA1aHBgpvPDM/766y8rVapUeFLM4f82b7aRI9+zAgUKWOvWraxwoUIx82U2UcsPH/62nXZqSytdunTMbLO++ML+/XejHdv4mJjz/cQVwbF/9tnnVqnSXnbYoQ2taNGifla6199//8M+/ewzt8/t2rZxr+EMP/70k33xxZdWo0YNa3TUkfbtt9/Z/O+/j2TRsVaqVCnYxqFWokTxyPTwwPr1G2zM2LF23LHHWuXKlcKzEh7eunWrfTPnW1uwYKHtu28dO7ThIZkuu2HDBhv1/mj7eckSO+boRrZ8+fLItt//YLTVqVPH6term+nyzEAAAQQQQAABBBBAAAEEEEAAAQQQSJ5AvghGPtt/gE2dOi1TtVtu6pJlMHLVqtX22BNP2rp16+yRhx7IdF1+xr///ms33dLNjTZvdlKmAUWfP/r1/vsftAGDBtvRQQAtVjDyp59/tg5nnm0tW54SNxj58pBXrGfvvlahQgVbsWKFHXnE4fbiCwNiBlQX//hjZJ9r166dIcjX//mB9uprb9iZHdu7YORH48YHJv2id91q1tzbhrz0gtXaZ58M81avXuW28erQl3YoGPnNnDl2xZXX2NJlyyLH1L5dW3vskQczBE+18fseeMheenmoHXRQA6tWtarddnsP89vu2ftOu/yyiwlGZjhLTEAAAQQQQAABBBBAAAEEEEAAAQR2jUC+qKZ97jln2e23dXN/CpQpNW16QmRak+OPy1J3RFDKUUGtLVu2Zpl3ZzKodOL/XXO9C0Rmth6VmuxyU9fMZkemK2CpQOTNN95g0z+fbJ98/JHNnTffXh76aiRPZgNjxn6YbtbGjRttxMhR6ab5kZ8WfW/6WzBvjo18d3gQ9FxpTz/T389O91qpcmUb8/5IV3oy3YwER559boBVqVrFZn8xw2ZO+8zu6tvb3nl3hH088ZOYa5gVlORs26a1vT/yHevUqeNObTvmBpiIAAIIIIAAAggggAACCCCAAAIIIJBjAvmiZGTboJq0T1OmTrWff15ixx5zjF115eV+sinANzYIwE2bPsMF0xo0qG/nn3uOK5Wo6sijtwXnvvrqK7s3KLXY/db/mQJ0H3403mbOmmW//PKrValS2S1Tv369yHrDAwqaKRjY4pSTXQnF8Dw/3OWmW4Kqzwvs+uuusX5PPeMnp3t95pnnbNnSZXbMMUenmx49Mmnyp27SlVdcZoULF3YlFdu3a2NvvTXcrr36qujskfETT2hi77470m793y2R0oaffjbFzd9///0i+aIH9thjD2t4yMF2dKOjbMHChdGz3fi6v/+2d0aMtLM7dwqqSNe2fk8/66pPfzX7a5s16wtXWvKiC85386JXsG79elu3fp1defmlVrZsGTe7bZtWLuD6w6LF1uykpukWefjRx23x4h/dNJ2z/wvOd3jb6TIHIyoZ+trrw9wyqv59wXnnWPXq1V02Vfd+8aUhNvvrb6xkyRJ21JFHWqczO1ihbFa/j94m4wgggAACCCCAAAIIIIAAAggggAAC2wXyRcnI7YcTe2hzEIjsfntPu+a6Lq7046j3P7AHHnzEmjZvab8tXWpqK9FX814UBLdUXVntFj7+xFN23Q03uiDVuPETbOgrr9mpZ7QxlW6MlT6eOMktO3fevFiz3bSr/+9K+2zSBFNAMFb68qvZ9shjT9iTTzxqZcrEbkvSL6cAqdpDLF58e/uNah9TxxAvtW51hqsGrcCbT++N+sDatD7DSoTW5eep+rf+tD21wzjh44l2xumn+dnpXlXNXX6qZq30SmB2Zudz7OUhQ12bltpOq7YdTG1LRqeSJUrYSy8MtNNPOzUy65NJaQHX/ffbNzLNDxQJArA+KVC6Pghmhrft5+l1TtAGZdNmLWz0mLFWc++9bdibw+2UU1u5c6/5vfve7QKnKllbvFhxu7X7HfbQI49pFgkBBBBAAAEEEEAAAQQQQAABBBBAIIcEUiIYqSrJw958KyjxVtKef/Zpe2/E266EnwJs99z7gJ3UtKl1ueE6R6rSd1Mmf2z//fefrf1rrWs7UePfzfnKtZWoTAt/+CEmf8sWJ7v1HNSgQcz5mnhCk+PTBQ/DGVUy8IYbbzYFLNWBTFZJwcFy5cqly1a6dFrnO2vXrk03PTyi9hUVdPNVtVUq8O133jUFKWOlw49qbPo77oSTXEBXpSfPP/fsWFljTlPAdOL4D+3OPr2sXxBkVcBy7ry5MfOGJ6oko9qAVAlRuUUnnbNq1ara8ccda11vvtEKFsz8cr7/wYddG5QfjxtrPXt0d+e4WLFi9lRQclNp0qTJ1uqM013V/rvv6mP33n2nyx+9TcYRQAABBBBAAAEEEEAAAQQQQAABBHZcYHvRsh1fR55fcsrnU90+nnZqC9chjEZUhVslJdUWYfHixaz8tqBe2bJlI1V3+wbBM5WYfH3YWzZ9xkxX/VvL/vnnCr1kSCotmFmJwQyZY0y4+577TKUD1QZkIqlgwQIZsm3a9J+bllmP2n6BMzu0d1WWu3W92dQbuQK16kwnVhr2+itusoKWqgKvwF7rdh3tw9Gj4gYA/boULPTVnWvtU3Pbuv7xs2O+qtTmOeddaLVr17Jnnnoioe3EXNG2iZM//cwFYLXvPqk6tqqOK7VqdboNGPiCzZgxI7hGWgQB6hODqtpH+Ky8IoAAAggggAACCCCAAAIIIIAAAgjkgEBKBCP/+utvR1Ul6FzFp8rbhlVKT9W4o5PamLz0sivtk6DEnAJ1zZs1dcEsBeMKFcq8BF70ehId/+2331xP1lWrVLGLLrncLearUSsoN/D5Z91+hNdXNeg9Wm1UhtOatWtcib6sgpGnBoHZRx9/0rWRqKrTZ5/VyQpn0j6i2ogMpwoVyrtArvbvsEMbhmfFHC5VKq20pmYWKpR2yW3ZsiVmXk1U+5XnXXCxKxE5sP8zMXsGz3ThGDM2bdrkpqrXcrUD6pMCjr6KuzpAOuTgg23shx/Zs8897/5UUvLpfo/77LwigAACCCCAAAIIIIAAAggggAACCOykQM5H1XZyh3Jj8UMbHuJWO/ajca76tUY+DIaVVIVYnb/4Kr4+WKU2BhWIVJoR9Orc74nHXGc3Gs+sx+1Vq1a7thJV3Tq7qUSJknbD9de6HqGPDErk6U9Bv9JBIE/DBQpkPFX7Bh3ELFiw0FasXBnZ3LRpMyxeJzQ+o9qWrFO7lr01/G3XDuQZp29vp9HnyexVgVqlLVsyBnEzWybR6eqUR4FI9ZD98uCBOx2I1HaLFCliCvIWK1rUVRVXdXH96brQ+f/3339t0OCXXLBZwcf5331tl196ialt0eXLf09018mHAAIIIIAAAggggAACCCCAAAIIIJCFQEqUjDy5eTNTz8sK3DVq3MRqVK/mSgTK5pagrUElX0JO1bYvuvRyu6tPbzdd/z0dtCv4y6+/uU5QNP530GN0rNS77102YuR7pjYHLzjv3FhZMp2m3qNvualLuvnzv//ejfvpCgLeH/QarerUp5zc3LVx2Peue+2uu++z27p1tanTprkgqzqBSSR17NjBHnr4UReoO+zQQzNdRCUnlbZs3eI6sXk66O1bbU7Gaxsz05XFmSHXG2/+X1pJ1OYnuZ7MffYDDtjPFEDd0XTRhee76uXqwbx10FHPjBmzrGu32+z+e+82lSL9JKiq/m7QC/g9d/V1AeBfg5KqKhGrgDAJAQQQQAABBBBAAAEEEEAAAQQQQCBnBPJdMLJgjBKECpy99+5w63bb7TYzaCNQHddUqFDB+vTq4YJ6omxy/HFumuZNDHrFVu/MCvD1CwKRTz/b3wXfOrRv5zp6mTZ9hiu5F30KfOnKApaxLceMeRPIE3UsW4Jg5IBBg13wTMFI1yHPc0/blf93rb3z7gi3/wpcNm16QvTm3LjfP9/W5GlB24gKRnbs0C5SMrRgUFW7QIH0+6YexX2Sm4K7N990g9sPP92/FtjWiUzBqHVE5m+b7vfFT9fr1GnT3bnR8A1dbtZLJKkdzVjBSFUt9/sba9v+erj8sktsTdCpj4LS+tNxqN3Qszqf6bahTm169Oxjbdunjask5YCgirhKzZIQQAABBBBAAAEEEEAAAQQQQAABBHJGoMDWIOXMqnaPtagTlrVr/7LKlStl2GGVPPx9+XKrVKlSJAilaSuCDmti5c+wgl00Qafw99//sIoVK0Q6itlFu5LnN+vO8e+/u9KgPogZ3umVq1aZgr4VK1YMT2YYAQQQQAABBBBAAAEEEEAAAQQQQCAHBFIuGJkDZqwCAQQQQAABBBBAAAEEEEAAAQQQQAABBHZAIGOvKDuwEhZBAAEEEEAAAQQQQAABBBBAAAEEEEAAAQSyEiAYmZUQ8xFAAAEEEEAAAQQQQAABBBBAAAEEEEAgRwQIRuYIIytBAAEEEEAAAQQQQAABBBBAAAEEEEAAgawECEZmJZSD83v16mX6U+J193LIwcuAVSGAAAIIIIAAAggggAACCCCAAAIpK0AHNil76jlwBBBAAAEEEEAAAQQQQAABBBBAAAEEkitAycjkerM1BBBAAAEEEEAAAQQQQAABBBBAAAEEUlaAYGTKnnoOHAEEEEAAAQQQQAABBBBAAAEEEEAAgeQKEIxMrjdbQwABBBBAAAEEEEAAAQQQQAABBBBAIGUFCEam7KnnwBFAAAEEEEAAAQQQQAABBBBAAAEEEEiuAMHI5HqzNQQQQAABBBBAAAEEEEAAAQQQQAABBFJWgGBkyp56DhwBBBBAAAEEEEAAAQQQQAABBBBAAIHkChCMTK43W0MAAQQQQAABBBBAAAEEEEAAAQQQQCBlBQhGpuyp58ARQAABBBBAAAEEEEAAAQQQQAABBBBIrgDByOR6szUEEEAAAQQQQAABBBBAAAEEEEAAAQRSVoBgZMqeeg4cAQQQQAABBBBAAAEEEEAAAQQQQACB5AoQjEyuN1tDAAEEEEAAAQQQQAABBBBAAAEEEEAgZQUIRqbsqefAEUAAAQQQQAABBBBAAAEEEEAAAQQQSK4AwcjkerM1BBBAAAEEEEAAAQQQQAABBBBAAAEEUlaAYGTKnnoOHAEEEEAAAQQQQAABBBBAAAEEEEAAgeQKEIxMrjdbQwABBBBAAAEEEEAAAQQQQAABBBBAIGUFCEam7KnnwBFAAAEEEEAAAQQQQAABBBBAAAEEEEiuAMHI5HqzNQQQQAABBBBAAAEEEEAAAQQQQAABBFJWgGBkyp56DhwBBBBAAAEEEEAAAQQQQAABBBBAAIHkChCMTK43W0MAAQQQQAABBBBAAAEEEEAAAQQQQCBlBQhGpuyp58ARQAABBBBAAAEEEEAAAQQQQAABBBBIrgDByOR6szUEEEAAAQQQQAABBBBAAAEEEEAAAQRSVoBgZMqeeg4cAQQQQAABBBBAAAEEEEAAAQQQQACB5AoQjEyuN1tDAAEEEEAAAQQQQAABBBBAAAEEEEAgZQUIRqbsqefAEUAAAQQQQAABBBBAAAEEEEAAAQQQSK4AwcjkerM1BBBAAAEEEEAAAQQQQAABBBBAAAEEUlaAYGTKnnoOHAEEEEAAAQQQQAABBBBAAAEEEEAAgeQKEIxMrjdbQwABBBBAAAEEEEAAAQQQQAABBBBAIGUFCEam7KnnwBFAAAEEEEAAAQQQQAABBBBAAAEEEEiuAMHI5HqzNQQQQAABBBBAAAEEEEAAAQQQQAABBFJWgGBkyp56DhwBBBBAAAEEEEAAAQQQQAABBBBAAIHkChCMTK43W0MAAQQQQAABBBBAAAEEEEAAAQQQQCBlBQhGpuyp58ARQAABBBBAAAEEEEAAAQQQQAABBBBIrgDByOR6szUEEEAAAQQQQAABBBBAAAEEEEAAAQRSVoBgZMqeeg4cAQQQQAABBBBAAAEEEEAAAQQQQACB5AoQjEyuN1tDAAEEEEAAAQQQQAABBBBAAAEEEEAgZQUIRqbsqefAEUAAAQQQQAABBBBAAAEEEEAAAQQQSK4AwcjkerM1BBBAAAEEEEAAAQQQQAABBBBAAAEEUlaAYGTKnnoOHAEEEEAAAQQQQAABBBBAAAEEEEAAgeQKEIxMrjdbQwABBBBAAAEEEEAAAQQQQAABBBBAIGUFCEam7KnnwBFAAAEEEEAAAQQQQAABBBBAAAEEEEiuAMHI5HqzNQQQQAABBBBAAAEEEEAAAQQQQAABBFJWgGBkyp56DhwBBBBAAAEEEEAAAQQQQAABBBBAAIHkChCMTK43W0MAAQQQQAABBBBAAAEEEEAAAQQQQCBlBQhGpuyp58ARQAABBBBAAAEEEEAAAQQQQAABBBBIrgDByOR6szUEEEAAAQQQQAABBBBAAAEEEEAAAQRSVoBgZMqeeg4cAQQQQAABBBBAAAEEEEAAAQQQQACB5AoQjEyuN1tDAAEEEEAAAQQQQAABBBBAAAEEEEAgZQUIRqbsqefAEUAAAQQQQAABBBBAAAEEEEAAAQQQSK4AwcjkerM1BBBAAAEEEEAAAQQQQAABBBBAAAEEUlaAYGTKnnoOHAEEEEAAAQQQQAABBBBAAAEEEEAAgeQKEIxMrjdbQwABBBBAAAEEEEAAAQQQQAABBBBAIGUFCEam7KnnwBFAAAEEEEAAAQQQQAABBBBAAAEEEEiuAMHI5HqzNQQQQAABBBBAAAEEEEAAAQQQQAABBFJWgGBkyp56DhwBBBBAAAEEEEAAAQQQQAABBBBAAIHkChCMTK43W0MAAQQQQAABBBBAAAEEEEAAAQQQQCBlBQhGpuyp58ARQAABBBBAAAEEEEAAAQQQQAABBBBIrgDByOR6szUEEEAAAQQQQAABBBBAAAEEEEAAAQRSVoBgZMqeeg4cAQQQQAABBBBAAAEEEEAAAQQQQACB5AoQjEyuN1tDAAEEEEAAAQQQQAABBBBAAAEEEEAgZQUIRqbsqefAEUAAAQQQQAABBBBAAAEEEEAAAQQQSK4AwcjkerM1BBBAAAEEEEAAAQQQQAABBBBAAAEEUlaAYGTKnnoOHAEEEEAAAQQQQAABBBBAAAEEEEAAgeQKEIxMrjdbQwABBBBAAAEEEEAAAQQQQAABBBBAIGUFCEam7KnnwBFAAAEEEEAAAQQQQAABBBBAAAEEEEiuAMHI5HqzNQQQQAABBBBAAAEEEEAAAQQQQAABBFJWgGBkyp56DhwBBBBAAAEEEEAAAQQQQAABBBBAAIHkChCMTK43W0MAAQQQQAABBBBAAAEEEEAAAQQQQCBlBQrnlyOfPmOmLVnyizucww5taHXq1E53aOvXb7AxY8fa1q1mxYsXs9NPO9XN/+nnn23mzC/c8IEH1rf69eqmWy47I/9t3myFCxXKziLkRQABBBBAAAEEEEAAAQQQQAABBBBAIGUE8k0w8rXXh9nb77zrTtwD992TIRj585IldtMt3dz8qlWqRIKRkyd/Znf07O2m39at6w4HIydN/tR697nTXhnyolWrVi1lLiAOFAEEEEAAAQQQQAABBBBAAAEEEEAAgUQF8k0wMtEDzo183e/oaa++9oZb9VYVvSQhgAACCCCAAAIIIIAAAggggAACCCCAQAaBlA9GntDkeBvQ/xkHs9+++2YASmTC19/MSSQbeRBAAAEEEEAAAQQQQAABBBBAAAEEEEhpgZQPRq5du9YWLVrsLoKqVaukuxgmfjLJPp86zX755degrcmtVi2Yf8opJ9uRRxxuhYK2ITdu3GgvDH7Jli5dFlnupSGv2F577WVXXHZJZNqmTZtszpxvTe1aKnBZtUplU/uUZ5x+mhUtWjSST+1Xjh491o0ff9yxtvjHn+yjceNtv33rWJkyZWzDhg1u3jHHHG2HNjwkspzfD00oXKSwXXbJxVagQIHIfAYQQAABBBBAAAEEEEAAAQQQQAABBBDICwIpH4z8avbXdt8DD7lzoTYjDz7oIDfco2cfG/LKqxnO0YBBg+2mLtfbjcGfgoB+WZ+x//MD3aAPRiqAeOnlV9mUz6f6LJHXfk89Y089+bg1aHCgm7Z48Y+R9R10UAMXwPSZO5/Z0Ya9NdyNnty8mQ0a8JyfZVOmTI0sp0Dl5ZduD4RGMjGAAAIIIIAAAggggAACCCCAAAIIIIDALhbIl8HIBx9+NEMgccWfKxKmnjtvfmT5/fffzxT8W79+vb01/B1bt26dPfZEPzvxxBOsXt0DglKOVWzpsu0lIytUqGB7FCnitqVg5VVXX5cuEKlSlVq/1rMoCD5ecPFlNnH8WCtdunS6/VNJynC6sct1kWDkuPETbM2aNa60pPJ8MCatNKWGz+zQXi8kBBBAAAEEEEAAAQQQQAABBBBAAAEE8pxAvgxGrlixwvS3o+njiRMjix53bGO7+qorXOCvWdOmNunTT61evbpWvnw5K168uE2dMsnOaNM+UorxvXffsurVq7vlVWLxk0mT3XDJkiXtw9GjrEaN6qaq4eecf5FbRvv5zHPPm0plRqeHHrjXTm3Zwr5fsNCts22b1jZi5Hsu2/gJH1uH9u1MVcBHvf9BZNFTW54SGWYAAQQQQAABBBBAAAEEEEAAAQQQQACBvCRQMC/tTE7ti0onHnbYoen+VMIx0VSvbt1I1hdfGmKHHHaUtWnX0WZ//bW1ad3KVGV6n5o1I3kyG5g6fXpk1pkd27tApCaoFOS5Z58VmTdlyueRYT9Qs+be1inYjvKqNKVS504d/Wx7b1RaAHLa9BmulKVmtG/X1kqVKhXJwwACCCCAAAIIIIAAAggggAACCCCAAAJ5SSBflozs1vVmO/usTumc583/3lqe1irdtMxGTjihibUMShiOHftRJMvsr78JgpHf2KOPP2nHNj7GnnjsEatUaa/I/FgDX341OzJZHdKE0/HHbx/XeqOTAqLRndCoPUgFWlWacsLHE23VqtU2OlRFu0P7ttGrYRwBBBBAAAEEEEAAAQQQQAABBBBAAIE8I5AvS0burG7hoKfsZ5960gY+/6yparSqWIeTOqO5+977w5NiDtfce+/I9GXLlkeGNaAeun1Su5PRac8994yeZNqvC84/NzJdgch33h3pxhWkPDaoUk5CAAEEEEAAAQQQQAABBBBAAAEEEEDQeoVYAABAAElEQVQgrwoQjIxxZuZ//719MHqszQs6mul+2/9szuxZNuaD98z3kK1FpgfVo30qVHA74+bNW/xkO+LwwyLD748eExnWwIQJEyPjhzQ8ODLsB4ps6wTHj/vXdm1b+0HrfkfPSBXtTmd2cMHKyEwGEEAAAQQQQAABBBBAAAEEEEAAAQQQyGMC+bKa9s4aP/Z4v0j1569mf2097rjN9ZpdM9ROZPXq1SKbCQcO3/9gtJUtW9ZVE/dtPSrj1KnTrHffu6zFKSe7ticHvjA4svwlF14QGfYDBQsW8IPpXmvXqmWNjjrSps+YmW56u6AEJwkBBBBAAAEEEEAAAQQQQAABBBBAAIG8LEAwMsbZubHL9TZp8qeu1OG48RNMf9Hpmquvikzad999beasL9z4/Q8+7F5btDjZ9ttvX3v26Sft6mtvcNPUGY7+wunySy+xxkEblNlJZ5/VOV0wUp3z1K9fLzurIC8CCCCAAAIIIIAAAggggAACCCCAAAJJF9hevzjpm87ZDRYuvD2uWihoW3FnUr26B9jwYa9Z06YnZFiNAn+DBz1vzZudFJl3+WUXu5KTkQnBwNq1a93o6aedai8NHmhNjj8uPNvl7/fEY9azR/fI9ESP4dSgc51wOicITpIQQAABBBBAAAEEEEAAAQQQQAABBBDI6wIFtgYpr+/krty/devX29Lfltp/mzcHAcTKVqZMmZi7szmY//OSJVaoYCGrUaO6FQy1I+kX2LRpk/2waLFVrlTJypUr6ydn+3VRsI6TTm4ZWW76559a5cqVIuMMIIAAAggggAACCCCAAAIIIIAAAgggkBcFCEbmxbMSY5+2bNlin342xX4LAqMvvvSyzQ0611E6uXkzGzTguRhLMAkBBBBAAAEEEEAAAQQQQAABBBBAAIG8JUAwMm+dj0z3RiUv6+xfP8P8ke8Ot4aHZOyNO0NGJiCAAAIIIIAAAggggAACCCCAAAIIILCLBfJNm5G72DHXN692MKtWqRLZToUKFeypJx8nEBkRYQABBBBAAAEEEEAAAQQQQAABBBBAIK8LUDIyr5+h0P79888/tmLFCitWrJiVL1/eChQoEJrLIAIIIIAAAggggAACCCCAAAIIIIAAAnlbgGBk3j4/7B0CCCCAAAIIIIAAAggggAACCCCAAAL5RoBq2vnmVHIgCCCAAAIIIIAAAggggAACCCCAAAII5G0BgpF5+/ywdwgggAACCCCAAAIIIIAAAggggAACCOQbAYKR+eZUciAIIIAAAggggAACCCCAAAIIIIAAAgjkbQGCkXn7/LB3CCCAAAIIIIAAAggggAACCCCAAAII5BsBgpH55lRyIAgggAACCCCAAAIIIIAAAggggAACCORtgcJ5e/cS27tRo0YllpFcCCCAAAIIIIAAAggggAACCCCAAAIIpKBAq1at8sRRUzIyT5wGdgIBBBBAAAEEEEAAAQQQQAABBBBAAIH8L0AwMv+fY44QAQQQQAABBBBAAAEEEEAAAQQQQACBPCGQL6pp5wnJ3WQn1q5daxs2bLCNGzfuJnu887u5xx57WPHixa106dJuZalosPOKma8h2jfznMxBAAEEEEAAAQQQQAABBBBAAIFUFyAYmUJXgIJwJUqUsJYtW1r58uWtQIECtnXr1ohAfh1fuXKlTZ482XT8SvEMIhjbBqJNmJ9eQD4rVqyI+PqAb/pcjCGAAAIIIIAAAggggAACCCCAAAJpAlTTTpErQUFHlYhs0qSJC0TqsMOByPw8rsCrjlvHn5VB9OUQbcT89ALyCftm5ZV+acYQQAABBBBAAAEEEEAAAQQQQCDVBCgZmSJnXEEiVc0uV65chiCkJ8jPpQB13L5qejwDb8Fr9gS8r64zXUckBBBAAAEEEEAAAQQQQAABBBBAIJYAJSNjqaTotKxKte3u81P0tHLYCCCAAAIIIIAAAggggAACCCCAQJ4RoGRknjkVydmRrAKKydmLXbsVDHatP1tHAAEEEEAAAQQQQAABBBBAAIHUFaBkZOqe+5Q9ch+M5DWt86KcckjZC4oDRwABBBBAAAEEEEAAAQQQQACBhAUoGZkwVf7IuGXLlvxxIDtxFDkVfGM96YOZO3FKWBQBBBBAAAEEEEAAAQQQQAABBFJEgJKRKXKiOcz0AgQS0wcSc8ojvTJjCCCAAAIIIIAAAggggAACCCCAQHoBSkam97DNQcnBESPec69HHXmE1dqnZlSO+KMrV660kiVLWtGiRe2XX361z6dNt/3329cObXhI3AVj5f036P163d/rrHz5cnGXzc5MH3TKapn//vvPunfvbps3b45kLVKkiO21117WoUMHq1OnTmR6vAGt49xzz7WDDz44XrZsz1u/fr316tXLbrzxRqtRo0a2lk/UwK9UFuPHj7fJkyfbwoULrVmzZnbqqadazZqJXRsvvPCCVahQwdq2betXySsCCCCAAAIIIIAAAggggAACCCCQkgKUjIw67XPnzrPxH39iEz+ZbGM/HBc1N/7oxxMnWc8+d9uaNWtdxmXLf3frWbT4x/gLBnOj837//QLrFaxr/vffZ7lsbmRQAO7JJ590wbdChQqZ/n777Te7//77rVGjRjZv3ryENvvoo4/akiVLEsqbnUwKRvbr18/+/PPP7CyW7byq1n711VdbmzZt7LvvvrP99tvPnn/+edt///3tm2++SWh9I0eOtKlTpyaUl0wIIIAAAggggAACCCCAAAIIIIBAfhagZGTU2f1syvag0dffzLHVq9dY2bJlonKZ/f3331asWDErXHg74RdffpUuX/16da1b15usdOlS6abHGonO+/3CH9w2YuXdmWmJlgr0+S688ELr2LFjZJOrVq2yqlWr2ptvvmk9evSITFfw8o8//rDKlStbwYLpY9xal1+fFlBerUelLGMlzVOwUduJXtc///xjGzZsiCwWve7IjDgD4X2Jk83Nuu++++zll1+2Tz/91I488kg3rW/fvta8eXO74oorbNKkSaYSoz6tWLHCSpUqZXvssYefFHnNznY3bdpka9eudSUqtQKZ/fXXX1auXOxSssuWLbOKFSumux61nBxXr15tVapUyWCp+SQEEEAAAQQQQAABBBBAAAEEEEAgmQLpo0bJ3HIe3JZKNCoAqSrWjY5KCzxNnT4j3Z4uWLDQevS60269vZd1ubmbPff8IFu3br29Puwt8yUg+959n02dNsOVanzw4cdMJSZnz/7Grr3hZnu2/8DI+iZ/OsVNG/bW2+nyKqg5esyHLt/QV9+wwS8Ncfm0/Mag6rbSjz/97Kbd/9CjbjzR/7IKiGU1X1XQFWxTSUkl5X/ggQdszz33tNq1a7tg5LBhw2LujoKMXbt2dUHGvffe21XdnjlzZiTvxx9/bPvuu6+br1eVPvzqq+0B3m7dugWB4bJuvoKksVJW+69lovPEG3/nnXfs+uuvjwQitXyBAgVMVa/vuusuty4tP3r0aGvRooVVr149CD6XtltvvdUUUIxOTz31lB111FGRyTJRUPvLL7900zR86aWXOmOtq3Xr1vbGG284XwVn27dvH1nvOeecY2eddZbJslatWi6P9tcfT+/evYMq/uVdlfoSJUrYwIFp156f73dCQeVrr7025t8nn3wSWZ/PH7189LjPxysCCCCAAAIIIIAAAggggAACCCAQLUAwMiQyY+YsN9b4mEZ2/HGN3bACiWpHUkkl054Ngo+rgpJmmt+w4cH2zZxv7e13R9gB++/ngpjKp0BmlcqVbMuWtE5CNK1Bg/pu/pxvv4tU4/7s87RSmI2PbpQub8WKFax6tapazK23wYH17eCDGrjxuXPnu9fZX6dVEday2UkKHOlP1Y9jvYbna73jxo2zQYMGub8HH3zQTj75ZOegIJjyvv3226agl/L8/PPPrg1HBQrnzp0bCWL57ah9x/fff98UrPz666/tgAMOcME1lQBUaUctp+CbSvkpOKfShQreafnBgwe7auNaVtWjFRBUCu+vH/bbi351C2xbRsfvDXy+6HHtl7Z12GGHubzh+fvss49rO1KlItetW+f2XfkWLVpkL774oj3xxBP23HPPRfbPb0NtcPphrc+3yemnaR8VANTxjxgxwj766CMXwJ04caJ9/vnnLuipKt9+X5Tn8ccft8WLF7sSrAr2al3aDwWJVYJVVdnvvPNOu+6661xpS78tvw4FuP05Dr8qsKnSltH5Mxv3vrwigAACCCCAAAIIIIAAAggggAACmQkQjNwmowDL5M+muLGjjjjc6tSuZeWCUniqjj1/Xlq7jXPnzbd///3XDmpwoJ1zVie75MLz7ezOZ9pxxza2ww87NBJAPK3lKUFJtX3Smas6d9MTjnfTVPJxaRBwW7Lkl6BUWw33F85cMyjpdsghaR2+NDrqCBfcbHzM0WnLBiUFta8zZqQFTg8/rGF40YSGtXy8FJ7/4YcfulKAffr0cR3GqNTf/PnzXUk8rWP48OGuBKMCiwpGKlipNGbMGPfq/1M1Y5Xwu+CCC+zEE090bS/efvvtrmr3jBkzXEnLDz74wLQdBQEVXFPVYt8m5NixY+2UU06xVq1audKTN9xwg191htfw/meYGTUhOm94XEFGpeLFi0eWCs/XRI0rQKpAdc+ePd0+d+7c2U4//XQXCIyVP7KybcuHxzWskph169Z1x6tSqCoBqXY6GzZs6KwVyPWpXbt2LqCr6vGdOnWyX3/91c3SeVJSEFcB5csvv9y5qgRrOGn/1A6oApXhpBKVKu1Zv3798GR3vOEJ0ccXnscwAggggAACCCCAAAIIIIAAAgggEC1AMHKbyMIfFgWBrxVubOALL1nP3ne5EpCa4IOUaj9Sqdq2UosqFdfk+GNd4NLNyOK/xo3TAoqfT51mM2d+4XKfcPxxWSyVNrvBgfVcycqZs74MOpX5we2bSksqWJWd5INHes3sT+vz+RSo8r1Iq1dsBbYULPTLqgTeggULXMlABRovvvhiV11bgTy/Dq3PBxUPP/xwjbp5Bx10kBtWSUhV+54wYYILUiqwqUClpvvSe+ow55BDDomsU6UQ/Xr8vvjXeNMzm+eXDb9WqlTJtWupbYena1htQ6rkoCwUHDziiCNc0NLnU/BQgUGNR28zPB4uGenzqnq2X4+CivXq1YuMqwkBX7pS61HA1udVVWwlzVfbkqNGjXJB0rPPPju4ZqtZly5dTG1u+vzhV5Wi9AFJBSIVGNb5CefJathtnP8QQAABBBBAAAEEEEAAAQQQQACBOAIEI7fhTJ023Q2p5NgeexRxf5UrpXWwonYkVTXbd2Sz+MefXF5Vb31+0GAbMfL9SFVuzVAALVbaK6jyWq/eAfbrb0ttzLaeujMr2eirIW/enLYulaw8/thj3GpfGvKqez26UVq7lrG2FW+agkrhlMi4tq/etdWOo0r++VKDNWrUsMaNG9ucOXPs22+/da+qWq3ApU9af4UKFdzoF1984QJcGpk9e7ab5numVjuL9957r/3+++82a9YsU+DSByMbNGgQlAZNa79T61M1cJ8S2X+fN7uvTZo0sVdffTVDZ0Kqsn7VVVe5krIK9Gl/1VmMT6pKffDBaaVb/TS9Kujq7TSuHsqjU3SnPdHzw+P+OglP07CCpSrFq9KNP/30k2l/VUpSVcAzSwpIqsMeLRNr3zNbjukIIIAAAggggAACCCCAAAIIIIBAogIEIwMpBZHU4YxSt1tutF49ukf+Dqxfz02fNn2mqcdrlUxTJzYDBr3o/tQxzb8b/7VCQQ/S6nxEaexH44MOaRa44ej/mhx3bGSS2p30y0QmbhsoEgT/lNSOpe/h++hGaR2fKDCq/VBbktlNCu75P5Wg88N6jR7XuhXo83m0zf79+7sq1Pfcc4/L37ZtW9eWoQJdK1eudO0lnnHGGS6gqPX5dSjApiCmeqZWQGzhwoWuTUP1qK0qydqGkkr6qcSpAmKqAq6AmuaddtpprudqTfvxxx9dm4zK7/dNr9H7Hz2u/Eo6pvCflg2Ph4cVHF26dKmdd955pg52FHBV0K5fv34ucKoga8uWLd16fV6106hq6qqy7tflt6vApaqgq4SpApEqeernKa9P0cuFx8P5NT28/36eSmyqF3R1tKNrTAFfJZWk9evyr+HlVUVcgV8/L3r94el+2C/vNsB/CCCAAAIIIIAAAggggAACCCCAQBwBgpEBzpdfpbXBt9++dYISfOXTcakzGyV1ZKNSk/93xaWuLcmvZn9tPyxabEcecZidflpaMOrwww91eafPmBm0n7jEDeu/cOk1Va327fb5diAjGUN5FWhU8E/Vx7UtperVq0XapVRbkurgJbdTdCk99QR99dVXu2CgSjYqwNi9e3dXxVelJB966CF75JFHXLXl6H1TEE9tEKo9RbV/qGrMCjqqerFK4qmkodanKsbq4Vnj6shFvVKrw5zbbrvNVQdXsMyn6P3z0+O9Koim5F99Xj8eftUxvffeey6gp+rOqn6tzmBuuukmty9a9sADD3RB2AEDBrhq5qru/L///c+uvPJKv2r3qvWqx20FLxXEVYBQVbJ90nxdG/568fsRPe6n69h9r+Zah5+u11pB79o6D+rxW+1JqhfuW265xfXkHc7ntx29fHjc54lezo/7+bwigAACCCCAAAIIIIAAAggggAACWQkUCAIK24tjZZU7j85X23jJTuqwREG0cDBI+6BeodWLdsmSae337cx+qdOXdevWW5kyaZ2RaN197rrPVRm++cbrbd86tRNevUqvKfh3/vnnJ7xMdjJqX9UupEo2ZpVUTVkBxrJBB0HRSceokqq+Wnf0fFWN1/IKWGY3DR061C0iAwX4dOln51X7rGNUD9MqvRm9vEpiqoq5SnuqWnv0/PD4mjVr3DpKliwZN1929i+8fr+czrtKYFatWtVdq356brwOGTLEBVd3JECc3XNJfgQQQAABBBBAAAEEEEAAAQQQyJ6AOgXOCymtLnBe2JPdbB8y6zgm3PPyzh6SAlo+EDnkldciVcn3qbl3wp3m7Ow+JLq89jWRQKTWpwBcZkl+8QxVGjQnSoQqcKeUndfwMcZaTkE4bxBrfnh7ZcqUyfb2w8tntX4/X/uk0p0++em59eq3wysCCCCAAAIIIIAAAggggAACCCAQS4BgZCyVPDitetDWoDq/qVRxr6Cqb/NIVd7s7qoPQmV3ufyUH4P8dDY5FgQQQAABBBBAAAEEEEAAAQQQ2J0ECEbuJmer2Uknmv5ICCCAAAIIIIAAAggggAACCCCAAAII7K4CBCN31zO3g/tNqcDtVbN3kJDFEEAAAQQQQAABBBBAAAEEEEAAAQR2UIDetHcQjsXyj0BWAVrmx+/jKiuf/HOlcCQIIIAAAggggAACCCCAAAIIILCzApSM3FnB3Wh59QC9atUq14u1Aki50aNyXl3v6tWrXQ/X6tBFBr4DGX/6sgqoMT9+QFK+ur5ICCCAAAIIIIAAAggggAACCCCAQDwBSkbG08ln89QL9axZs2zNmjX57MjiH46OV8et41eP2KloEF9o5+aGfXduTSyNAAIIIIAAAggggAACCCCAAAL5XYCSkfn9DG87PpWCLF26tKkE27hx42zjxo0pcuTmgpCFChWKlAhV8Gz8+PEpZZCbJ1tBXu+r64yEAAIIIIAAAggggAACCCCAAAIIZCZAMDIzmXw2XUEiHzDatGmTbd682bKqepwfCPxxqwqxjl+pbNmylkoGuXkeo30JRuamNutGAAEEEEAAAQQQQAABBBBAYPcXIBi5+5/DhI/AB47UbmKqJR27D5QpKJmKBrl5zsO+ubkd1o0AAggggAACCCCAAAIIIIAAAru3AMHI3fv8ZXvvCRqZC0r6wGS2AVkAAQQQQAABBBBAAAEEEEAAAQQQQGCHBVKviNwOU7EgAggggAACCCCAAAIIIIAAAggggAACCOyMQL4oGVm+fPmdMWBZBBBAAAEEEEAAAQQQQAABBBBAAAEEEEiCQL4IRsrp6KOPTgIXm0AAAQQQQAABBBBAAAEEEEAAAQQQQCDvCSxfvtwqVqyY93Ysao+oph0FwigCCCCAAAIIIIAAAggggAACCCCAAAII5I4AwcjccWWtCCCAAAIIIIAAAggggAACCCCAAAIIIBAlQDAyCoRRBBBAAAEEEEAAAQQQQAABBBBAAAEEEMgdAYKRuePKWhFAAAEEEEAAAQQQQAABBBBAAAEEEEAgSoBgZBQIowgggAACCCCAAAIIIIAAAggggAACCCCQOwIEI3PHlbUigAACCCCAAAIIIIAAAggggAACCCCAQJRA4ajx3XZ069atu+2+s+MIIIAAAggggAACCCCAAAIIIIAAAgikggDByFQ4yxwjAggggAACCCCAAAIIIIAAAggggAACeUCAYGQeOAnJ3IVffvnV3n53hM2dO8/KlStrhxxysHXq2MEKFSoU2Y3Fi3+02rVrRcbjDWQnb7z1MA8BBPKWwISPJ9q06TPsxhuus+LFi0d2bv73C2zYm2/Z7bd1S3ffiGRgAAEEkiIwesxYW7ZsuV1y8YVJ2V5WG3nzrbdtzz1L2mmntswqq5vvvz/88eef9lz/AcG95norVWrPhJYl064VePGlIbbkl1/cThQsWNBKlihhBx54oDVvdlLwuZBYC1Br1/5lGzdttIoVKsQ9mPD1sW7dOhsw6AXrestNVrxYsbjLMTNnBfTZ/9LLQ+yA/fe3Tmd2sJIlS7oNzJ79tb0+7E277567cnaDKbi2TZs22UOPPGabN292R6/3VrGixeyggw60k5qeaHvssUcKqnDIyRD46eef7eUhr2T4HNY99/Enn7JzzupsderUTsausI0UE0jsG8NugKJq2vzFN1i0aLG1atvB3hv1vlWrVtX+/vtv69mrr112xf+5Dz75vTX8Hbul220JWWYnb06cm++++870lxPrYh3xrxV88Jk16wt7YfBL9vCjj6d7z/3222/uC8uWLVvSTc8L1wz3CK7bvHAdJmsfps+YaWM+/CjPvA8/mTTZZsycldD+hL8/rF2z1j78aJz9+++/CS2b077cN7J/3xgZfI+cNPlT07n7448/7fNp0+3a67tYp7PPTfg8tjjtDPt2Ttbf6cLXx++//+4+f3bVtZLT197usr7//vvPzjrnfGsQBJwnf/aZvfLa65H3qoJnjY46MjK+uxxTXtzPjRs32uAXXw6edea699bqVavtu3lz7bobbrLru9xsefF7V150ZJ+yf0//7de07/br169L915et3696cenpcuWpZueLGM+n7N/Lv252Q3Cd24XKRm5u5ypHNjP0WM/dGsZ8fZbVqxYUTfcpvUndvW119ucb7+1gw86yFauWmUWNL+pC9knDevLZuHCha18+XJ+csy8kZkxBvRL359/rnAlMrP7697cuXNtyZIlbq3an/r168fYApMQQCCnBPwdQL+UnnJyc/ewoXX7e4New8Ox7hF+X/Qg89dff7v3vqbpXqBfW0uXLu2zRF7XrFnjSlzuuWf2Skhxj4gQMpBiAv59GOuw9V5bHgRwygTvNV+SKVa+zKb98ccfwed++QyloPVQvHr1mnTfCdK+PJh7YNb9oEJQ4i2zUnLh7xq1a9eyTyZ85HYhfCy6RxQoUMBKBKXulDZs2GDBhAwl4rSMtqfaHkWKFHF5E/2P+0aiUlH5gg+IpieeYN1v/V9kxtQgIHnRJZfbM8/2ty5BiXqfdA2uWLHSKlasYCrp5ZOmBZ8ikc8RTY91vdauvf36+PW3X5VNH0SR5dauXWubgs+YCsF1SsodgW+DggBKZ5/VycqUKR2UkBxql196iX0+dZq7v7Q64/TI+cidPUiNtfr7n0q7n9y8WeSgh7053Hr27ms//fSz7bNPTTddpSj/+effdKXJdc9UinWv13ewwkUKZ7h/Kr+2q/u57qE+ZfZdTHlXrFgRPEcWC0rCp/+etuGff1wQda+9KqZ7r/t18pp3Bfx3/uD0pn8va0KQdN799RnvPCtPvM/jVUGAvWzZMu6zPSsNPp+zEsof8/NNMFJfjEnxBYoVLeoCAAsXLgyq06QF805ocpy9/OIgq1a1mo2f8LE99PCjbiV1DzzE5s75yvoPGGiPP/FUZMVHHHG4PfvUEzYzKDUVzjt82GvWsfM5Nm3KpEiAoV2HztahQ1u78PzzbPz4j+3W23u47WtlHTu0t769e2R4wIlsKDSgm9Gvv/5q+sVQSUFJnW8CkiEkBhHIYQF9oTj8sENdIOB/3brb+++944b9lxG9B/WX2T2iVKlSVv+gQ61N61Y28r1Rbu+OP+5Ya9e2tXUN1qd04glN7Ol+j7v7wOIff3TTVSJASVWS7rmrb7ovx25GjP+4R8RAYVK+F3DvxeB9Guv7jwJ3PYKaDx+MHhNxOO/cs63H7be5UjfxPq+73NTVrfPLL7+yFStXuuWfeOxha3HKyW540Asv2rNBtWo9+NY94AC7vXu3bSWjzL6aPduOa3KSW04PxA89cK97L0d2Ihj4eOIn6b4/vPfucGvdrqMLSK5avcr03aFzp45BcxDD3WJX/9+VpgfvgYMGu/Hrr73arrn6Kjes0ph39Ogd2c/LL7vEbuxyvRUKBb1cxhj/cd+IgZLwpLQH0/C1p9JxHdu3s7ffGWHXX3eNe3B9fuCgyHdIXQ939ulpp592qjvH2tQVV11jt3Xr6s53ZtfrwoU/RK6PLVvSHoy13fVBiR2VFvv0sylur6tUrmyPPvKgHXZow4SPgoyJCVTaq5J7v/8TBJsUTKhatYoLHD8S1Jzocv11LrAQvhYSWyu5ogW84dbgOvfDylOjejWXVaXUhr7ymrs3/hk0b6H789CXXgiCO2Xtmeeej9zvT2hyfPD9qU/wA0BF+yuoBXfzLd0i7xMFOceNn2Czv5huem/ps0D5VdL5lpu6WPPmJ2X6XUzBUL1nfRMN+o742CMPWaVKe7n3ub4P+tSnVw87q/OZfpTXPC7grze9+mHtsh/216RiApmd53ifx3oe0Hd+5dGzwID+z8QV4fM5Lk++mkkwMl+dzvgH06rV6Tbqg9Hug6fWPvvYCSccb8cc3cjdFNRmpG4O+gI5PviQemnwQJs3b777cLn3njutZfAQMvvrb+zSy6+yj8aNt9atzkiXd9GixW7j4ZvYf5v/c19GNe2ue++3c885y/7vysvt62A9lwTraX3GaXZU8OU1XtLNSNVCfSBSeVU955egrSKtl4BkPD3mIbDjAgp0qFRS3949rXmL0+zRx5907UT6LyZ6jXePaNe2jdu42p0cNeJt+zV4H1919XX2XdBe7atDXwraPipiZ3Y+174IAh6HNjzEPVRWrlTJRo8aYatWr3alAO5/8KEs26HiHrHj55gld28BvUcVmvHvyfDRqG1oBSLfGvaq1dx776BNt7fs0ceesPPPPcdUUllJy/llw5/XWq8eVh8LAjuHH3aY3ffAg3bv/Q+5kjrjxn/smm7Qg65+MHg6KAV3R8/e7j2u5b6Z86099eRj7gfPO++61x586FH3ABLet+jvGmrL2u3P1qDph23BJgU8JowbY2+//a499cxzdmzjY9y9YfrMmda7z1128UUX2MqVq+z/rrneLrrwfLvskovcj6Q3d73V9P2mfbu0+094u+Fh7hthjewP67rT+fbXj1/DwQcfZMPfedfUHuSUzz933yHvv/duO+7YY1wA5Zb/3eYC2K8OfdGOaHSsPfHow3biiU3srbffyfp6dddHWsEDbXfsh+Psy69m29gP3nOl9Xr06mOPPdHPXhz0vN8dXnNIoEKF8sE5bOyadVr840929529beLESbY++NFDwavo6yCHNptyq/GOq4MaIsuX/x64bnbfmQYFTebsu2+doL3O/YK2vKfb/O+/t2uDH2Tq1j3A6geFS24J7nv6wUY/7KjUue6RPXvf6X7s7XvnPa6K7bDXX3H3/tvv6OVcta0twXtYSTXf+j/7lO1do0bc72Jqr1XNfA17fWgQnF5vnc85P2je623T86UCVLr3Nz7maBcw7XPn3cEPDy1jltJ0G+W/PCWg+7nSluA+669DN+5/AAqm/7xkSabneU3QZEdWn8c/LFpkA5572koGJWrD23AbDv3H53MIIwUG800w0r+JUuCc7fAhli1Txl4OgoyfTfnc/UKmL3KqgnnUkUe4X7ZUbHqPoIpTwYKFXIcVNWpUtzffeNX232/foDTiL+7X0JIlSwSBgjWu+H04b9ojUfpi3O4pKbi36dxUCKp3T5gwMfigqx48VDS2L2Z87hpijnfe5s2bl65EZPjAFZBUaUmlevXqhWcxjAACOShQuXIlu6tvbxccDFcb0ns33j3Cv7cvvOBcq1VrH/en+0froDrXIcEDq5KCBnOD9/meQYmZH35YZGcGJabXrNX9pYAdf+yx9tKQocFDT59Mq/twj8jBE82qdk+B4H3o32vhA2gRNK1wTKNGVqVKZVu0aLEV3tZJnR5yCxRIy6nlIsu66FLa57XmqmkG/SmpQ5oxY9PaptT3hwMO2N/atmnt5t1w3bUu3+bNaUGiZic1ddV3NbNtm1Z2U1AiR1Vvw9VzNZzu+0OwH0rh/bns0ous0l57WcsWp7hg5Dlnd7a9965hxYqndVqyKOhoTx1nKKlUz29Ll7qH5CMOP8y1P6kS2Jkl7huZyWRjetop2379bFtU3yOV1gXtjo0JmgbSPb5WrZrux6jGQUC539PP2sSgZMzFQQBZaY+ie7hASLzrtei2Tjvc9eG+WKZdK6VLl3Kl9dR+YbMgMH7v3Xe6766Ra9ptgf9ySuC5Z/qZ2pLeJ/g8V5X4M886124KSiH/GLwXB780JOiIqLydG5S+3isojUfaMQF/7SqwHk76rqXvYW7+tvfeVUHhDt1L1RHYxE8m2YsvDHCdj9auXcuVNH4wqOmmvgHeDwqhqPTxgfXTnpU6dmhnjwQ/TLn307Z7rwqKqMbc998viPtdrEzwHKn3tTor049KH40ZZUWDWneq4q2ktoB1v1cHR/rBSAVd/DG5DPyXZwX8eQpfF9pZBSeVNL1kibROq2Kd55Hvve/yxfs8Pu+cs02fA359biDqPz6fo0BSYDTfBCPjRdhT4DwmdIjqQVtt9qiYtP7u6H6r6y1XRe7fDn7J1gdH2s1o26/dwRPLq8GXvHfeHenWf3jwJV/J/ZoW/KIWzuurzuiBZPu5SHvQ0fhDD97nSmX0Cn6tU9K6Hgh+LVegI7OkHnxr1aqV2Ww3Xb/mbd9e3KzMRACBbAi4LyRBfr2/2rQ+IyiF8pHdFjS1cPONN7i1uPddFvcIZVRpR/8eVftCtevUioyr7dgtwT1j2fLlbp0vBj116sHSJ30BXx2UklQVpFiJe0QsFaalikDaZ3DaezT6mFVqpe9d97gOZfQjQIMGDVyWLcGDYoFtVZgz+7zWetXml3/f6mFTSSUqF/7wQ1CSuWFkXvEgOKiqekpaTp/pfjnfnpgeTqNT2r6nfdeIPOwE9xo/rICG1lMkKEGttE/Nmm68cKG0r606DgUglXr3Tfte4UaC/2puy+vHo1+5b0SL7Mj49u934aV99c3y5coFpWh+sR9/+inSLIfy6Z6u6tX+GtF1oOF416u/Jrbq+vCldIJhldS77daurhSWfljXda4qw2rXkJQ7Av45QB1O6QeFJscfZ23an2mdOnYwNbXy7LPPW487bsudjafAWv37osftt9oxQQlD1U4pF3z/8fdSzdd7xrcbqXGVklSqX69u5H3VYFtTXIuCQKWSekH261ZpSiW3rmB5pYrb7vdZfRe76orL7J8N/7jScaoto/u9nuV0XTwflHgbMPAFUzMfSgp6qk3Z7PYR4Bbmv6QLlAq+nyutCmocVAzae/bpr6CUu1KpUnsGzbCVyvQ8J/J5HP5+4Ncf/crnc7RI/h8nGJn/z3HkCFVkXp3UqH0nn1QqUg8SvwS9aPkPOf3opmFVj1IgcnBQ5UUlmfQLl9qC0kNAdF59YCqpnSrdsJR+WLTYVQFQKcaff15ivXre4dqAU7XN2+/oZa++/kbwxfFalzfWf9qG/uKlRPLEW555CCAQW8AFC7Y9KCqHHjA6nnm2PfDQI24BvfeyukekrblAuvexb3cmbV7wIBpsw3eMdWdQJfzooOkIpWVBz31Lguqbamcss/tAIu//RPKk7Qv/I7B7Ceg9GvyL+f5QD7cqFTPynbdciUJVj1KzCJuD922RbaUkY31ep73X0ore+PeduxcENBqvFDy0fvPNN5Ft6seC/gMGBSXdLghypF/OL69X/x3BC7t937bO7QEmBabS1qH/tZyvtq2AlMZ9YEr3DV8C67WhLwXfO0q5Vc+bP9+9+m27kaj/3HqCdcVLieSJt3x+n6fzo3MYdt60aZO98cZbkWr5evAsukfRoMTW9mrT+v6nqqB+Oe8c73r114ReFZBU0rC+V9avW9c1EaCgpzpVuff+B+3Uli3cQ7PLyH85LqAfF1TC9fYg0LRs2XLXqUqHoK3QBQsW2E1du6V7xsjxjefzFfprXZ1/1ahePXK0/v2iCbr36XnMT/P3wTnffmcqGa40O7hHK6latwKRKkWuNl2V1K6vknvv6QMkSHqC03hW38XUzE7nzh2t6y03Bp8Dc1wJS30nfPbpJ10TWgpI6jPhgzEfunaB1ZSHSlCS8r5A9W3tki5avNg1CeD3eEHQz4RS1apVg6ZRVmZ6nv11GO/zWN8D/HXr1x/96q5LPp+jWfL1eL4JRvovy/n6bO3kwbVp08oeePAR9+txs2YnBV8S93DVZdRm22WXXOy+WJYoUdyWBqUNFi1a7Ma1SVXzUpuNQ155Lah6s94Nyzuc1/diOCLoqOLM4NcwNWDuUpBPN5/7H3jYjjjiMLshCD7WDko7Fg1681bVzHjnTY3jhzuuSVvh9v/1a1v14MM63jq252YIAQSyJbDtS6p/f6mEY7f/3RIphaTpfl5m94i07W3Plxar2D7uvgYH66lTu7Yr+aSgRvmgqpdKAajB9cpBhwRHBp1m+e1E7z/3iGgRxlNKIHgDrf1rrc364st0h61gj5JKGOihVg+H/Z5Kayxen+Xq6EMp1ud12vs6LdDk33fh16ZBD8q33d7TRo8Z69oGe+75gTZ9xkzrevONwfs0/XJuQrCdtHWmPfS6DQf/hb8/hPP5Yb2Gl/PD4X1RyTilp5/pb6rWvTQIjFx48WVuX9SxTmaJ+0ZmMtmYHpzOpUuXuWtPJWb/+ONPe3fEyOCH7V/tgfvudufu5GbNgk6U+rjvgyc3P8l1ktg3aEd06MsvuA5QSga9pM+f/70ddFBaqd3Mrld1vqjkroFQNW318KxrUc0P7Rc0J+Sv6yJFCru82TgasmZDQG3R6jt/o0ZHuXYKtajuMWqrUO3T+vdoNlZJ1m0C3s5d67qhxkrbpvu8Kumo72cvBO1KKpio9naHD3/XNZehatxq8/+1N4a5H6W0utffeNOt1d+vNeKHs/ouNmLkKPv2229dbbe9g3Otatv6EeLv4HlNnUmpgzS1E1krKJ2upB+T/X66CfyXZwVKBPdjBaz79L3bPbfr+Xp68OPRq6+94dpsLh384Ke23zM7z4l8Hse9rrfJ8PmcZy+RXNuxfBOMjFUNKNfUdtMVqxqFbgQDBw527bvoMCoFH2B39ukVlEY6yrXzoS+FahS+Q6ez7Z3hw+zo4MvGaWe0dUesqt3HBo2Qzwk+iOQdzjtu7Ad2ZVB8/+mgoXn96de5g4N1+VIMKo35wIMPW9NmLdy61It3+/Zt3XrchBj/7bfffq5amIKj4Q5slFWBSAUqlIdzHwOPSQjspIB+fdf9Ivz+0pfMsR99ZFOmTHXTW7Q42fWMm9k9Ql9uwuvQV+vwuJ4rdY/QF+YH77/H9f7b6azz3J7r1/Ru/7s53fajD4l7RLQI4yklEBRnWbRosetUInzcqhp30QXnuWrax51wkpulTl6++ebboDOEua7DqMw+r/V+1w+IBQsUjLz3fEkGzWse/JB52aUXW/egdoNSw6DzqR5Bky96X2dYLpimFL6HuAnBf+HvDypNo7Q56KxBf0q6/2g5v20155BuPMinjhTUW3fv4OHp9WFvBgHOEq5qoNori7VNt+LgP+4bXmLHX4NPBxdcHD/hY7cSVcuuV7+uvTDgOdephvxbnNI8KL34s915973uTyVvdE+vF5Rm1PxmzZq6EnbqETje9aoaPEq6NnQd+GG1T9qmdSu78JLL3TSdfwVCiwTVh+Odf5eZ/3ZIYOPGTcE5e8711CxjfXaf1flMu+6GG4OA1PqgU5Ursd8h2bSFIve/oGRYZtewvjMVCtr29/PVXNWjDz9g3Xv0svYdz3Ir0vOaeq5XnnODdvpU/frOu+9zP/SqU7Jx4ycE9+vg+9i2Emhbg3X68xnvu5h+9OkVdIzTqk0Ht506tWuZOjnVDwF6bz8TdGh2d9BhqdIlQdNfqi7u99NN5L88LfDAffeYalF27dbd7afuqep87PbbbnXnMd551r0gkc/jrK4HPp/z9CWSKztXIPgCmfZtMVdWn5yVTpkyxX25TM7W8sdW1FutktoiiU76lUt/ugkprf3rLytSuEhQyiKt4fhw/ui8//zzj/3zz79BG29pjZiH82r4jz//NLVLUaxYxnVF5/Xj84NqV+pRW9tS0hfNatWqBV946/osvCKAwC4UiHePyO5urV27NniP7xHzfpPZurhHZCbD9FQXWLFipetpWA+s0Smrz+vo/OFxfR6rNEys7xDhfPGGo78/xMsbb56+xuo4y5Ur66ovxssbnsd9I6yRe8N6+FRpLbVZHp3UlIBKRKraqVK86zV6WT+u6/ivYD1q50wBcVLuCejzWdWB1bt9OC1Y+IP73u+raobnMZw8AT3bFQ+er8LPWOps5tBDG7rOSLUnKummJg3Gjn4v7o7F+y6m73wKZKpkZDjpx6Pff//DtTns39Ph+QzvHgK6Z6uks0pAK8gYneKd5x39PI7eBp/P0SLZH1ethYoVM+9QLK+055pvgpF16tTJ/lliid1G4PuggeZffvnF7W+NoAraAXGqYO02B8WOIoBAjglwj8gxSlaEQMoIcN9ImVPNgSKQkgKDgurb778/2s45u7ML2g8Z+qrrzV6l5UkI5GUBPp937uwoaLw7BCMz/lS+c8e9y5b2VXl22Q6w4VwVULFtf47Dw7m6UVaOAAK7jUD4vhAe3m0OgB1FAIGkC4TvFeHhpO8IG0QAAQRyQeCsTh2Dzr4q2NRpM4ISk0WtW9ebrGWLUyLPVLmwSVaJQI4IhD+Tw8M5snJWkmcE8k3JSDWkS0IAAQQQQAABBBBAAAEEEEAAAQQQQCAVBdRUAiUjk3jmfam5JG6STSGAAAIIIIAAAggggAACCCCAAAIIIJAnBHaXdlvzTTXtfNAPT564cNkJBBBAAAEEEEAAAQQQQAABBBBAAAEEckuAYGRuybJeBBBAAAEEEEAAAQQQQAABBBBAAAEEEEgnkG+CkeqGnoQAAggggAACCCCAAAIIIIAAAggggAACeVcg3wQjaTMy715k7BkCCCCAAAIIIIAAAggggAACCCCAAAISyDfBSNqM5IJGAAEEEEAAAQQQQAABBBBAAAEEEEAgbwsQjMzb54e9QwABBBBAAAEEEEAAAQQQQAABBBBAIN8IEIzMN6eSA0EAAQQQQAABBBBAAAEEEEAAAQQQQCBvCxCMzNvnh71DAAEEEEAAAQQQQAABBBBAAAEEEEAg3wjkm2DkjBkz8s1J4UAQQAABBBBAAAEEEEAAAQQQQAABBBDIjsApp5ySney7LG++CUa2adNmlyGyYQQQQAABBBBAAAEEEEAAAQQQQAABBHalwIYNG3bl5hPedsGEc5IRAQQQQAABBBBAAAEEEEAAAQQQQAABBBDYCQGCkTuBx6IIIIAAAggggAACCCCAAAIIIIAAAgggkLgAwcjErciJAAIIIIAAAggggAACCCCAAAIIIIAAAjshQDByJ/BYFAEEEEAAAQQQQAABBBBAAAEEEEAAAQQSFyAYmbgVORFAAAEEEEAAAQQQQAABBBBAAAEEEEBgJwTyTW/aO2Iwffr0HVmMZRBImkCjRo2Ssi3eC0lhZiMIILALBJJ1H90Fh8YmEUAAAQQQQGAnBXgO2klAFs9Vgfz8PTalg5G6alq2bJmrFw8rR2BHBcaOHbuji+7QcrwXdoiNhRBAIA8LJPs+mocp2DUEEEAAAQQQyESA56BMYJi8SwXy+/dYqmnv0suLjSOAAAIIIIAAAggggAACCCCAAAIIIJA6AgQjU+dcc6QIIIAAAggggAACCCCAAAIIIIAAAgjsUgGCkbuUn40jgAACCCCAAAIIIIAAAggggAACCCCQOgIEI1PnXHOkCCCAAAIIIIAAAggggAACCCCAAAII7FIBgpG7lJ+NI4AAAggggAACCCCAAAIIIIAAAgggkDoCBCNT51xzpAgggAACCCCAAAIIIIAAAggggAACCOxSAYKRu5SfjSOAAAIIIIAAAggggAACCCCAAAIIIJA6AoVT51B3/EinTJliGzdujLmCY445xn788Udbv369HX744fbbb7/Z999/b02bNo3k/+eff6xYsWKR8Z0ZmDt3rml9hx122M6sJt2yP//8s9vnlStXWpUqVaxu3bpWuXLldHmyewzZzZ9uY4zkSQF/bcfauapVq7rrZurUqVapUiWrU6eOfffdd+59c+ihh7pFtm7daps2bbI99tgj1iqyPe3zzz9312vt2rWzvWz0AnoPLFq0yI488kjbc889083++uuv3fghhxySbjojCCCAAAIIIIAAAgggkP8F9Ay+fPnymAdav359K1OmjOk5SM8L5cuXN8UPqlWrZrVq1XLL5OSz8YYNG2zatGnWsGFDK1euXMx9ys7Eb775xj2jKZYRTnp2++STT9wx+OMIz2cYgZ0VIBiZgOCwYcPcGzRWVgXuJk2a5IKQegPrRvX222/biSeeaAUKFLDnn3/e9tprL2vfvn2sxbM9beLEifbHH3/kWDDyrbfeso8//tjtR/HixU03N6VzzjnHjj/+eDes+TNmzLBu3bq58az+y27+rNbH/LwhMH/+fNP1EisddNBBLhip94oC9ApGTpgwwdasWWMKRv7999/24IMP2rnnnmv16tWLtYpsT3vzzTetcePGlhPByC+//NI+/PBDmzNnjl133XXp9mXMmDGmD2OCkelYGEEAAQQQQAABBBBAICUE9Hz77bffxjzWTp06mZ6F9GyiQKT+9EykeICCeCrw8OSTT9pjjz3m4gMxV5KNiWvXrnXbUowhJ4KRY8eOdc9ssYKROqbmzZu748jGLpIVgYQECEYmxGSu1ONll10WM3fHjh0zLTmp0mG6EeXF9Ndff7lApH5VufDCC13pzdWrV9tTTz1lr732mh111FFWtGhRF2BVibZEkwKy2cmf6HrJlzcE7r777kw/+G655RYrWbJkhh3VtbZixYoM0/PaBF27Crzr2ichgAACCCCAAAIIIIAAAhLQM44KV8RKmzdvtq5du5pqi0Wnn376iWfjaBTGEQgECEbmwGWgEmMqARZ983nvvffcjWf27Nnu5tWiRQvbsmWLCwAqSKmSkwcffLCdcMIJbli/cowYMcKVehw/frztvfferkSl8oWTSmmp1JnWqyLhJ598stWsWdN+/fVXN13j4X3RLxr777+/K6EWXs+yZcvcqPbBVyMvW7asde7c2UaOHGl//vmnK/Gpauj//fefDR061M477zx3DCoNumDBAlu1apVVqFDBWrZs6fZXgZzo/CpNpxKkvmSZrLR+eag6uPxUBFzTVU28WbNmVr169fCuMrybCKjKQK3gF8DwL2v//vuvvfvuu+4IVMpQ1RRUWlLVvnWd6zrU9aprSL/wKX366adWsGBBd02rJLDm7bvvvm5e+D+tW9e3PuT1HjjttNOsVKlS9sUXX7hq4irhW6hQIbeIv+6i3x/h9emXzFdeecWV3tR6YiW9z3xpaM1v0KCBew8WLlzYFi5caF999ZV7X+ua1vvmuOOOswMOOMBGjRrljkfHrhKdCvQrxXNwGfgPAQQQQAABBBBAAAEE8qyAahfq+UWlCFU92yc1BaWmpZSGDBlip5xyinvuiff9X882enZQtW89L7Rr1870jB6d9AylZy8946iquJ6t9fz0wQcfuNdTTz01soiakZs+fbqr/eifjSIzExzQc5fWrZKeih3o+V7P7dqm0rp160zPeooFKEahZyDtl1Kiz3YuM/+ljAAd2CR4qhUAVGAh/KdpSqraqRtBdPJvdAUgfUCxX79+rhq3pqmdSRXhHjx4sFtU47rpPPvss65Ninnz5kWWC6/7999/t+HDh7sAp9qze+CBB9ybvmLFim55VeX2afHixaZxH/jw0/WqoFGRIkXs1VdfdQEdBRf1q45ufvplRwFB3Vz0p/31N5pBgwZFqusqmKjjv//++11V3Fj5P/vsM/vhhx8im/bHqTYqdSNWsXUFPvfZZx9XCvPee+81ldAk5U0BXSPh94GuDZ/0QaOAXHTy7wVNV9BOH2L33HOPC6grADlz5ky78847benSpW5RXdcKCiropw80XTOxkj7c9Ve6dGkX0O7bt6/pg7JEiRJuutpA8UnXod5f8aozXHnlle4HhBdffNEvlu5VH/q6PvVjgt4fctCPDmqaQUnXs6pxqHSxkr6AqKmGu+66y3RMeh/qC4aOSykrB5eJ/xBAAAEEEEAAAQQQQGCXC4SfgTTsn4NU2ELPGXqmDSfFAPwztJ6HEnkO0jOLnh/0bK7nBz2vx0p6/tBzkrah55Gnn37aZdOzkMbVTJZPKgikvOFnMj8v0dcXXnjBFXxS/wB6pnnnnXdcHEHLKxjbu3dvF3dQ4FTPOHoe8oHYRJ/tEt0X8uUPAUpGJnge1aac/sJJ7UM0DXVUE56n4dNPP921Q6fOZvQriIKL+lVCv25oXEltNOjmoBJdPmCpUmWZVQl3CwX/3Xrrra4kmDrWuemmm9w6brjhBteQrQKjZ511lrvxKTiktiBjtdOnG1v37t2tf//+7sahoKVulvvtt58rAang5hFHHOECrSoBqfb+dNNVMFTHdsYZZ7jdUUmwAQMGuFJf0fn9/mb26gNXOl4FNlVqTTdWVeuN9QtQZuthevIE9EETTrqOHn/88fCkdMP6sGrdurULPOoXOl2LCkRqOQWx9aGs61htkupD7Zprroksr23pOswsaR0KxutVJWwV2J48ebL7VVLXva5/34GOhtWeiy8FHGudKo2sXxXVfqR+PWzUqFG6bPpSoJLAev/56ui9evXKEIBVicxjjz3W/aigIKs++BWQVHr44YddyU3dA9QcQiIO6XaCEQQQQAABBBBAAAEEEEiqgEr+denSJd02VUMq/OySbmYwomeLo48+2pYsWeKepfW8r0BjVt//VUNLz0vxgod6ZlccQEm10D766CP3PN6kSRMbN26ce5ZRyUWVnFQBJdV+3Jmk56ADDzzQLrjgArcaPS8p8KmkEpEKSCq2UKNGDdfe/hNPPGFvvPGGqxHmMgX/ZfVs5/PxmhoCBCMTPM8qBaU3czhlt+MM3QSUFIDzJcAUdFNSNdNaQUlFJb3J4yUFd1QlVUk9E2s/VAJLSe1Tqvq22r5T0EcBFQVMfaDTZQr9pwCggim6SalRXpUk0y8XKmF2xx13uGrToewucNSjRw/3a4eq2Oo4FGBV2pF2IlV0WwFQBWx0/ArEnnnmmQQiw+h5bLhDhw6RQJx2bUd6x1YJQgULVSrXJwUlfwx+sfNJwb54gUjl03tFH+ZKaopA15LWoetdHTDpQ1m/VCqArmv8/PPPd3nj/deqVStXUlP75qsW+Pz6cNc1qtLAuvZ/+eUX11RBY3cGWAAAQABJREFU9H764L/eX0r6QcIn5dWHuVIiDn45XhFAAAEEEEAAAQQQQGDXCOiZ4+yzz0638ehngHQzMxlJ5Pu/airGC0Rq1UceeWRkC+oDQs89eg5S9WjFLlQQQ/ELldhUUlA0VtJ2fAnP8Hw/zccRVMBDhZ5UgETNr+n5xsctfC1INSXnk0pmKj7gazwm8mznl+U1NQQIRiZ4nhVUUC/BO5N8T9V6w/vAnUppKbgRbp9OVU7jJbVrF04qQaigiJJuXHqjq3i3SpvpJuJ7xQ4vo2G1q6dqpyrlqHYdVJJLf1rXfffd5242bdu2TbeY1qfSZwqmaDsKIOompNJo8ZKv0q48Kl3pk6roKripUpkqeapSkfpl5/rrr3fH4vPxmncEdL3Gq+qc1Z7686+gun8faBkF/jTNpz333NMPZvqqUoo+KRCp5XXdKylwqA9ltWOqXyM1Lzq46JcNv+r9edVVV7n3gG9Cwc/3pS81rg959Rq+fPlyPzvyGn4/a2KsY0nUIbJSBhBAAAEEEEAAAQQQQGCXCKgAxs7GAxL9/p9VPEAA4ecgn98/W6kwkpq8UrXxrGqHaT2qVh2dfKEpH3tQiUg9+6h5Ld9UlgqD3Hjjja5JLT2L+e1rXeoTQH8+qBnreSh6m4ynlgDByCScbx+I87+c6CbmO3PxNwjN8/n8rw+Z7Vp08EPt1/l1h0uE6WanG4AvnRW9PpUWe//9992vGsrnk9qBUPI3Dj9drz8Gv7YoEKnScWqgV0lBTQUjY+XXfN2Ywm3+hfdfJThVslLVyvXnA6FanwKrpPwloGtcJSAVGNSvi+HmCBSQ1rXiU3jYT4t+VZDRJ3V0o4C/OkFS0gerqkboFzwF3fUrYVbvLb8uVS9QpzlqRkHJl0RWkwoq0akexX11b5Ug9u9dv3wir4k6JLIu8iCAAAIIIIAAAggggEDeFkj0+38izyx6bvYlE1XDUck/96vpNDUHpQ401U+DmpDKLPmAoUpshjvfURNzSnq2UmEPPRep9peCjxpXLTIV+tD6tV0946vkqAosKSlGoSCnH0/k2c4tyH8pI7D9yT9lDjm5B6qAhaplq4q2SpTpTai2E9TOoqpWP/PMM+7Xiuy0j6ign9ahAItuAmqrwQcGdXQqCak8uimpdFhm6aijjnL7ow451DOWqp7qVw6NK/n28tQZiAI9mu9/0VAVVRW9VmDSV7X1JdLC+bUfCgrpFxSVKtNN7fXXX4/skm60am9CjexqG776ug8oRTIysFsL+A8hNQGgILiuS51v9bSuc65OX9Sxi293JNGD1fWna1ZB8he3dTqj3ul9UrMFeu8pSJlZCWGfN/pV1bXDvzhqvkqEah91DKpyoA6o9Br+FTB6PfHGc8oh3jaYhwACCCCAAAIIIIAAArtGwD8Hqbq0np9z6vu/2mlU9Wg10aZnedXMUg/XSir4oWrVChZmVTtM+RSjePTRR03NsCmGoOdzxRv0LKQm4VQqVM9xet7S85ee41asWOGWU6nMpkFJTKWBAwe6Zy+tQ53yKhip7ZMQiCVAychYKjGmZfXrhJ8fHfHXrxIq8aVetPUGV6O3epOqwxcl/RKhHnyz8yZV4HLWrFmRHnkViAwXGVdRapUIU6mxzNqG0LZ1c+nZs6drRFclJH3S+tUYrqqhKvkbmW4oal9SbU/omBQE0vH6EmQKuqrtiuj8+oVEvXupereSblZaXsvqhqngkW54uqEqqSFgdWRDylsC/hr3r7H2TufUz9erH9aHo6519SKtX8+uuOIKUyPQCkLqT6UkdQ378+6Xi7WN8DT1wK5guILe2rZKWvpSwsqn95/mqzkA/0theHk/HGt7Wp+qays47+erSYNff/3VdZqjZXVMCurrg17Hk92kjn3iOWR3feRHAAEEEEAAAQQQQACB5Ar4ZwU9P/jkp6mjGT3rDB061HUik9X3//A6/LrCr36+am4pvqCk5/drr73WPQ/5vHrGVg1GNcPm98XPC7/qOUnP/i+//LJrMk3ztA1Vyb700ksj/QOomraasPIdlyp+oWc6lfbUM706yFFBE3XWqaQq3BdddJEbjrd9l4H/UlKgQFC9cOvufuRTpkxJqC246ONU5y4KpOV2UqkstUMX7uhDbTDoTe5/KdmRfdCvEWrrUTeA6NSnTx9XzFqBzkTS5s2b3S8cKvkVKzCqYI86AlGpRyWNq4dtBT5j3Vyi8+syUxAqs/1Vfv3CogBprONJ5BjyWx4VhfelU3P72JL1XtCvgarmrPeDkq47XUc677Guo0SOO961qO2p52tVTchuych42167dq37UqFjyYmUEw45sR+sA4H8JpDM+2h+s+N4EEAAAQQQSAWBZDwH6XlFzZbp2d8/8+TE93/V2FKsIVYtS5Vk7N+/vykuoIBjIkk1HVXrS/n9fkYvp+cgHU+sbeqZX892Ki3JM320XPbHd/R7rK6JcAGd6C2H41LR85I5njGKlcytp8i2YgUsoju42BEKBXCik0orqoSiAnsXX3xx9OxMxxUcilc1WoFTH4jUSjQea/t+A9H5dTPLKn+8kmt+vbzu3gK+mv//s3cW4FEdXRg+ENzdCwlWHIoUL+7uLsF/WhxS3N2hSClWKO7ubsGd4u4e3Ok/3yx32WyS3Q2EkE2+8zy7e/feuXNn3mszZ845Y9QC152tB6WRztavb9ci4qViNjeEQ8BIpC0LYVt5+7XNCBLt13b/rg8IDv49JtOTAAmQAAmQAAmQAAmQAAl8ewLor3yLfhCMiKwNiRBOChPDwuUaVpmOKiJBAUoqY/4Iv6jY6gehz29MeOPX/lxPAgYBKiMNEsHkFyM7UEYi3p2rmumaQgIhkQCUe4hDipczXK2hkKSQAAmQAAmQAAmQAAmQAAmQQHAmAM8wTLoJJaS7u3twrirr5uQEqIx08hNoXXzEpKSQQEgngFE5xGmlkAAJkAAJkAAJkAAJkAAJkEBIIYBYj5ivgUICQZ3A5wirQb2kLB8JkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkIBTE6Ay0qlPHwtPAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAs5DgMpI5zlXLCkJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJODUBKiOd+vSx8CRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiTgPARC/AQ269evd56zxZKSwDckwHvhG8Jl1iRAAiRAAiRAAiRAAiRAAkGSAPtBQfK0sFDBnECo/5Q4ex337NkjadOmdfZqsPwkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk8EUEXr16JXHixPFz33Dhwvm5LTA30E07MGnzWCRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiQQgglQGRmCTz6rTgIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAKBSYDKyMCkzWORAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQQAgmQGVkCD75rDoJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJBCYBKiMDkzaPRQIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIhmACVkSH45LPqJEACJEACJEACJEACJEACJEACJEACJEACJBCYBMIE5sG+5bFOnz79LbNn3iRAAiRAAiRAAiRAAiRAAiRAAiRAAiRAAiQQZAm4uroG2bJZFizYKCPz5MljWS8ukwAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJkECIIXDr1i2nqCvdtJ3iNLGQJEACJEACJEACJEACJEACJEACJEACJEACJOD8BKiMdP5zyBqQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQgFMQoDLSKU4TC0kCJEACJEACJEACJEACJEACJEACJEACJEACzk+AykjnP4esAQmQAAmQAAmQAAmQAAmQAAmQAAmQAAmQAAk4BQEqI53iNLGQJEACJEACJEACJEACJEACIY3A27dvQ1qVv6i+4ERWX4SOO5EACZDAdyEQbGbT/i70eFASIAESIAESIAESIAESIAESCGACe49dlqkrjsvhcw/E6/mbAM49eGYXI0p4yZo6jjQun0lyZXYLnpVkrUiABEggmBCgMjKYnEhWgwRIgARIgARIgARIgARIwPkJTFt2QAbOOiahw0RQn2gSNiqd2Rw5qy8+fpTtp57J1mObpWvdzNKoYg5HdmMaEiABEiCB70CAykgL6B/VC+z27dvy6PFjSZgggcSJE8diKxdJgARIgARIgARIgARIgARI4NsRgEXkoNknJGykWCKhqIT0F2kXF3FxCSsu4SJphunc4tBC0l8AmZgESIAEAo8AlZGK9X///ScTJ/0lf8/4R+7evWemnzZtGmnXupWUKFHMvM7RhfcfPsjZM2fl4KHDepcCBfKLa7Jkju4e4On2Hzgor1+/ll/y53MobyhmEXclQoQIDqVnIucnsHrNWnnzxnc3oJIlSkikSBFtVtLeNYbt7969k7x5ctvMx9GNZ8+dk1On/jUndwkTRqJGiSLZsv4k0aNHN6+3t3Dp0mU5euyYVK5U0V5Svf1r742A5uBQoZmIBEgg0AmgHbB48RIpVbKERIsWzXx8vIvxHHjs5SW5fv5Z4sePZ95mLCxZukwPiubOnUuvwnPq2PHjkjpVKkmfPp2RzPx748ZNOXzkqHq+5pLYsWOb1xsL1vldv35DlwHHzpXzZwmjnp+WYut4aDOdOHlKzp+/IClSJJcsmTNZ7mpefvXqlaxdt14KFyokMWI4/kw2MjipjuH15Inky5vHWGX+3bxlqyRLmlRSpkxhXme98ETte06V0VJChQol2bNlNa968fKl7Ny5S73fIknWn7JIFPUOcUT8Ov4RdQ4uXb4iGTKkkx9Tp3YkK6YhAR8E/l7zr4SJGIOKSB9k/LFCKXHBECzpru0PbkzqMAH0m1KlSqnfyw7v9CnhocOH5dnT51Kw4C/+3ZXpSSBYEfDe+gxWVXOsMmhUd+7aXebNX+hjh9Onz0iLX1vJ0MEDpVrVyj62+7XiwYMHUq1Gbd0gNToFPXv3lcyZMsqCebO/i4Jv7rwFcv/+fYeUkWjAN2jUVHp066wUO58b7X7Vl+uDB4EevfrKw4cPfa1MVqXgs6dMt3eNzV+wUF2DDwJMGblz127p13+Qj/JGjhxZunb2kLp1avnY5tuKg4cOSaffu0qlihUEHVVbEhD3RkBzsFVebiMBEvh+BAYPHiqTp06XnErZZygjMeBZp35DrchD+wDP3Datf5P2bVubC4p2Sf+BQ2Ts6BF6Xcvf2gg6PfDYuH3njjRsUE/69Oqht2FwxL1JM9m2bYd5OwZWhg8dpKyDXHQay/ygfKtVu55SbJ4wp0dnauG8ORIzplJ+KLF1vBMnT0rTZi11OYzy49k5asRQH8/PQUOGyYyZs2TNymX+VkZeu3ZdqteqqxS5xX0oIzds3CRNm7dUdRxsUxm5fsNG/WzXlbL4unrpnP4HBW27Dh5aeYvzAL5zZs2Q5Mltx5nz7fgflOK5VZv2+jzhHfTixQvJkzuXzPx7qoQNG9bi6FwkAfsEjl5+qRSRvG7sk7KTQikkNUs7ybiZBL6EAPpNTRu7f5EyctHipXLu3HkqI78EPPcJVgRCvO1/l249fFVEGmcZDX2Pzl0FjVZHBMqKuvXd5cnTZ7oBfmj/Hjm4b7f8M2OabvyPHjvOkWy+axpYa2B0nxLyCDSoX1fQUbP+2FNEfk9SZ/89rst7/sxJ2bZlg6RN86N069FLMOoY0MJ7I6CJMj8SCH4E7t27Ly1attKKSOvaDRsxUisiFy2YK4cPeMrkSRNkjGoXbNy02Zz0rOqgQDkGK++Vq9ZoBRfaEHv37JBJE8dpLw7D62Lb9h1aEYn8sH3MqOG6vbJ123Zf81u8ZKlui2zdtF6nX7ViiS7PpMlTdHp7x5v452RJkDCBHDt8QLdt+vXpJUuXLRfL4yGjLVu3aUWkuRD+WFixcrWULFNeK/Qsd4Pl/sjRY7Ui0nK9X8un/j2tLBTTC9phxufIoX06OZSyUPi6N6wvB/bukpPHDslbZblvq41m6/hLli7X56lH9y5y/OhB/S6CwnfI0OF+FY/rScBPAl6vArd7liZpdFk1qIiP8pTKmVhmdMkn0zzySu70cb1tjx8zgnSrm0mW9C0k3etlEpfQnwdzi2RLKGuHFJVxrXNK3BifPawq5U8q64YW9ZbPt/4T2Cy/dX2Yf/Ag0LrVrzJi+JDgURnWggS+gkCItow8euy4wJrLL4G1QLEiRbQLd+++A6R0qZJ2rRo3bd4qp5V7NjoGhisVrK3gHt2uTStB4/jly1fa5RWdjZmz5qj0ZyR+3HhSpkwp7S6F8hw/cVK2q04G3JMWqc4DGsEVK5SXn7JklqnT/hZ0VooULqjdvyJGjKg7LO/fv9Ou1Tt27hY3N1cpV7a0n25Cz549k7+VxQLcXOMo64wKFcpJjuzZBG5V4ydMUiUQmTZ9puoMvNRl9yu9TsivEEMA1/a8+Qvk1q3b2j2vTq2a8sMPSXyt//XrN2TZipUCC+OcP+dQLtrvvaWzdU3h3tzj6and8NasXa/uvRJSpnQpb/tb/wkXLpy4ubrKrJnTJe8vhWXwkOGycP4cnczWsazz8Svtl94b9jhYH5//SYAEnJtAm3Yd9Du61W8t5Y9xE7xVZsvW7VK8WFH9vsUGLCd3c5XFS5ZJsaImZcCu3bu1tQTe7XBzzp8vr9mroUTxYpI06Q+yYuUq7W58QrUVIBk+uW7nyplT/3/w4LOVu2V+Fy9ekt9atjBb/2XMkEEP4Jw9a7IWtHU8hK558fKFNGvSyGzpWKF8WenRq49cvHRZuWMX1MdG2+a31u106AtHB3L1jurrwMFDysKwndSoXk21lz6H4cB2WJlCcQuFn29W8TP/ma2zqV+vjv6FmzcUur7F/36iBl0bqsG36tWqagvSqFGjqvZSKlWPS3pffFnnZ+v4+/bvF1hENqhXV8Ioi1S8i6pWqSRzVBuzi7LUN6xUzZlzgQRsEAgV2sXG1oDdlDR+ZJndLb9EiuC9S+heKqV41MwgD568luiRw0mudHml+QhP2XnirlY8rhpUVO3jIrcevJI6RZPLz2niSPluWyR8WBf5o1VOWbvvhlJgxpP+jX/S+6HUXWpnlLX7bwZsBezkFpgs7RSFm4M4gUvqPbZEDa5duHBRlzSPCntSu2YNcxgTGOqsWr1WHj56pPvYltXBQB68ECCbNm+RuGreiTq1a6qQr6Fk1qy5ykjpiZQtU1oKFjC5ZR8+fEQNOj4S13rJdJ9/mxpALKC2YcAQ62FZX6tmdQkdOnAHJizrxGUSCAwCIfoKR2PekNixVJBoC0Fcpvlz/pHfPTroBiUsHrfv2GWRwvdFPKjgugTFnrW0VcpIWEEg9h5cuYuVLCujx/yhH1ie+/ZJDeWStHDREr3bJdUgHj5ytHLnctf/oZypU6+hVKlWUz/k0OiFe9Gy5Sv19t179kjb9p2kT7+BytUovixXSqBKVWrIlatXrYuhrQ1Kl6soE//8S+LFi6viWh6SqtVryZq163TacOE+u4aEU+5FcDeyld7HAbjCaQn89/E/ef/+vbeP8XLdu3eflCxdTiu+EyrLGHTU8hUoLGc+dWItK41JoBCqANdYrJgxZciwEfqaNNLYu6bQYR4ydIR2F8Q1bDQMjP1t/aIDnztXTq34R9ntHcsyL3tp/Xtv2ONgeWwukwAJBA8C/2vRTHbv2CIFfsnvo0KIFxlTPRMtBfFuL1w0dX6wHi7XhQsW1EmuXrsm6dKl1cv4wuAmlII3b97S64oWKax/u/fsLYhjCMUgxDLOomV+cO/u1LG9ToOvmzdv6gFUWJRDbB0vsoqrOGPaFD0wqxOrL6NdlOpT7EY8cz06d9OK0sbuDYxkDv/+kCSJrFu9QoXHGSDRlILQUgoqngf27hb3BvUtV5uX0e5ZpGJ0QhCvE9ajV65clfoNG0vWHLl1mwlWq5BEiRIJLFMSqPYS6jxl2nQ1ALZXKpYvp7fjyzI//Ld1fAwYo7xh1Lk0JGwYU/vpydOnxir+kkCQItC0bGpZN6SYD0UkCtm+Wjo5cv6R5G+9TnK0WC0vXr+XznUy6PJ71MogUSKGkZKdNkmxjhtkxIJTkipJNMmSMpaU+DmRTtPpz0Oy0vO6ZE9timEL5WaEcC5qhvATeju/SCAoEcB7oFDRErJjx04dBxLP9B49+8i48RN1MdG/r1ilumzfuVM9512kUZPm2oPBqAP64RhIGzhoiH4XLF2+QmrXbaD67bXk+s0bcl/1+xu4NzH3Z3bt3mPuF6HPP2LUGKlVp75WRL5TxkVdu/eUyVOmGdnzlwSCLYHPraZgW0W/K3b16jW9ESPwgwf20zc+LCWhiJw3Z6ZWKmKUfs0ak5Luqi+KPevcj6iJMNKpjoI9maKsG2E9sHPbZm3lYMR96tWnn7KA/NwYHjZkoLYIQ/yk/AWLCKy/VixbrLP3euIliF2EkRNDFi+cp60cfvfoKJmz/qytMkYM824GPuOfWYL8Nm9Yq+MtofMAK4bu6qELt7Gmyuph1uy50si9vo4ZOeHPSX6mh7UoJfgQmDlrtrLWNVmXGLUaOXyoVKlcUfoNHKyvVbj3ocPV2aOTZM+ZR4YNHylTJ/9pJNe/iBOG2GZwjYNVSqeO7SR3voLmNLauQctrasK4MXYtIs2ZWixkyphBjV6u0TEqFy1Z4vD1a6tcX3Jv2ONgUWQukgAJBBMCtiaKw0AJ4sY2b9pYW5ejQ4KJYBCvEKInVFHxcHv37K7/X758RXtA6D+fvjDAgwlkIJhApoJSoCH+FD4QKBuTJEmsl63z0ys/fcFLo3XbDtqir3GjhnqtveNZ7n/5yhUdczuXqpNRZ8Tf9lQDV1s2rpPHalDKvwLlID6+CVyuIYjP6JsgJrch1z61727dvq0sIOtpbxFMUoiYl4hhibaUIaXKVNCDVjgH5cqWMVbrGN/mP2rB1vEzq0l84F4O6xh4pdy6dUvQGYW8VB4mOGcUEghqBErkSCSep+7JqSteAsWkIXDBDuMSWuZtuaxXvXn3QXafvCdFspqeU5lTxJSHT97I9fsv9Pbpay8o5WV6KZ0rsSzeflUNmohEVpaWcaNHkKcv30lotaJVpbQyZ/NlQV4UEghqBGD085OaxGzm9CnmGM9QPmJiOEh/1QfCoN2aVcu1tWLNGtW1gZB1PZYsmqcHu7JmzaIHwH79X3Px6NRBD5BlypJdhzRJmTKF9W76/6gRw6RE8aJ6GcZHiI3fvFkTX9NyJQkEFwIhWhlpBBWPFi2qfrAMGtBPEiVMqM2qYd0IRWQDNaKOxjzEsvHq1wUQL25cua0av/Zk7779+qEGdysIzLBLqRmLYcEAt05DsmczWVga6YorFy1DkiROLPv2HzD+6s6MYd2AuhUqWEBgBm4teOBC5qkOkSGPlMk5lKOw2LQWe+l9c4GyzoP/nYMALHngem0psMrBPXBSdX7xUjQsP2DhC6scuCNYC9Ki42ZcG5jdGhMRYAIbiL1rysjv5xzZjUV//cL6CBI5ciSHj4X0jpYLaSH20tvjYMqF3yRAAiGFQGc1UAhlXeFiJfU7G4M2eG/D2wFyYP9BPRBq2VkxrNMNRrBej6QswCGIcQgLvtEjh+mJctat26A8JAZIzBgxdFvGt/ywH9737o2bKYvMSzJ3tmnwFeshto5nSiE67iSsONzcXAWDRmjDXLp0WSsnx40drRWKX6KMNPL/kl9LV2hY72NwFhabeP9AUqVMqeMJ79mzVyxnMPXctU1bpvbpO0Cfl6MqriTae5b52SsP3ptLl60wW8bgvGLSQnCOHTuWvd25nQS+C4Gqvbbp4/6vvMky2ihEOlfTZFZX7jw3VsmdR6+0ghIr4seMKF4v3pq3fVBeNR9UjP2EsSLJ2etPxev5W9kyqoR24x6/7Ky0rPijup9CyfD5pkEU845cIIEgQqBCubJSSLlJe+7dL5cvX9ahVjDBTHrVB8IAGCzt4fWAdx0ke7as+l1tWXz01WF1D3Fzc9O/hT6FL0H4jkSJEmoXb73Bly/LPk+qVCl99TzzZTeuIgGnJhCilZGpVXwgxEeCGbR2e1Zu1HDbgVgrIrEODwZ7gsYnArejs2AobYx9PJUL0Co1I2ZL9TD7qB5sCZXi01LixDG5MsA82xBjdkvzf9XBMCSUqKFHC7GO3YcGMCbSsZYnT57q+r59+7khgbrh8+HDR+vk4t/0PjLgCqch4OqaTEqU+KzwNgr+/LmpQRpXKdstBW7+vomXisdlXM/G9tAWMZAcvaZiWoVPMPKy94uYqrin8XH0WMjTP2kdSW+Pg716cDsJkEDwIoD37I6tG7VLNSZMQTzIMWPHq466qYOzY9cuKV2yhLnSSVVMXq/HXub/WHis/idLllSvW6YUYLCMxIzWkEbKNRrtmmXKKg/xqqzzQxq4ZtdUikTEhF6+ZKG3to2942F/WHPWqddQYBE5RYWeQbxFyOSp0/TvnLnzBJ+nKjY1xKNLN6mlrEjq1qml/wfGF8J1oLNoKfny5dF/YS0JgUcKOpZQVmbLmlXNaN5GGjRqojudiNflH8Hxli6aryciunX7jmRXsSrPK9f7Gyp2MbZRSMCZCMSKFl4X98Wbz7G+X35aDhcmtHa3hsLRUqCQhBs2JO9va3Ucyf1n7suFm8/k0F9lZerq85InQ1zpWiejPH72Vnr/fVQrLi3z4DIJfC8Chhs2jg/DDFi7p0yRXBfH6C9bW7gjlJmlJIj/2arfUFpGjx7NMonNZRhQGBLGJUSraAwM/A0BBEL0lV61ciXtxowGKWI3QjDJjG+KSLg8wb3KnuTK+bNOMuaP8dKhXRtzcsQv6tG7r3xQSspePbqJq6urtmZATIrw4U0vfZhjQ1IkT64n/TDv7ODC/gMH9QQ0RsMXs1tmz+69MY6s3JTCCfH/OrZvazZFx74IhA8r0VevX+kjKu9tLfbSm1LxOzgTiBIlilbs7dy5S5o2djdXdbOyisyq3BqsBS9xTLSEFzgsTGBpg3hmxiQL3/KawoQ5q5XSv0kjUzn9cyx7af17b9jjYM2N/0mABII3gQWLFsvrV6/FmGQFz8j1GzbKr2pSGQhm1e7etYsZQpo0aQSxqAx5pxSYsKz8X/OmehUUmjFimCz/jDShlQUGJmiBWOcH9+FyFatKvLhxZOG8OT5cou0db4d6B9Rr0EgrQBFGxmi/4Fhw1Tas4fH/7t172qIelp+wCAlMQTkxo/lC5bptTCaIziYE7TmjHuvXrpI0P5rcUw3lqbVlqCPlRhtq/fqN0qWLh57ABvtMUDGTHQnb40j+TEMCgUng5n2TR1gcpZS8qJSJkFhRwyuDhf/k7fuP8uzVO4kU3nsXMqxSUl6/Z3Lb/qjafP9sNMXB7awmrVHdLBm39IwcnVJOTYBzT9wSRJERLXNI2S6bA7NaPBYJ+EkAz2tYNq5bs1IQHxkC4yLoCNCvxkAiBuKaqRArEMSzhwW8X/Il7xG/8uJ6EgjOBExD8cG5hjbqhofOgH59dEB4JINCsnHTFt5cs7Eeo/7j/zC5IeG/LYGlAOJDjFXKSMz2uHuPp44j1Ei5QyEuVH91PChnqlerorNBnEbMUDxn7nw9eQ1m2goTxvsL3tbxrLf17T9Q5zdy9FgdJ69KxYrWSaRa1cp6XbcevfRs2nD1btioqXa7wgM3WjTTKA4a6zdu3LSb3scBuCJYEmiilJDbVWBnTEpz7vx5HSvy0mWf8cxQeSPuI9wFcX0jMDPc1Qyxdw0a6Rz5Xa1iuiJOF2KVDR46XKqoyZgQZsFoMPjnWPbS+vfesMfBkfoxDQmQQPAhECF8BD3JDEKy4P2KIPURIkSQusqKEZ0bxHPOlTOHucL16tbSz9Bp02do5R4mA4NgFmhIpQrlBbFpEa8QFo+YiAWDjeXLl/U1v159+utnMeJdYeAVz058MHkLxNbxYCGPifJgcV6kSCEVs3qzef+z587p2JYYhDU+7g3q6Twx4Ywx0zaUo2gbYYA2oAWTqmHGawgsGzGhDOJ8YYAKx0W7LLmbq96WJ09u3fHsP2CQ5otO56jRY7TrvDHAZpmfztTGF0L8gP2kv6boDirOF2J6d1CDvhQScDYC55SrNSRnus/eL+lco8vz1ybPrdsPX0n8WBHM1XJVykXEhTx3w7SfsQEza9cu4ibjl50R7A+FZc/pR2T6ugviljCKkYy/JPDdCcCqEbNY37hxQ4csg04AoZZeK6MhCAyY0AfCs/3UqX9lwEDv8zF89wqwACTgpAS+XOvlpBW2LnbtWjX0KnQIMIphHf8OishZM6dLFmXp5aig8QlrAViCoXEKQeMdis+8qgEMwUyXgwf2l36qIbxg4SK9rnKlinoiHf3nC74QfB2dECg2cTxYYBout6FDhzLHuYA7EuJLdevRW3dgcCgoQXv16KqPilhTaMiPUbGo7ty5q2e1tJX+C4rKXYIoAcOtwLfiIbwAZpWHwg8fKPy6dvbQroBIb3mNwT1u1IihqiM4RE+GhLRQ1Bti7xpEXvbECFPQvqOHOSkGGHAtt/6tpcSPH0+vt3esUKE+j8nYS+vfe8MeB3PBuUACJBDsCPj2HCtduqSK9bxfWrZqoydNwTNi6l8TtavwqtVrBTGjjBiHAIJnUrcuv+s4kBjcgTIN72Pj+daxQ1sV0/eFjlVoAGzerIkajGki89UAjWV+Xl5PtIIM6TBZnqUgHd77to6H9pExqNS6TXvL3ZWLc2v5MfXnCTD0RqWcgMBS05CjR4/pdpFHp/ZmC0Jjm/UvYjZi9nBr8W0d0iB2JixHYb2PQd2xY0Zq5WDJMuV1FqjjmNEjzAO+wwYPVOehrZQsXU5vx+QFU/4abHartsxPJ/j05dvxYW3Zr08vmTBxkgxVCmOcp+FDB8tPWTJb7splEnAKAo+evZFrd19IIzUD9nmlYEybNLpkcI1pntBmglIu/t05n0zumEcmLj8jw/+XQ94pi8lVavZsS+laN6OasOajTF1z3jxj9w9xI0ui2BHl1ZuAH5CwPDaXScA/BBo1aqBiNJ6V4iXL6t3wPmzcqKH28nqmQo7gvYq493gPQ/A+MSae0yv8+YX+lq0+V2gVusXlU3xKf2bN5CTgVARCKQXcJ2dcpyq3t8LuUS5MefKYYgF52+CPP7AKwGjHEdVQ9lIzQMZXir0Cv+RTjdpGkjy5mz9y8p706dOnynX6tSC2nm8NWJh/3713T+LGiWNuIHvPwbF/nbt2l4sqEP3C+XO09QTi9dkLvo5Tf+/efYkVK6YYk/lYHg2Kp8jKPRdBdyH20lvuy+XgSwCdvQfKyhGjiL5d05Y1xzUDVz10nH1LG5jXlH+OZS+tf+8NexwsmXGZBEgg+BOAe/arV6+8KR4fqonkEE/aOjYvaOC5i1iRfsXpxaRd6ChhJmrjfW4rP3uE7R3P3v5+bUc5CxYuLnv37PArSYCvh0UnnsFGbEvLA6ANdufuXTUhUCQf7u6W6RxdxnGgsLV0V3d0X6YjAYNA2gbLjMVA+W2hJrBpUyWtWB43bbLoMqtrfq1EVJe1nLn2RCr33Gouz7AW2aVs7iT6/+u3H6TX9KOyYs9nZWSUiGFk7/gyMnDOCZmz6ZJOt6x/YW0R6aIGGRbvvKr3MWf4DRdOz/DpJfYND8esnZjAI6UDCK88GGHU45vg3Y2+PZ/xvtHhuqBEAGF5bF2njkzMHBj1oTIyMCgHwjEslZGBcDgeggRIgARIgARIgAT8ReDPSZO1NYgRRsNfOzMxCYQQApZKwe9dZVgyPn7+Rp6/+jyZjVEmTFiTOG4kc1xJYz1+sR+UlRNXnLVcLcWzJ5Lr91/I6atPvK3/ln+ojPyWdJk3CZBAUCTgLMrIEO+mHRQvni8pE6zUMIM3hQRIgARIgARIgASCIgG4uvlmJR8Uy8oykcD3IABr3aAkUBz6JbCINCa4sU6D/awVkUiz4eAt66T8TwIkQAIkEEIJUBkZTE58WzULOIUESIAESIAESIAEgioBKiKD6plhuYIKAcSRix0tnDx8+jaoFMmpywGWFBIgARIggaBJ4PPMDUGzfCwVCZAACZAACZAACZAACZAACYQIArnTxQoR9QyMSpJlYFDmMUiABEjgywhQGfll3LgXCZAACZAACZAACZAACZAACQQogfrFkgdofiE5M7IMyWefdScBEgjqBKiMDOpniOUjARIgARIgARIgARIgARIIEQQypownQ5v9FCLq+i0rCYZgSSEBEiABEgiaBBgzMmieF5aKBEiABEiABEiABEiABEggBBIolzeZpP4hukxfe152nbzPGJIOXgOIEZkvQ1xxL5VKfkwaw8G9mIwESIAESOB7EKAy8ntQ5zFJgARIgARIgARIgARIgARIwA8CUKYNbp7Dj61cTQIkQAIkQALOTYBu2s59/lh6EiABEiABEiABEiABEiABEiABEiABEiABEnAaAlRGOs2pYkFJgARIgARIgARIgARIgARIgARIgARIgARIwLkJUBnp3OePpScBEiABEiABEiABEiABEiABEiABEiABEiABpyFAZaTTnCoWlARIgARIgARIgARIgARIgARIgARIgARIgAScmwCVkc59/lh6EiABEiABEiABEiABEiABEiABEiABEiABEnAaAlRGOs2pYkFJgARIgARIgARIgARIgARIgARIgARIgARIwLkJUBnp3OePpScBEiABEiABEiABEiABEiABEiABEiABEiABpyFAZaTTnCoWlARIgARIgARIgARIgARIgARIgARIgARIgAScmwCVkc59/lh6EiABEiABEiABEiABEiABEiABEiABEiABEnAaAlRGOs2pYkFJgARIgARIgARIgARIgARIgARIgARIgARIwLkJUBnp3OePpScBEiABEiABEiABEiABEiABEiABEiABEiABpyFAZaTTnCoWlARIgARIgARIgARIgARIgARIgARIgARIgAScmwCVkc59/lh6EiABEiABEiABEiABEiABEiABEiABEiABEnAaAlRGOs2pYkFJgARIgARIgARIgARIgARIgARIgARIgARIwLkJUBnp3OePpScBEiABEiABEiABEiABEgimBD5+/BhMaxaw1QInsgpYpsyNBEiABL4lgTDfMnPmTQIkQAIkQAIkQAIkQAIkQAIk4D8CnkcvyrSVJ+Xw+Yfi9ey1/3YOialDhZYYUcJJ1lSxpVG5DJI7S4qQSIF1JgESIAGnIUBlpNOcKhaUBEiABEiABEiABEiABEgguBOYvvygDPjniIQOE1F9okrYqNGDe5UDpH4vlHXk9lPPZOuxLdKt3mNxr5A9QPJlJiRAAiRAAgFPgMpIC6Yw7b99+7Y8evxYEiZIIHHixLHYykUSIAESIAESIAESIAESIAES+HYEYBE5cPYJCRsptoiy9qP4g4CLi7i4hBWXcJE0wzTJYtJC0h/4mJQESIAEApOAS28lgXnAb3Gs69evyw8//PDFWf/3338ycdJf8lvrdjL2jwkyZ+58+WvyVFm/YaPEVQrJlCn9b+b//sMHOX36jKxdt16OHTsuMWJEV58YX1zGr91x/4GDcvHSJUmWLKlDWUEx++bNGwkThvpqh4AFo0RQxu/avUdWrVojr1+9lvjx40nYsGG/aQ2/9nrD9X3l6lVJ+hXPgW9aQWZOAiQQ4gigHbBw0WL9XAofPry5/q9fv5Y9nnvl6PHjElO1C6JEiWzeZiwsWbpMvLy8VNsmiV516dJl2bZ9h3z88FHixYtrJDP/3rhxU23fqQZRY0ukSJHM640F6/yuX78hmzZvkUePHkmiRAkldGjvCg9bx0Ob6cTJU/o98fbtW0mQIL5xGG+/r169kpWrVkvChAklQoQI3rY58uekOsa58xckaVKf7bvNW7ZqFrFixbKZFcqwc9du3f5BWqMcD1W9T5w4KTdv3vLxiaDOlW8MLQ907dp12bptu6RJ86Plarl7955s3LRJvzvjxo3jg6u3xPxDAn4QGDDNU657qfY3FZF+EHJgdahQyqI0vHg99pKy+VM7sAOTkID/CKxes1bvEDu2GjTwpxw6fFjOnT0vrq7J/Lknk5OAYwSePXtmsy3jogZugoKEeE0TGtWdu3aXefMX+jgfUCa2+LWVDB08UKpVrexju18rHjx4INVq1JZLl6+I8YDq2buvZM6UURbMm21uDPu1/7dYP3feArl//778kj+f3eyfPHkiDRo1lR7dOku2rFntpmeC4ENgxsxZgmsVkipVShk5eqxeHjtmpFQoV1YvB/RXQFxv8xcsVNf3A8mbJ3dAF4/5kQAJkMAXERg8eKhMnjpdcub8WaJFi6bzgLKqTv2Gcl4p2dA+ePjwobRp/Zu0b9vafAy0S/oPHCJjR4/Q61r+1kbQ6YHHxu07d6Rhg3rSp1cPvQ0DOe5Nmsm2bTvM2ytXqijDhw5S1kGmhqZlfi9evpRatevJseMnzOnxrF84b47EjGkaMLV1vBMnT0rTZi11OYzyV6pYQUaNGCqhVOffUgYNGSZ4p6xZuUwPyFpus7cMZV/1WnWlVMniki9vHm/JN2zcJE2bt1R1HGxzsPioGgiuUKmqRI5sUvZCETlvzkxJnSqV5tW+o4e3fI0/f4wZJeXLlTH++viFArZZi5Zy+sxZqVihvHl79x695Z/Zc8xc8+fLK5MmjjMf35yQCyRggwDu6aNXXylFZIjvotmg5OAmpczVLB1MzmQk4B8CPXr1laaN3fU7xT/7Ie2ixUvl3LnzUrDgL/7dlelJIFgR8D4UHqyq5lhlunTr4asi0tgbjQKPzl0FVgWOCBQrdeu7y5Onz3QD/ND+PXJw3275Z8Y03fgfPXacI9l81zSPlTXGkSNHv2sZePDAJ7BAWfBAEdnqt5Zy/MgB2bR+jf4tXqyodOnaQ+7cuftNCsXr7ZtgZaYkQALficC9e/elRctWWhFpXYRhI0ZqReSiBXPl8AFPmTxpgoxR7YKNmzabk55VHRQoKbNl/UlZFq7Riki0Ifbu2aGVW3/P+EcOHjqs08NaEopI5IftY0YN1+0VWO0ZYpnf4iVLdVtk66b1Ov2qFUt0eSZNnqKT2zvexD8nS4KECeTY4QO6bdOvTy9Zumy5thI0joffLVu3aUWk5TpHl1esXC0ly5SXFy9eeNsF3hoYIIMi0p68e/dOOnp0Fry/PHdtE7TFYGHZt99AvWuZ0iX1OqzH58De3ZJWWTlC4Vu4UAGb2aMMUERaynFlZQlF5IRxY8xcYZGJulBIwD8EYKXs9dK7Yt8/+39J2jRJo8uqQUV87FoqZ2KZ0SWfTPPIK7nTe7fIjh8zgnSrm0mW9C0k3etlEpfQn8tcJFtCWTukqIxrnVPixvhsFV0pf1JZN7Soj+N8yxWBzfJb1oV5Bx8CrVv9KiOGDwk+FWJNSOALCYToYTeMmsNi0C+BtUCxIkW0C3fvvgOkdKmSdq0aN23eqhup6BikT59OZw1rAVgktmvTSk79e1pevnylzGYj6s7GzFlzVPozEj9uPClTppTkUhYUEDRst6tOBiwCFqnOAxrhGIH/KUtmmTrtb0HnokjhgspqoIREjBhRd1jev38nGLHfsXO3uLm5SrmypeXH1L67JsB0929lsXDq1L8SR1lnVKhQTnJkzyZwaRo/YZIqgci06TNVZ+ClLrtf6XVCfgULAoOHDBdYcsBCx3DZix49uqCzCSsQuELDWmTsH+Mlq+okr1q9RiJHiiwtmjcRuL+hk7vHc5+2jvklf159vRqWMlDSw/oYHThcS2nTppHG7g3V/RT+i643uBguW7FSh0LI+XMOeffuvZ/nAPf5Hk9PSZY0qaxZu17dxyWkTOlScvnKFX3/X1YWzClSJJd6dWpJ4sSJdT64D9Dhh/VQ5MiR1L2RXVtHG5ZGqMe8+Qvk1q3bet86tWqa3SmXLV+h75s6tWuaywRlQ7ZsWfX9jM6pi0touXDholy/cUMa1K8rGTNk0C6PW7du1zFrixYppDrEBfW9jUxsldV8EC6QAAkECQJt2nXQ72gM7PwxboK3Mm1R9zgUZHjfQrCc3M1VPT+XSbGiJmXArt27tbUE3u0I9YLnsuHVUKJ4Ma1UW7FylWRXzxS4GkMyfGpv5MqZU/9/8OCh/sWXZX4XL16S31q2kOTJ3fR2PHughDt79pz+b+t4eG6/ePlCmjVpZLZ0rFC+rPTo1Ue5QV/WzyxkAkUqwt7AQtPRgVx9cPV14OAhadWmndSoXk21l/41VutfWJniWdqjexfp13+Qt234M/Of2Xpd/Xp1dHlgfTpkUH/BewzSqGEDnTesUxF+xHDZxrZZs+fq99OSRfOU23wUrPKWn16hvvbu3ScT//xLKpQvJ8vVO8iQD+/fS4d2bXSbDOtSJE+hN129ds1Iwl8ScJhAqNAuDqf92oRJ40eW2d3yS6QI3ruE7qVSikfNDPLgyWuJHjmc5EqXV5qP8JSdJ+5qxeOqQUXVPi5y68ErqVM0ufycJo6U77ZFwod1kT9a5ZS1+24oBWY86d/4J70fytmldkZZu//m1xbZX/sHJkt/FYyJgxyBS+o9tkQNrqF9DsmTJ5fUrlnDHLIMhjqrVq8VhPlAH9tSMJAHLwQIQqAgzBv6AaGUkn7WrLnKSOmJlC1TWgoWMFlCHj58RL0rH4lrvWS6z79NDSAWUNvQl8L6PLlzSa2a1c39MctjcZkEghOBEG0Zica8IbGVMsVS4MYzf84/8rtHB6lapZJAmbJ9xy7LJL4u40EF1yWjo2GZqK1SRsIKAopIuHIXK1lWRo/5Qz+wPPftkxrKJWnhoiV6l0sqvuPwkaOVO5e7/g+FSp16DaVKtZr6IQe3o3YdPGTZclNjePeePdK2fSfpo0b9E6r4TWgkV6pSQ8fRsywDlmFtULpcRd2gRuypg4cOSdXqtZSiZp1OGi7c5/iA4VSsQHvprfPnf+cjAKtHdCDhbmcoIo1aIB7YimWLzW5rUGLjWty9x1Nb7KBD17Z9R+n0e1f58OG9PH36VF+Lvfv211kgblrZCpVl+t8zdQcQ8VPRQW/SrIXe7t/rDTEtEQYBHcJYMWPKkGEjvHUKjXIbv+h8Dxk6QuB6iLiSaGQgFlnBwsV1Rx9xJhcsXKzvR2yH9OrTX/4YP1F3+iNGiCi/d+kmw0aM0tvQGS1ZupweAEioLITQAc5XoLCc+dSZx3MCHXpLmaHSQLEJ2bFzpy7LJBWX9pCybnr27LksV88iMD1w8KB2lQTLwUOH6/T2yqoT8YsESCDIEPhfi2aye8cWKfBLfh9lQrzImOq5ZSkuYcLIhYumzg/Ww9KxcMGCOgmUWenSpdXL+MIAD5SCiHUIKVqksP7t3rO3II4iFIMQS9dmy/zg3t2pY3udBl83b97USjgoJCG2jhdZxaKcMW2KHpjVidWX0S5KldKkfENnzKNzN60obezewEjm8O8PSZLIutUrVHicARItalRv+xVUPGHB6N6gvrf1xh+0exYtNrWhbt0y8UmZwlQupDHKePfePWMX/Yu03Xr0kpYtmnsLTWOZHxKiHdiyVVvND4pgS/nppywCSxfUH67sxvuvWFHT+bFMy2USCCoEmpZNLeuGFPOhiET52ldLJ0fOP5L8rddJjhar5cXr99K5TgZddI9aGSRKxDBSstMmKdZxg4xYcEpSJYkmWVLGkhI/J9JpOv15SFZ6XpfsqWPr/1BuRgjnIgNnmdpCeiW/SCCIEMC7r1DRErJjx04dpgpGQD169pFxqi8AQf++YpXqsl214cOEcZFGTZrrfpNRfPTDMZA2cNAQ/e5aqgwTatdtoPrtteT6zRtyX/X7G7g3MSs6EZvfGNBCn3/EqDFSq059rYh8p4yLunbvKZOnTDOy5y8JBFsC3ofBgm01fa/Y1avX9AaMwA8e2E/f+LCUhCIScYWgVMQo/Zo1JiXd1U+KCt9zM609cuyYpFMdBXsyRVk3Qvmzc9tmrfAw4j716tNPWZSVM+8+bMhAbcWF+En5CxaRcOHCacUQEng98RLETsLIiSGLF87TVg6/e3SUzFl/1kqfEcO8m4HP+GeWIL/NG9bqeEtoPMOKobt66MJtrKmyeoCVQCP3+rphPuHPSX6mh7UoxfkJ/Hv6tK6Eq2tShyoDq+F1a1ZKGBWTDEGYYe03eGB/87WI6wedO/eG9bVVLyZp6NWzm7mjhwkNoJCEItO/19sMpQxF3DS41mHG+04d20nufAXtlhvuc7CIhCCUAu5vuCqGUYoA5JEnfyHd6EAcMjRGMILZtbOHTo/O/0tlLQnpN3CwvmeNfTt7dJLsOfPIsOEjZerkP3UaR742bVgjiRQH3PsZMmfTxxv/x2i9a8YM6bUFKhSvUEraKqsjx2IaEiCBwCNgWDH6dsTcuXIKYtw2b9pYW1WjQwILPrgHQxDTEe69vXt21/9huQ0PCEvBIAwmkIHAqhtWeog/hQ8EysYkSUxW3tb56QSfvuCl0bptBx3TsHGjhnqtveNZ7g+LbcTczqXqZNQZFvCeasBmy8Z18lg9v/wrGPzya0KcDOq5CPmgBrh8E8TkNgRW65CoFgrNaNFMyk0MBlvKvAWL9F+0eSzFMj+sR3wwuHq3aN5U5syZZ5nUvAylctnylfV/WL2mS/tZkWxOxAUSCCIESuRIJJ6n7smpK14CxaQhcMEOozw45m25rFe9efdBdp+8J0Wymp5TmVPElIdP3sj1+6ZQCtPXXlDKy/RSOldiWbz9qho0EYmsLC3jRo8gT1++k9BqRatKaWXO5suCvCgkENQIwOgHg0ozp08xx3iG8vHwp7Bl/VXbH4N2a1Yt10YbNWtU1wZC1vWAdX2iRImUB1kWbTT06/+ai0enDgLDjExZsuuQJilTfh4ks9x/1IhhUqJ4Ub0KxkdoCzRv1sQyCZdJINgRCNHKSGOGYDRQYQ02aEA/rRyAWbWhiGzQsLHuHODMQxFoT+LFjSu3b5sawbbS7t23Xz/UjFkicfxSJUpoiwi4oBqSPVs2vWikK65ctAxJolxK9+0/YPzVnRnDugF1K1SwgMAM3FrwwIXMUx0iQzCjJpSj1o10bLeXHgohinMTwPUOefTIsc4jJoqBIhJy6pRJkXnk6DE9YynWGZ3QM8qduWSJ4rJk8QLZp655KBJhmbhtxw4kk/fKtc1a7F1vsBREp9S47uCCh0kOMIGNLfk5R3bzZrzgcU8Z1ofYAHdsWCpCyir3C4xIHjhwQEqo8uNegrUzOvY4PhoHUGJCYOkM6yS4ZTgqyd1c9bMG6TEL7osXL3TYBWN/WKjiA7FXVmMf/pIACQR9Ap3VQCGUdYWLldTvbAys4L1tTLJyYP9B3f6w7KwYrl9G7fDcjKRcuCGIQw3ritEjh+mJctat26A8JAboWbrRlvEtP+yH971742bKIvOSzJ1tGnzFeoit45lSiLb0hhWHm5urjpOINsylS5e1cnLc2NFaoWi8B4x9vvWvEUYDx0F5IB/VYKtpSeTdp/dNRDUIZghYYvAMLuVxVfvNUizzg/U6OG/futH87rNMayynSJ5cx9Pcq7xd2nf8XSt74RFDIYGgSKBqr226WP8r/6O34qVzNU1mdeXOc/P6O49eaQUlVsSPGVG8Xrw1b/vw8T/5oAZWE8aKJGevPxWv529ly6gS2o17/LKz0rLijyo8TSgZPt80iGLekQskEEQIYJLOQspN2nPvfrl8+bIOtYIJZtIrzwQMgCFOM7wejHcLrOONvpNRBfQroIiEuLm56d9ChQrqX/SZEiVKqF289Qpfviz7KTD6MDyufEnKVSQQbAiEaGVk6tSptDsllA7a7Vm5UcPNBgKLSEtFJNbhwWBPMGM2ArejgWsoK4x9PD33yio1I2ZL9Qd+H2wAAEAASURBVDD7qB5ssA6zlDhxTAohmGcbYsxuaf6vLMwMCSVq6NFCfvghicU/UQ/JWHoiHW8r1Z8nT57q+iK+pCGoGz4fPnw0Vpl//ZvevCMXnIZA6k/X9vkLF8xxy4zCo2PaU1mEZMyYXqpXq6pXI86oIU+fPdOLYcOG0TFL8Qf3E2Ihwh0RsVWqqhG+S8rCB6OOuEegZId1rnWnF/vau9681ARLxr2C9JDQoU2KUdM/379jfgrFgIkNIJjd1vIegMIRMdogsIjMlDGjrN+wUbuDwyUclpKIPwax7rQi3IEtgWumpcSLH9/8F3wgyVUn1locKav1PvxPAiQQdAngPbtDKbTgUv1WPYsQD3LM2PE6jixKvWPXLiltYQmZVL3XvR57eavQY/U/WbKket2yZSu0ZaQxeNFIuUYjTARi10IZaZ0fdoJrdk2lSERM6OVLFnpr29g7HvaHNWedeg21ReQUpWgzrA8nT52GzTJn7jz9Md4NHirMRS1lRVK3Ti29PTC+EBMSgrAhsCQ1LZveVYkSmzqLWLdNxeaGYrZunZo6jV9fgwYN1e81TOYGuaEYQqCQ7dihrbb6h5U72n0IRYJBOAys4d2BQSy4uFNIwFkIxIoWXhf1xZvPA8YvPy2HCxNau1tD4WgpUEjCDRuS97e1Oo7k/jP35cLNZ3Lor7IydfV5yZMhrnStk1EeP3srvf8+qhWXlnlwmQS+FwHDDRvHR4iVzJkzScoUpna50Vcw3iVGGRHKzFISWLTtDaVl9OjRLJPYXIZRhCFhXEK0isbAwN8QQCBEX+lVK1fSrqJoQCJ2IwSTzPimiITLE9yr7IkxAc0YNckHgpkbAvPsHmqmYgQ579Wjm7i6uupRdsSkCB/e9NKHBRQEI+unT58xdnX4FxOMYOINQ6GC2TSzZ/ce1wiZubkm00HYO7ZvazZFx74IhA8r0VevTe6oSgelxV56Uyp+OzMBXDMYkRs3/k9tkWe4DKJOiCU6c9ZsbXljriN8cD5Jkk8dO7gSGnHKEIMLrtvIZ7mKawpFJNyajUkTDItE3HuGOHq9oYGASZzQOIC1MhSa6NgbEzgY+fn1C6thlCuCuu/69u5pToaJFtB4wD2JiaVgCQm36RHDBisX7FEyZdp06dm9q+6Q7ty5S5o2djfvu1lZRWZVilYI8scM4YYgzhgsHy0FLkuGGPwQ2zKLqhsE1pe/K/fHMSOH2yyrkQd/SYAEnIPAgkWL5fWr14JJViB4jmHQ41c1qQwEs2p379pFL+MrTZo0Kj7vHvN/DFDAsvJ/ylUYAoUmlF+WElpZYDz59Ayyzg/P5nIVq0q8uHFk4bw5Plyi7R1vh3r21WvQSCtAEUbGaL/g+HDVNizW8R8TxeBZBstPWIQEpri5uurDwTvEiKt5UA0yQyzfb55q0jVYt2TL6rOtpBN/+kLIkecWz3FYTWJALbt6T0AZixm2YWGJmbsNJpisDWI9cPwpS/6QQJAlcPP+S122OEopeVEpEyGxooZXBgv/ydv3H+XZq3cSKbz3LmRYpaS8fs/U1oFF8j8bTXFwO6tJa9DUG7f0jBydUk5NgHNP3BJEkREtc0jZLpt13vwige9NYIIaOIJlI0JQGYNHMC5CPwV9JAwkYiCumQqxAkGMeXg2+CW+GVv4lZbrSSAkEzC8V0IkAzx0BvTrowPCAwAUko2btvBhEYmG5vg/xphNs23BQuwkxIfAjMOY7RGTfEAp00i5QyEuVH91PChQqlerorNBnEbMzDtn7nw9eQ2srzCy/qXSt/9AnR8axmgoV6lY0UdW1aqa4hkhph9m04ard8NGTbXbFR64sBiDoNMBF1J76X0cgCucksCYUcN1udHRRNwvuCQgoDImU4E7AmZz901gUQhLyEFDhulrBm4F7ZR72mxlHRNXdXgNC5UzZ8/qCQCg3IS1CASKP/9eb0acUrgi4t5BGWHZ4h+B1Sbqh7iVaFBg4ihMCPVKKQnQkcRM9rg/YNmC2GM3VQcedYS1cROlhNyuYkqiDufOn9exIqFsNeK6wWIJHXC49YHF711Msd/8Kh+sLDFzNmJOYjY+1AnKWig14appq6x+5cn1JEACQZNAhPAR9CQzmFQG71cEqUfs3Lq1a+pnEd7buXLmMBe+Xt1a+pkwbfoMrdzDhF0Qw0q9knouI/wF2hmweMSgCSbZKq9mucazzTo/TM6F5yXiXWHgFc8cfPYozw2IreM9f/5cT06GZ2GRIoVUzOrN5v3Pnjunn4EYhDU+7g3q6Twx4QyecRAoR9E2wgBtQAsmE8OM2xAMfMHqFM9SDPQgjMi4CX9qNzvLkDsoN6z+fRPL/BCaw6gXfoureJAQLCPOeJXKFTXXocNGau6ICwrlJOJ5IpQHhQScicA55WoNyZnus9dHOtfo8vy1ybPk9sNXEj/W53AHrkq5iEHWczdM+xl1xczatYu4yfhlZwT7Q2HZc/oRmb7ugrgljGIk4y8JfHcCsGrELNY3btzQIcugE0Bb/rXqp0BgwIS2P97F6DsPGDjku5eZBSCB4EDgy7VewaH2qg61a9XQNUGHAKMY1nHfoIicNXO62WLJkWp3UBaHUGjAWgsdAwga71B8ItYeBBZkmPCj34BBaiZfU/B0xCzCRDpfKhjtRycEik0cDxaYJUoU09mFDh3KrEyFBQDiS3Xr0Vt3YJAAStBePbrqtJhsJE/uXMp1bJxglmXMamkrvd6JX05PAHFO5syaoWMlQqn94pMVCDqRsCDELK4Qa7cExGxEzLEOnX7XFjNIg+tn7KgRejQRnTZcX//7tTU26ZHH7l07C4JBYxIG3BP+ud6gGB01Yqjaf4ju7MGqBYMAfgmufWuBQvGJct/DjPX4IA90NmtUN7mh9+jeRbqr+6NCJdN/3FuI+4WBAoRZgLUjOrn4YF+4ddepbXLzw4RSUOS3btNeHxadUcS4NKwhfXMpHzJogHTq3EVNJNVW7wPmg/r31cv2ympdN/4nARIIGgR8e/aULl1SDQDuV7Myt9HPWDzPpv41UfAcXbV6rbZQx7IheF936/K7jgOJAZjkbq76fWwM8sBF+MXLF3oWT2MfPMuaNW0i89WgEizejfy8vJ7oSe+QDpPlWQrS4Tls63hoHxkDP8bzzcijfdvW8mPqzxNg6PWf3hmw1DTkqFIKol3k0am9zdiLSA/rQ+O9Y+yPX9/WYT1iOsJy1LBaRxzwFr+20vE5sR3P4jafQvHgP+Rf5YViDA6b1nz+ts7v8xafS8mSJpV+fXppRbPR7kObrm/vHj4Tcw0JBHECj569kWt3X0gjNQP2eaVgTJs0umRwjWme0GaCUi7+3TmfTO6YRyYuPyPD/5dDxWT9KKs8r3urWde6GdWENR9l6prz5hm7f4gbWRLFjiiv3gT8gIS3g/MPCfiDQKNGDZQBwVkpXrKs3gvvw8aNGmpPLFi5472K2PR4D0PwzrS0stcr/fEFTyzDldu33UKrCaRcPsU+9m0715FAcCEQSingPjnjOm+V9igXpjx58nxVBWAVgNEOjJ57qRkg4yvlQ4Ff8qlGbSOza+mXHADximBthZhyvjWgYf599949iRsnzldZRGJGS4z+L5w/R1tPIKaeZfB138qOU3/v3n2JFSumtsKyTgOFS+QoUcwdBnvprffnf+clgOsSEzHFUnEWDbd/R2qDzi464Ia1o+U+CCHwUsXOgvLON/Hv9YbrEW6A6JT7dm/5dgzrdbDOuafuPzQofMsDs1kjvqul66GRBzq9D5SFEUZT/doXitso6h5yVKAAfvfuvQ+3S+xvr6yOHoPpSIAEvj8BuGfjmWgoClEixI/F88Y6Ji224XmDWJF+xadFXFp0lDATNayqIbby0wlsfNk7no1dbW5COQsWLi579+ywmS4gN2JiPgzQ+udd9qXHB7fbt+9or4DAON6XlpP7BW0CaRssC9QCtlAT2LSpklYsj5s2WXSZ1TW/ViKip3jm2hOp3HOruVzDWmSXsrlNsepfv/0gvaYflRV7Pisjo0QMI3vHl5GBc07InE2X9H7L+hfWFpEuaqBi8c6reh9zht9w4fQMn15i3/BwzNqJCaDdH155MOKd4Zvg3Y2+vW/9At/Scx0JfC8CCMtj6zq19BL5XmXEcamM/J70A/DYlsrIAMyWWZEACZAACZAACZBAgBD4c9JkbQ1ixN0KkEyZCQkEMwKWSsHvXTVYMj5+/kaev/o8mY1RJkxYkzhuJHNcSWM9frEflJUTV5y1XC3FsyeS6/dfyOmrT7yt/5Z/qIz8lnSZNwmQQFAk4CzKyBDvph0UL54vKROsszCDN4UESIAESIAESIAEgiIBuLr5ZkkeFMvKMpHA9yBgObHf9zi+9TGhOPRLYBFpTHBjnQb7WSsikWbDwVvWSfmfBEiABEgghBKgMjKYnPi2ahZwCgmQAAmQAAmQAAkEVQJURAbVM8NyBSUCsaOFk4dP3walIjltWcCSQgIkQAIkEDQJhOjZtIPmKWGpSIAESIAESIAESIAESIAEQhoBTGqRO12skFbtb1ZfsvxmaJkxCZAACXw1ASojvxohMyABEiABEiABEiABEiABEiCBrydQr6jb12fCHDQBsuSFQAIkQAJBlwCVkUH33LBkJEACJEACJEACJEACJEACIYhAplTxZWizn0JQjb9NVcEQLCkkQAIkQAJBkwBjRgbN88JSkQAJkAAJkAAJkAAJkAAJhEAC5fImk9Q/RJfpa8/LrpP3GUPSwWsAMSLzZYgr7qVSyY9JYzi4F5ORAAmQAAl8DwJURn4P6jwmCZAACZAACZAACZAACZAACfhBAMq0wc1z+LGVq0mABEiABEjAuQnQTdu5zx9LTwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAJOQ4DKSKc5VSwoCZAACZAACZAACZAACZAACZAACZAACZAACTg3ASojnfv8sfQkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk4DQEqIx0mlPFgpIACZAACZAACZAACZAACZAACZAACZAACZCAcxOgMtK5zx9LTwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAJOQ4DKSKc5VSwoCZAACZAACZAACZAACZAACZAACZAACZAACTg3ASojnfv8sfQkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk4DQEqIx0mlPFgpIACZAACZAACZAACZAACZAACZAACZAACZCAcxOgMtK5zx9LTwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAJOQ4DKSKc5VSwoCZAACZAACZAACZAACZAACZAACZAACZAACTg3ASojnfv8sfQkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAIk4DQEqIx0mlPFgpIACZAACZAACZAACZAACZAACZAACZAACZCAcxOgMtK5zx9LTwIkQAIkQAIkQAIkQAIkQAIkQAIkQAIkQAJOQ4DKSKc5VSwoCZAACZAACZAACZAACZBASCLw8ePHkFTdL64rOJHVF+PjjiRAAiQQ6ATCBPoReUASIAESIAESIAESIAESIAESIAE/CXgevSjTVp6Uw+cfitez136m44ZPBEKFlhhRwknWVLGlUbkMkjtLCqIhARIgARIIwgSojAzCJ4dFIwESIAESIAESIAESIAESCFkEpi8/KAP+OSKhw0RUn6gSNmr0kAXgC2v7QllHbj/1TLYe2yLd6j0W9wrZvzAn7kYCJEACJPCtCVAZaUEYpv23b9+WR48fS8IECSROnDgWW7lIAiRAAiRAAiRAAiRAAiRAAt+OACwiB84+IWEjxRZR1n4UfxBwcREXl7DiEi6SZpgmWUxaSPoDH5OSAAmQQGAScOmtJDAP+C2Odf36dfnhhx++OOv//vtPJk76S35r3U7G/jFB5sydL39NnirrN2yUuEohmTKl/83833/4IKdPn5G169bLsWPHJUaM6OoT44vL+LU77j9wUC5euiTJkiV1KCsoZt+8eSNhwlBf7RAwJvpqArhGr1y9Kkm/4l7+6kKoDC5fuSLbt++QNGl+DIjsAj2PwCr/y5evZOWq1RIrViyJEiVyoNbzWxwbeYYNGzZA6hGQeVkX6FvU3foYjv63rCfede/ff9DvTEf3t0xnmZfleiwHpTpbl83Wf7QDFi5arJ9p4cOHNyd9/fq17PHcK0ePH5eYql3g2/2zZOky8fLyUm2bJHq/S5cuyzb1XPr44aPEixfXnJexcOPGTbV9pxpEjS2RIkUyVpt/rfO7fv2GbNq8RR49eiSJEiWU0KG9KzxsHQ9tphMnT8mu3Xvk7du3kiBBfPNxLBdevTI9IxImTCgRIkSw3OTQ8kl1jHPnL0jSpD7bd5u3bNUs8PyxJSjDzl27dfsHaa3L8eTJE9m7d7+cPnNGEqlyhgsXzs/skBb1vnXrtvlz+/Ydzc/Y6aHiuWnTFnmszl3cuHG+exvq3ytesunQLTl5+bH+nFK/F289lfBhXSRm1M/XpFH+oP67Yvc1ef32gySIFTGoF/Wryjdgmqdc91Ltbyoiv5xjqFDKojS8eD32krL5U395PtyTBPwgsHrNWr0ldmw1aOBPOXT4sJw7e15cXZP5c08mJwHHCDx79szX9qCxt4sauAkK4r31GRRKFMhlQKO6c9fuMmToCLl79563o0OZ2OLXVqozscTbent/Hjx4IMWKl5LS5SrKmD/G60+BQsWkfMUqgk7I95C58xZoBasjx0aDu3K1mnLq338dSc40JBAgBOYvWCiT/poSIHl9TSYHDx6WNu06fk0W33XfwCq/l9djadfBQy5cvBjo9Q3oY+MZ36pNuwCpR0Dm5VuBArruvh3DkXXW9ezTd4BsUAN4XyLWeVnnEVTqbF0ue/8HDx4qHp27aW8LIy3aGWUrVJZ6DRoJmP2cO5+MHD3W2Kx/0S7pP3CIfFCDgpCWv7WRQkVL6HYK2hW9+vTT6/GFgcMGjZpI3l8KycBBQyRrjtz6vvygFKGGWOb34uVL3RbJV6CwDBs+UurUaygly5SXx6rDboit4504eVJy5y0g5VQdBqjjVahUVdq27yQ4hrUMGjJMl+XmzZvWm+z+v3btulSvVVeWLlvuI+2GjZukUZPmcuToMR/bLFccVQPBadJn1gPNrdt2kMLFSirl5nlzklOn/lVcS0rLVm2kQ6fOki7jT2J0Ls2JLBYwQF21ei1vnyqqrWTIzH9mS9bsuaR33/5SQ5W9dt0Ggs7A95Qth29Js6G7zJ+marluv+2SqeFS6Th+//cs2hcd22PCflntef2L9nWWnXBPH736iorIgDhhSpmrWQZEXsyDBKwI9OjVVzZv3mq11rG/ixYvlT/GT3AsMVORQDAmEOKVkV269ZB58xf6eYrRKPDo3FVgVeCIQJFXt767PHn6TNasXCaH9u+Rg/t2yz8zpsmx4ydk9NhxjmTzXdNgRP/IkaPftQw8OAmQQNAmEC9+fFm3eoX8lCVLoBc0oI+9b/9+bQkeEBUJyLx8K09A1923YziyLiDraS+voFJnR7ggzb1796VFy1Yyeep0H7sMGzFSzitrv0UL5srhA54yedIEGaPaBRs3bTanPXvuvDx8+FCyZf1JWR+v0QoytCH27tkhkyaOk79n/CMHDx3W6WEtuW3bDp0fto8ZNVy3V7Zu2+5rfouXLNVtka2b1uv8Vq1YosszabJpIMje8Sb+OVkSJEwgxw4f0G2bfn16aYWh5fFw4C1bt8mMmbPMZfDPwoqVq7WC9MWLF952g7cGFLdNm7f0tt63P+/evZOOHp2leLGi4rlrm26LwcKyb7+B5uRo/yVUdUE77djh/VK9WlUZPHS4wKLVNzn172nJkCG9To998DlyaJ9OevXaNenRq4+0b9ta9nvulO1bNypry7Myc9Yc37IK9HX3VtSRZ+vr68+tpbWkfsmUMmnFGdn37/1AL8vXHHDF4GLSuGzwtnKDlbLXy1Bfg8nf+6ZJGl1WDSriY79SORPLjC75ZJpHXsmd3rtFdvyYEaRb3UyypG8h6V4vk7iE/lzmItkSytohRWVc65wSN8Znq+hK+ZPKuqFFfRznW64IbJbfsi7MO/gQaN3qVxkxfEjwqRBrQgJfSCBE++Bi1BwWg35JqlQppViRItqFu7eyYChdqqQPFx/rfTepERI0QNHRSJ8+nd4cSrkK/JI/n7Rr00pZG57WLmeRIkXUnQ00VOEeFD9uPClTppTkyvmz3uf4iZPaVTRf3jyySHUe0AivWKG86vhnlqnT/hZ0VooULiilSpaQiBEj6g7L+/fvtMvUjp27xc3NVcqVLS0/pva90YbR+r9VRwGWAXGUeXmFCuUkR/ZsApem8RMm6TJMmz5TXrx4qcvuV3qdkF/BggAU6VDM4/rF+U6bNo00dm8oMWPG0Mrptes3SNfOHua6Ll+5Sp4ppXvdOrXM6ywX7F0zcBNctmKlDmeQ8+cc8u7de/PuUIb753i4btFBh8I/cuRI6lrOLtWqVtZWQ8NHjpa8eXLr69g4AKxtnj1/LvXr1lHX+AtZov57eu4TN+UuETVqVCOZ4D7cpjr1BQr8IujEP3z4SPLkziW1alY3uzX6VU90hu0d23wgtYAybd+xS9/DaZWLeIP6dSVatGi6Qx9KNfJRVkPAZ52y0unUsb28UdbWfpUf53T8xElSqWIFWaVcqs8rK8a0adJIk0YNzfWEBRXqtkfV3/SsyqufNViGMsGvYzdr2liWLl8hNatXk+TJ3dQI70T5OUd2OaqslWCxhDo0VsfBOUHd4CKJcmA9BB3+pUuXy+EjR+TOnbuSOFEiqV+/jqROlUpvh6XVOnXNbVWKltCq/jWUogDXRJXKFSWBUoRaHxvPTjzTDyklTfz48aRBvbq6XMjMVl6wwMI+r1691ooID8UUnUG4oML1GOc8c6aM0rBBPf2sRX5wr8Go9oMHD/Wz1mAAhZJveWEfQ/zLaayyrs+qlFKrVq+RyJEiS53aNbzV3cjXr1+/ygoF1l6lhO3YoZ2E+eSqAQXYJBWipHatGvqd4hdT3+qJ479+/UYmT5mm+BzRrrUGF2yDdRzed5cuXdbnr1ixIvqe9C2vcepaslVnMMS7EKzxvMqePatUUu/HL3GVQtkCWtq066Df0a1+ayl/jPNu+bBl63atIMP7FgJlWXI3V3UPLpNiRU3KgF27d0vBgr/o6w3XYP58ec3PrxLFi2m2K9TzN3u2rHJCPaMgGT61N3LlzKn/49o0xDK/ixcvyW8tW5jvjYwZMuh78uzZczq5rePhnfDi5Qtp1qSRDj2DHSqUL6uVcBfVeS1cqKDOA9cRwt5UrlTR4YFcvaP6OnDwkLZSrqGeK9beGVDuQnHbo3sX6dd/kLGL+ReWiZD69eoot+zLWsk6ZFB/iR7dNPFHo4YNdN6wTr1z965+Ni1bstB8X3dS98LJU6fknXI9D6PaVZb5IV+4jUNB7Fs88R07dyGJ4LmI8DauyZKp5115WaTc9H/9X3O9Lah8RY0UVlpXSS8z112QYxceScrE0WTUwpNSPEdimb7mnKR3jSnta2aQh0/U/bzyrHbvhlt05V9cJV+mzy752L5w22XxPHlP0rnGkHJ5k+pf1PPDx/9kzsaLsuPYHQml/hfOlkhqFE6u3jEmClCCzlbb7z1+JSmTRJMGJVNJKvULsbVtxa5rkillLF1WU07B8ztUaJdAq1jS+JFldrf8EimC9y6he6mU4qGugwdPXkv0yOEkV7q80nyEp+w8cVcrHlcNKqr2cZFbD15JnaLJ5ec0caR8ty06BMAfrXLK2n03lAIznvRv/JPeDxXqUjujrN3vf0vpr4ERmCy/ppzc9/sTQPsE7ekLF0weP3ny5JLaNWuYw22g7b1q9VpBOA70sS0FA3loa0IQAgVh3urUrqnb0LNmzVVGSk+kbJnSUlD1JyCHVTsJ7UvXeskc6mvonfhFAsGQQIi2jERj3pDYVnGH0CGeP+cf+d2jg1StUknQqYeiwJ7gQYUOkdHRsEzfVikjYQUBRaR25S5ZVkaP+UM/sDz37dNuPXBXg1xS8R2hyKijrCwh6GTDnQouQXjIRY4cWbs/LVu+Um/fvWePdpXqo0b9E6r4TcuVkqdSlRo6Bp9OYPEF5QtcvSb++ZeOPXXw0CHtdrRm7TqdKly4sObU4VQMNXvpzYm54LQEoBiC6+D0v2dqRQ5inKIT3aRZC12n8xcuaBdq40WLlTt27NTKIt8qbe+awSRR1WrU1tdgrJgxZciwEfqaNfLy7/F69emvlWGwfIkYIaL83qWbDBsxSscAhMJ9uFo2BErCbj16y1OlSIXlM1wMu6v/uC9xD8C10BDchyNGjZFaderrRsM7pfDv2r2nVrggja16Iv6grWMbx8AvlHUoR4QI4bWiYbpSrNZSLn4QdP579Oyjn0F6hfqa+NdkOa6UfKFVz85W+Z8rhStc30uWLieIyYnGEZ45v1m4JLdt31E6/d5VPnx4r5g81fnBzRBi69hQgiLv23fu6LSzZ8+V6jXraIUhYuDBgqlG7Xraiim06ljBUgrPMMN9tEfP3tpyCYq/5G5uskYpXYqVKGOu5xSleIB12d17d+X+/QdSsUp1fTzExgN362PDfXLmP7P0Mw2NQlzPiDUIsZUXYqa4KOXBW3VdgCdk9px5uqznzp3XynhYS1VSx3///r1WplWuWlMp125JunRp9X0AF1o8033LS2do8eVfThg0Arfdezy1hRzuVcu6W2TtYxENa7/KGjVaFH3/7VH5GoJGNvKOpwbHUE6/mPpVzwl/TtIDDIhpCGVtVXWP4xygzDXVPYQ4f1Bo3bp9W7sp45rwLS97dUbZwAQDdUmSJJaRo8aKe+NmAWbdavD40t//tWgmu3dskQK/5PeRBUK1xFTPPEvB9WcZ7gCK4sIFC+oksLjDdWYIBgnAENcfpGiRwvq3u7qfwBfWeRAMZBpimV+fXj30IIaxDUpiKHSNQQJbx4usYlHOmDZFD8wa+xvtolQpU+hVeEfANR2K0sbupmeYkdaR3x+SJNEW10MHD5BoFgND2Leg4nlg725xb1Df16zQ7lm02NSGunXLxCdlClO5sINRxrv37snVq9d0HngfIFQPPFoQKgQDVxjghVjmh2sY1qhXrlyV+g0bm93hYQULwXMJDI19sQ6DwZcuX8FikBPDIhJWa09fvpUxC09JGY8NcubqE9l98q488HojOZuvkEGzjkk8lWanUiqW6rReZm8wddKfv3onFbuqATHlNh07enjZfvSOTn/9nsmatcmQndJy5B51738UrxdvBe7hHhP3aw7nbzyVou3WyvV7zyVTiliy+eAtydp4mVJMvhZb27DzlFVn5eCZB0GOp7MWqKmyMl03pJgPRSTq075aOjly/pHkb71OcrRYLS9ev5fOdTLoqnrUyiBRIoaRkp02SbGOG2TEglNamZxFKYpL/JxIp+n05yFZqVzqs6c2xdODcjNCOBcZOOuE3s4vEghKBPDuQ1sOfRsYI8EICG1vDI5C0L9HO3T7zp1KOemiQ4Vg4M0Q9MMR7gfhUvDuwoA5QnVUqVZLrt+8IfdVG7GBexOzohMD3njHQOz1NYxj8JcEgiMB78NgwbGGNupkNEYxAj94YD+tZIClJBSR8+bM1EpFjNKvWWNS0l1Vk2vYkyPHjkk61VGwJ1OUdSMeYju3bdbKByhF3Js007GgKiorRUOGDRkoZUqXEljv5C9YRAdXX7Fssd7s9cRLEDsJVlqGLF44TzeIf/foKJmz/qwVSiOGeTcDn6E67Mhv84a1enIedB5gxdBdPXThNtZUWT3MUp29Ru71lRVAVkEH06/0sBalOD+Bi8piDhMp9OrZTZ9z1AiTDkAhaamAdLSmtq4xXDOwuIMSC25usDLp1LGd5M5X0NHsfaRD4wEjjoblJjrrL5W1JASud2ggYGIXN1dXgQULlFkVy5cTz7379D3018TxUqJEMa0oa9S0uXZ7tDzIqBHDpETxonoVBgQwIULzZk3EXj1tHdsy/337D2jrqL69e+p7vICypIZiAfHdYBGNmLbr1b1evWoVPSK7fv1GGT1ymMPlb9LIXVsT4ZjgDYUknjlHjh4VuEQOHtjf/BzBvd+tRy9xb1jf5rEty28sowG3cN5srQQOpWI1LVi4SGZMn6JHgqHwgFIUE0CkV8oVdOp79eimnjMmhUWBAvm1ggpKGXTi+w8crJ9F3bt21tnDIgoKTr8EioDVKjQGlFuwHkMj8PSZ03bzgjUXlNCwzvTo1EErz3QsPHV9jB09Qh8OVpHF1eDR0mUrVN1Mr80B/froyUUwao7GKhTs1nn5VVZHOWXJnElngfTr1qzUFoyGksWvvC3XHz9h6vT5VtasP/2k3z2oEyz3IXPnzRe8D6GYh/jF1K96Iv0S9Q7CZC158+SRZi1ayuXLl7UVHd4ho0YM1dZyuPYGqniK+IUyzZK/PrD6sldnDMht2bhOX2u4l8uUr6SvZVhEf28xePpWjty5cmqlV3NlQZciRXJtgQu37YQJEujkuOfxfOnds7v+f1kps+ABYSkYwMF9BEEeFVT9ofzFBwKLaShpIdb56ZWfvqAoRixFsIQVM8Te8XSiT194pkKRl0vVyagzrOvxXMW5eazuCf8KJsPxa0IcuEhDjAEN67wXqGePIZhkBmJp6R4tWlS9DgMHd5VlJKRho6aCcxJJWdRjABgDv1Mn/6m3WeZ37ZPyEor0hvXraYtoWOMjhiZC8kAZaa1kNo6HQR5YuX9PGTr3uIQLE1pP/rJHWTLuPXVPEseJJCWUG+7dR6Z3ZfPyaWT4rybvnJ5TD8t9r9dy4u9K4powqnxU7cRqPbZIR6V8rFbYTVk9XpKjyqpy36Ty2hry7fuPUqTNGlm87YrkzhBPFqnfP9rmloalUulqT119TtqO3Sv/q5hWDp8zKRNHt8olyRJEEffSqWTY3BPy8OlrOX7xkU7v27Z4yi2YErAESuRIJJ7qWjilJjqCYtIQuGCHcQkt87Zc1qvevPuglNT3pEhW03Mqc4qY2nL2+n2T8nn62gtKeZleSudKLIu3X9UWsJGVpWXc6FB2mwb6WlVKK3M2XxbkRSGBoEYAz/6ffsoiM1Wb1XheQ/l4WCkhIWiToo2zZtVy7T1Ts0Z1bSBkXY8li+apSc0SKe+OLNpoCJbxaFtiQCtTluzK22e7nxPj+tXXsD4G/5NAcCIQopWRxsypaDDCOmfQgH56NkWYVcO6EYrIBmoEHI15iK1ZFo2LIl7cuHJbNVbtyd59+/VDzZglEscvVaKEVoJcv37DvHv2bNn0spGuuOpkG5IkcWKBEsMQdGbwoISgboUKFtBm4MZ24xcPXMg8ZQVgCGbUhHIUjXRrsZfeN5cl6zz4P2gTgPJnyeIFsk9dl1AUwkVh244dutCwBvOv2LtmTqqONDqWxrUDN7pSJYtrCzj/Hgvpyyp3CbiHHjhwQCkVi+trP0d2071TrGhh3dleqZRuiNECd0i4WqOzvm7DBn24XLlMHTAossqWLu1DGQn3Y0OgJDnzyaXRXj1tHdvID79FChfSISOyZMuplapFlIKsQ/u22soG1kiwsEK5oYw0LJjxLIDyCGKv/MZ2pIUrOgSjvqdOndbLcKu+qKxAIYYC4QyUh4qlX8d+omLLWktu5SJqPFcNKyR09CHx4sbRv3jWIM3c2TO12yOskS4phYvxLHv39p1ycT2n0xpWX/iDZVvKSFiC4fxBXJMl1b9wvfZvXhh0grL6/v37uvGpM/r0BbfRpo3d9fWECUDgYlu0SCFp0/pX87Vsmd6vZUc5GfvDWstwpTbWOfKLewCKJr/KWqdWTW0J3L9fb8F7BwrjvioGoCF+MTW2W//mUeU0Zo02FKmwaoVlH+53THgEq1O4I8PtHveSX2KvzhikM6415I964vxUk++vjPSrTljfWQ0UQlmHyVTwzsagDN7bKD/kwP6Duv2RMuVniz7rASE8kyN9st5DHGpYV2BwIqcKVbBu3Qbp02+AHlxCW8a3/HAcvO9hTXpBuW3jXrR0cbd1POwLQfgFWIy7ubnKhHFjdBvq0qXLWjk5buxorVA0niVIHxhi3P84FtpUECjRTEsi7z69yyJGiCBvlCs25Fflsm64UcNbBFbQhqWoZX6ILYnBXjzXDLfvVClT6oGbPXv2quOF0vlZfhmhR4x7wnJbYC+v2n1NK5dw3MRxI0vHWhmlVeV0Ein8525A/szxzcXapVxxM7jF1IpIrITVeHnlhr3hwE25eue5UkQ+1MpMuGdDoOjcOb6sXv5rxVn9e+DMfTl//Ylefvj0jf7FrN65M8RXVnVhJUODJVIm9w9KgfWDsrjLLFA2Rlbr/dqmM+BXgBKo2mubzu9/5U19ByNz47xeUefakDtKaQ0FJSR+zIja4tXYBrd8TLiVMFYkOXv9qXg9fytbRpXQbtzjl52VlhV/VO/nUDJ8vmkQxdiPvyQQVAhUKFdWCikXas+9+/UgKsKhnVMfDJ5jAAyW8fB6MN4tsP63fG+iHuirQxEJcfs/e2cBH8X1xPHB3Z1ioUCBwr9FWqRAcXd3h1K0FEqLFS0FWopD8eLuDsXdvTiU4u4u+c9vLu/YHHe5JASSIzP55G7l7Xtvv7u3u292xMtLvgvw8zwEz3BJkyYRgwJZ4OTD1VjDSVFdpAQ+GALmGe2D2aGA7Ei6dLY3tlBiDGRLIbg/QVnhTBGJev0aOJl2EVsMD7LOFDjbtm2XB1e4Rb3iCxssz6wSP348mYUrqBHE67MKrNeMhCHfD7/Jkyczq+Q7Xry4kkjH10KeuXv3ngx8nvHDuPnHviFG3Ut2qXGUgJZ33F7nQz4BxD9BBnhYk8G1ICw/cBpFuHVgap1GfDhX4u6cucOKLHO+mzrgyuso/m0PFpFDBw9kpUdGcT2Fu3CrNt9LdXCbq8Sxy2az+96dO3fF1bVqlUqyDq7akGjRo8s3PsL5PGzbF/AE4lAaCR/u9eDN3X761bapD99QzmCgi34iDEPTb1tQydLl7Bluq1WtTNtZgQGruNmz54r1GpSU/u1/dB9FB9oK59N/HqPTvfu2/Ye1n7kWQCmCa4Gx8nHVNupyFOsxDcPKANRlBuKYN4IHuxatvhNrtj9HjRHFCOLiQXDMcZwgkVlpYMS8qTbzjt9WCyizj7C8C2hdd9mKCRKV+Rom+AYTKI0+4pdASNzTpnVLsbaFS2q+AkUClPTLv5zMPiKub2DEXV8RKxiCc24RK7SgHMMDthFXTM16x+9YFusvq3IG91aEPYElbHhWRCMUQuFiJWny1GmOVdjn3e1zso9sD/zYAIODROwajrAEIV1wr93IyU3ghtyiRTNJdJIhQwZR6qHvGzdvppIWS8gUfF+/Y8l0jTLIfJ3SR+G+gC1bYRmJeKxJ+ZkClsYY0Czg6zjEsT4swzMILD4usKv3wnmzJSYqlkPctYcycC8rW74SZc6ciWZAkekT5mbMuPFYTdOmzxBFZfsfO8p8Bw6bAYvr9ymIGwuBVaIRc71MyucOznVIUb72GjGDRljxOgqu5fhtGEUk1ufJk1uKwVoSz3Nww7MKYoThedJcA63r3vf0xmGladuf7A3A/3N6FaRu9bNQ3JiRfHUjPluxGXn10luUlmYe3wlZAQV5zlaQsKbMlDquzDt+3GO3bEgEvpc+ff5K/qFghOVlPG4zRcJotG1kaVZA/o9OX7xHLQZupc8azKddR6/7uc6xHZ1/dwTMufHw6euX0Y98pqF4hrs1zgOrQCGJ5ZCvWi6nIXOPUsWu6zhR0nFqXCotjVt6knJnSiAJbKZ3zUefJA9ea2Fr33VaCcANOzNbLsKjYyuP12GwkObj1AIGz4AQeCVYBaHMrIJ45kaM0jJWLP+f567GGqZO/VYCHyKB16PDD3Hv3OxT5YoV7G844LYIhSTE0SISy3BRMhY+mHclJgHNYE46YBWYZ3ft3pMQnysBW0+mSpVKYqjBOskIXLMgH6e2XfzMcv9+IyYcEnkYgSl49uyvB5ZmOSyjYPnTni2v4BaKf7i4pkyRgk3TbW5MKAtlBcS/5W2l9dMTCSxcuFis05BhdQFbSCKumBnMQaFjLJBw3hiBa7crcXfOfMbup4hjZm7wUEDBLdlIQNrDb2jchInyRnL40EF0/J+DnKClgST8QKICSEVOeoIBpkkmYSyMP2UlAOQQW/kYQWw+/4q7/UQ9rtq2tgFXabgN9urZTTLUQrF6hq0Ft26z9QVusVDsjRs/USySEMcW8rb9NwoduIGaa0Gzpo1FqWEG667atvbf6bS5gDhZefToMTk+UMisW7OKfu/fl7Kx2zAElkxefH2EwFLXyLbt281kgL4DWldyvtZDkIDMMPm5SydJsIM33Xg7jiQfyJr798plEu4Cvwso8QMlfnCy18fKvMCIu77iGCNRytJly2nx0mVUq1YN+z0xMO252gYurIiDWp4TekApuXf3dlHsjB//l6tNiN8Oul7Ha6AQMwLrQvxekIwlpMssTmiybPlKeaFQp1ZN+a2t5GRUxooCCX3y+rjNY1/Sc8IpxKIy8vz5c7GsxP0agliniPFrlbBsgXHf50WDY314oVGmfGVOhhRV3IsdX7K6aw9hLmrVqS8KULizWRXWcNXGC93s2bPJ/6f8cggCJT4sQt6nmN89kgQY2c3eLhCc96m9UmHSHvMW0+ae5uWVErO+BPudMXMWiQNsVmDwCsHz4cecxAvu9nixZ2THjl3+eoltygf3N14aGPn4oxi0cucFces2y9buvSSTSDSTOmkMOnzmliSqMeuhVOwydg8l54QokHJ5U4rbN1y/27ALbzK2yIRrOFzEF27+jzrX/Zx2jSlHu/kfMShnrj3r5zrTjn6/ewIXr9s8wuJbFNZxY0RigwVvgkv+fT5eVqta9CgCKylNzFDcxydzgiJYSf7ASXD4MZKGzT8m2bVPX3ogCXEGNP/i3e+ItqAE/ElgBFvGw7Lxn8P7adJf46hd2zZi7YsxEF5G4V5pfe74l71oTMx0Z01YjSmcrddlSkAJ2AiEamUkLjqIpWUewKCQbNSkmS/XbGDCw/bwoTY3JHcnDmInweUHGVCR7RGKDSgaGrI7FB5Ue3N7cPc2llmI0whLymnTZxKS10ApGD78a8srd+05ru/Zu4/UB3dGKF8qlS/vWESyDGMh4sIhwQbcIxE3CW5XuOAaCyQ8fGMQaWJwuSr/RgO6wOMIGMXjsePHJYEIXIHhsgaBsi958uQyjSy2yMaK+H04b41A2d77l18JA1+Iu3PGxBqFOyHqQZIYuA0acdfemTNn5feF3xSsTjZs2CjnM9ymESvsIg+4obyDdTAEmXcx+Bw7foLdqhDLv+Qs3rBcQfw6DCzxGzRx17DenbjbT2zvrG1HXhc4uHXzlm1EQYswDyY+rVE44HcJBST6j4G0sV572/4jlAM4wVINv3e4n7dt/yNNZcumBD5u1a7adsfGr/VxfY7LWY4bieRgcBPv2r2HbIIEH8jODSUoXuogocpEDh3Qt/8Av6p0uc4/dcWKGYv+YQUprE8TM1+4piPpDc4HBDVHrCCcI7g2YryOaWT2hYUZHkghyJ4LsdYFC1Ao3XEvsL54koLv4cNdX9EFuEuvXLla7heIvehfcdxPv7bDSy5cT8ABv13cV66xG3yaNDY37YDUZdrBy7fx/BIC97BuPXrJeYzzOaRL5EiRJckMzgtwQEIsWADXrlldziXct3PmeD1Ir1O7hlwjsa94uYJkXxDEo4Ugizh+H3jOwPmIawTO47JlSzutD8m+cK1FvCu8eEWyJ/zDEgTiV3uwPEXCLFwzChUqwPF219i3RzgEvNTAAM78N+BYqxAknMHvGYJ7BM4DXAODWpD9Gr9LCH73sLaG2zXuWbjGDBvxp7jZ4RkMscHwj+caxH3E+YSXVRhwmqQ31voQ2gNJCXAtwMsU7Aee83BfwTo8u4EL9g3xZ2GZipje3zZtIv3xtI/axWy/ze+H7ZBs2siyPWXVacmoDaVT9UKp6eKNRxIH8gi7Xs9Yc0aycxfIkoQTmCQTV+ufWTG5Zs8lwvpvfttC47iOhJyVG8/cUFoOnfsP/ccJb85cslnoQ8Hp1zpHhkh203HUbjr2n82SHi7kmH/yzHZuOc47bq/zrgmcYCUiJEfGBPZCGVPFogdPbJ5bl28+pkRxX1vSpuLYn3DlP8HHxCqRIoSjmoW8aPiCYxxbNJYoLH+esI8mrDhFXklee6RYt9FpJRAcBGDViOzWFy5ckJBl0AkcPnyEnvAYCAIDpg0cn948d/zSp19wdFPbVAIfHIFQrYzE0axZoxr16d3TrpCEu5qJEYn1UEROmTSBTPwrLHMniPUGq5ldu3eL2yuSZ8BCBYpPxMGCIBYXkkbAIgVJHTp27ipJF/74PfAXNygpMAhBfRhIwyWuWLEi0h5c5ozJOJLSIL7UmrXrJas2XFoxiOvWtZOUhSs4Hq6hcBrCD+fuystG+uHRBIpy7DsMpr5t0Zr+l+ULUU6ZxCFIlJAtaxaqW7uWKIYQ6wyWYRXZpdicUwg7gEHgfh7wQdydM1CmIZnF8hWr5HyFMh6KfCPu2rvG2VAx6DZvJbt26Sgx1MpVqCzZ8NAPZK63KvZrcnw8SCW2kjSCMAiT+Q0orIjgtti+w0/234wp4/gNF/Zw7BYKcbefZlvHth151a9bVxJV1WvYmHLnLSCJFLBPJmED6oEbJqRWzep27oHqv09sMyiq4HKIeHFQlNWp15CKlSgtA4ohAwf4ygrrrG3jdm0yUEvn/PERlhPbwJ20fbu2nP16qpxvsLRCUggM5k0cTiSPKVmimCgkociqyFZ1ECif3bVtXjCZ89OvulDn11/nFQUNsn9DmQ1LTVjC43zIl7+wXFexLP0n6eSYt2ndkgbyCx8cK7zAglLaJBJzrOvAwYNyrgZU+QJOEEc3IHf7Lhv5fOD89KuvKGYsX/H7cwz1Ya3LkanjflrLOk5DiTvgt758fdgvv0+4+CK+MixOIY51+WefERIFCUdKlilPJ0+cpPGcdCQFv2AMSWJ1VTf9KlmyONVmC9TmrdrQV/kKSMKYcaNHym9xy5Zt4mJtdQXGMezc8UeJA/llLk5sxc8ouH+bF0jt230n5x6eM3A+Qhn2TdPG1LRJY3KsDyELoCCDQIHbsvV39n+czxC/2kOsaygyYQncmsNgWLdfwdfyNwQXGRZYahrBtRnX7pf+iEWMmI3mvDPb49vZMixH7MzFi5dgUgRxwHG9wD2rfMUq8tzVhi03jYwcPkTie5UuW5GqcOZ3KClhEWOuG9b6cC8ZMvgPCd9QvFRZatz0W4kTO3XKRLnP4No1+s/hwjdH7rzUk48DlLKwPA5OMax8DoW/uwKlIhLQzN94jnI1W0ytB2+nMrmT06gfbOE0sn0SX6bnrP+XcvL67uP3iqVjoWxJKXb0iLSkfxFRCpbv9Lesxy1z/I95xJoOCi64aPeZfIA+rTOXqnZbS7WKfkz1OZGNX+vQ+Qis3DK/qyu3HtGwef/QRZ8kKntP3JR5WO9BHOdloX74i8Ct+0/pv6sPqSFnwC7BSY6QWTtTqji0bPtF2X4EKxehaBzTPjdlTRuXxnf4Sty2l2w776v+TrUzi5v+uGUn6cxlWxiN5GwhmzReFHr8NOhfSPhqXGeUQAAINGxYT+JDIllhti9zi6FOo4b1RSGJMQLuq/C6ghEFnjsQbgrj7sAK7jPmXuOsDutYw9l6XaYEPhQCYdiM2HbX9uA92souTLk5c+fbCKwC8LYDb8/vcAbIRHyB+TpfHk5W0FDesAe2bsQrQhKFhAkTOH2Ahvn3VVasJOAMt1bFSUDbQ0ZLvP2fPXOaWE/Ejx/PnszBVV049NeuXae4cePY3XCtZWGxhFh6JnGCu/LWbXXaMwnAzf/Ro0diLehsD7AeA1GTeMZZGesyd+cM1sPaBwNrM2iybh/Q9pDRGIo+Z/2DtfD8BQtpw9rVTh8AkLAkNivijYu4tR/upt3tp7u2Tf3Ibnvnzm2xznN8SIF7CJR2Wzetk7iFZhvz/Tb9Rx1QVGCQZyyjTb34dte2tWxApmE5CAu5RAkT+jomsI6cPHU6x84rat9XxNytXquuxGvMkCG9v5vxb11QFj7h8zu6JX4ozj9YgyG0hqOg/CWOuYfEFo7njLO6HLd/n/N+9RXXebyAQGiAsmVKBahbgdlPuAnjHLNyRqMBqStn7nyigGvR4lu6eeOmXTEXoM4Hc2GEqMD5ZVU8wsUX1y9n5xvcsxErEs8SzgTn+fXrNyRxjDkf/arPWR3WZe7as5YNyDT6mb9gUdq+dWNANnurskjMB2UhrLydCZ7TEC/bMUa3s7JYhmsCrvlWF3VT1twL/PMMZrYJyd9wt4UVXMLYkcWqzbGvZn0SVi45ezF1m5VaWB6LFZSO8oKVhheuPaCkrJxCHEKr+LXOWu5Dnc5Qb8F73bVmnMCmTaUMZG03Q8pYNKVTXk5CE17CNsECteLP6+z9+q1ZdiqdyxarHtao3Sbsp0VbXysjo0cJT9uHl6I+0w7RtL/PyHYLehcUi8hwfE7M3XROtrFX+A4njk58/RL6HTajVX8ABDCOiMQvpnDPcCa4d+Oe4Wyc4ay8LlMCwUUAz9t+naf+Scz8Pvquysj3Qfk9tGFVRr6H5rQJJeAxBPbs3SsvGWAxhJiMsPB8XxIUbcOVcz27oY9jayIkukDm2vclwdU2XtJk+iybxJprzmEvHj58xJaIg8XKacniBfYXJP7hEJR1+ae991UGFvynTp32s7l07HLqSgGDJGszZ82R2MV4Cbd9ywaxDPOzwhCy0igjYfWp4lkEkLAKL1qaNmnkWR3X3iqB90jAqhR8j806bQqWjLcfPOW4nq+T2ZiCSFjzUYKonIjI5mpvluMb20FZOZIT2FilaPakdJ6tWY+es7nXW9e9q2lVRr4rslqvElACIZWApygjAx+cMKSSD6X9QqwLZxm8QykO3W0lYCdw9OhxcV1EjDXjLm1f+Y4ngqJtWK4hrhlc23t27/qOe+y7+uBqG8qKWdOn0KQp0+iHHzuJq/JXX+UiZE03ltq+e+p6Lijrct3K+19z7Ngx+rFjFz8bRqgCk8jDsSC4/PJrP4mrOmrkMI9RRGI/0qVLS3F94o467pfOh2wCcHVzZgUfsnutvVMC748AXqCFJIHi0JXAItKZIhLlsZ2jIhLLV+22JULCtIoSUAJKQAmEbgJqGRm6j7/uvRJQAkpACSgBJaAElIASUAIhgACUkfnarKCb956FgN54fhfixYxIm4eW9Pwd0T1QAkpACQSAgKdYRvoO0hKAHdSiSkAJKAEloASUgBJQAkpACSgBJRA0BGC1nitj3KCpTGtRlnoOKAEloARCMAFVRobgg6NdUwJKQAkoASWgBJSAElACSiD0EKhT2Cv07Ow73lNl+Y4Ba/VKQAkogbcgoMrIt4CnmyoBJaAElIASUAJKQAkoASWgBIKKwP/SJqL+TbMEVXWhth4wBEsVJaAElIASCJkENIFNyDwu2isloASUgBJQAkpACSgBJaAEQiGBMl+lpHTJY9GE5Sdp8+HrGkPSn+cAYkTmyZSAGpRIS5+kiO3PrbSYElACSkAJBAcBVUYGB3VtUwkoASWgBJSAElACSkAJKAEl4IIAlGl9v/nCxVpdrASUgBJQAkrAswmom7ZnHz/tvRJQAkpACSgBJaAElIASUAJKQAkoASWgBJSAEvAYAqqM9JhDpR1VAkpACSgBJaAElIASUAJKQAkoASWgBJSAElACnk1AlZGeffy090pACSgBJaAElIASUAJKQAkoASWgBJSAElACSsBjCKgy0mMOlXZUCSgBJaAElIASUAJKQAkoASWgBJSAElACSkAJeDYBVUZ69vHT3iuT6eUvAABAAElEQVQBJaAElIASUAJKQAkoASWgBJSAElACSkAJKAGPIaDKSI85VNpRJaAElIASUAJKQAkoASWgBJSAElACSkAJKAEl4NkEVBnp2cdPe68ElIASUAJKQAkoASWgBJSAElACSkAJKAEloAQ8hoAqIz3mUGlHlYASUAJKQAkoASWgBJSAElACSkAJKAEloASUgGcTUGWkZx8/7b0SUAJKQAkoASWgBJSAElACSkAJKAEloASUgBLwGAKqjPSYQ6UdVQJKQAkoASWgBJSAElACSkAJKAEloASUgBJQAp5NQJWRnn38tPdKQAkoASWgBJSAElACSkAJKAEloASUgBJQAkrAYwioMtJjDpV2VAkoASWgBJSAElACSkAJKAEloASUgBJQAkpACXg2AVVGevbx094rASWgBJSAElACSkAJKAEloASUgBJQAkpACSgBjyGgykiPOVTaUSWgBJSAElACSkAJKAEloASUgBJQAkpACSgBJeDZBFQZ6dnHT3uvBJSAElACSkAJKAEloASUgBJQAkpACSgBJaAEPIaAKiOdHKpXL17QjRMnnKzRRUpACSgBJaAElIASUAJKQAkoASWgBJSAElACSkAJBJaAKiOdkFvbpw9NrlyZDs2Z42StLlICSkAJKAEloASUgBJQAkpACSgBJaAElIASUAJKIDAEwnVnCcyGIWmb8+fPU/LkyYOkSzdPnaK/e/Qg8vamK4cO0WdVq1K4CBECXPed//6jsxs3ioUlrCyt/88fP6YYiRO7rfPU33/Ti2fPKFr8+HRi1SryfvmSosaL53Y7ZwWwPSRq3LjOVusyJRDsBHbu2k3/njtHKYLotxzYHTr777+0YcNGSp/+k8BWEazbva/+P3r0mBYvWUpx+ZoSPXq097rP76Jt1BkhENd6ZzselHU51v8u9t2xDf/OW/dz+YqV9OLFS0rA96vAiLUux+1D0j479s2v+Rd8z549Z65c0yJFimQv+uTJE9q6bTvtP3iQ4sSO7fT3M2/+Arpz5w4/2yST7c6cOUvr+br06uUrSpgwgb0uM3HhwkVev4nix49HUaNGNYvt3471nT9/gf5es5Zu3bpFSZMmobBhfb+b9qs9b34+OnT4CG3espWe8TNK4sSJ7O1YJx7zsw6uEUmSJKHIkSNbV/k5/ZK57du/n3bv3kvRokWjmDFj+ip/8+ZN2rhpM+FalyhhQooYMaKv9Y4zDx89orVr19Gly5cpXry49vI3ed8PHTpMFy9eeuM/Mh8vZxxRt6v6HNv977/ztG79hmC9lxw5e5vW7L1MyRNGo8gRw/nq4rp9l+nfKw/IK0kMX8t1RgkoASWgBNwTWLpsuRSKF4ix+Z69e+nE8ZOUKlVK9w1pCSUQCAL37993+RyD6sKF8/1MEIgmgmYTfqj0eNmyZUuQ7cP8Fi28/8ic2f6/dfjwQNV9eMECex3W+jC9qls3f9U5unBh760jRkjZP7/+2nvn2LH+2s5ZIdl+3Dhnq3SZEggRBL5v38G7Tr2Gwd6XWbPneqfwShvs/QhsB95X/y9evCicWCER2K4GerugbhvMGjb+JtD9sW4YlHVZ6zXTQb3vpt6AfjvuZ45ceb0HDR4a0GqkvGNdjpWElH127Je7+V69+8hvhJVm9qJXrlz1LlS0hCzPkj2nfA8YONi+HhOvXr3yxrpNm23PNt+2aC3lwBjXpp+797SXZ8Wdd90GjXyt/+77H7xfvHhhL2Ot78HDh95lylX0VR79uXXrtr28X+0dPHTI2/TD9L9N2/bSZ3sFPhNdu/WQdg4fPuK4yuX83bt3vfN8XdBX/xYtXmovv33HTu8MmT6X9eabFX729Y4Tc+fNl7Kmr+j76dNnpNicubZ1YOr4v3DREseqZN6v+qwbPH361LtYidJSr3X5+54eNOuwd/SiE72b9Nv0RtNVfl7jXanLmjeW6wIloASUgBJwTwD3lREjR7kv6KTET526eFesXM3JGl2kBIKGAJ6d8Szi6j9oWnn7Wny/Cg8a/abH1nJh1y6xZozOb9rjffwxRY4Vi/ZMnEgPb9wI9D41XbOG2rL1g/W/iD+NUSuNHk3/q1Il0G3rhkpACSiBd0UgYaJEtGLpIsry+efvqgmX9QZ12zt27iS+WbtsLyArgrIuZ+0G9b47a8M/y4JyP93VFVL22T9cUObatevUrHkrGjNuwhub/DbgDzp58hTNmTWd9u7aRmNGjaDBQ4bR6r/X2MseP3GSYP2XLWsWtixcRrC+mDxxPG3fupFGjRxGf02cTLv37JXysJZcv36j1If1gwf+TrCChEWeEWt9rEyjAwcP0bq/V0p9SxbNk/6MGjNWirtrb+SfYyhxksR0YO8u2r1jC/Xq0Y3mL1joqz1UtHbdepo4aYrpgr+/+/02QMqa/jVqWJ9+7NhZrBFhadrmu3ZsDZmANm9Yy33YSc2bfUPNW7ahS5cuvdEGLBh79+lHDerXpV3bN9PhA3vo2fPnNIh5Q0qVLE57dm61/+/avoUysEV8EvZcKVjg6wDXZ93gj0FD6Oix49ZFwTo9fc0ZWr79QrD2QRtXAkpACSgBG4HWrVrQgN/7KQ4lEOoJhA/1BAwAdjvaOHCgzBXr3ZtS5MxJu8aNo82DB9P2kSOpUNeupmSQfb/iB+ujS5bQ5QMH6MG1axSTH4A/q1FDFKFo5BQrMhOmT0/R8uR5o024gSOm5W12a43r5UX/Y3fymEmT2stdZgXoiZUr6fHt25SuWDH7cp1QAq4IsEUKzZg5WwZQMO3OkCE9NWpQn+LEiU379u2n5StXUaefOtg3X7h4Cd2/d59q16phX2adQB1/8WD0yJF/KD67MJQrV4a+yJ7NXgRuggsWLaajR49Rji+/oOfPX9jXBbQ9uANigI5BdrRoUbmd7FSlckViiyD6/Y9B9FXuXJQv7+vfEQbP9x88oLq1a9HDhw9pHs9v27aDvNhdIkaM1y5rB9mFbz0P6r/+Oh9hEH/z5i3KnSsn1ahe1e7W6Go/n/Og113b9h3mCfRpw8bN4vaIAXG9urXFPRED+jBhw0hfTXnwWbFqNf3Q/nt6yi6frvqPYzp85CiqUL4cLWF3yZOnT/NgOz015gG+2U+4RGLftvL+hwkThjl9ReXLlZVpv9pu2qQRzV+4iKpXrUKpU3vR0OEj6csvstP+/QfYxfKADOqhSMAxwb7BnRv9wL5BoFiYP38h7d23j9hajD7i61fdurUoXdq0sp7ftdEKPufWsaIlLO9/tSqV5RysVLE8JWZFqGPbOXN8SfsPHKQ9rKRJlCgh1atTW/qFyvyqC66U2Obx4yfUt//v1IGZwmUVLqhwPcYx/+x/mal+vToUJUoU6Rvca9iqim7cuEleXqnsDKBQclaXbOTzEVBOQ4YOp6yslFqydBlFixqNatWs5mvfrXU7m3bVVyiwtrMStn27thTex1UDCrBRY8ZRzRrVRAnmiqmz/UTbT548pTFjx9OevfsoRYrkdi5Yx29oadKUaXSG3Y1x/IoUKSS/SWd1DeNzya99BsMsn38mrKHwyZ49K1XgczYwrlLoW1BLm7btCArAVi2b09BhI3xVv3bdBipapLD9Wojp1F6p+De4gIoULiRlN2/ZQvnz55PzDedg3jxf2a9fxYoWEbaL+PqbPVtWcTPGRpk+zSjb5syRQ75xbhqx1sdWgdSyeTP7byNzpkzymzx+3Ja0z6/2cE94+OghNW3ckGLHjiXVlytbmtgCkk7zcS1YIL8sw3nUsnVbqlihvChGTT/88z1/wSJq2eJ1/xo3akDjxv8loTM+5X28fOUKdeva2e6+jt/liD9Hscv5OqpbpxZNmjxVmsH0XXZzr8/X0ap87YA7Eq55n6RLy309I2XgOm51H58ydbrc/+bNmcGu89GlTEDqM/u3ffsOGvnnaCpXtgwt5HtcSJBs6eJTi4GseB1bjuLEeB0ywNq3p89f0qQVp2jzwasUKUJYyp81CVUvlJrC8n1h74mbtHrXRSr8RVKavvoMXb/zhL7+PDHVL5lW1lvrwfTLV97UbbxNYe64rkWFDJQkXlS69/AZjVp0nA6cukUJYkemqgW8KFemhFJ8z/EbtGH/FXEhX7DpHJXPm5Iq5EtJh9ntfOLyk3T+2kNKlzwWNSqVjlImth0rx3Z0XgkoASUQEAJ4PsHz9KlTp2Wz3LlzUs3q1Sh8eJu6BM/eS5YuJ4T4KFO6pK+q8SIPz5oQhEBByJpaNavL8/uUKdPp7r27VLpUScrP4wnIXn5OwvNlqjopyT9jDdlIP5TAB0hALSN9DupxVtxdPXxY5l74WMiY78Pz5tGts2cDdfihcER2bvs/zxtZ+8svtIqVnGF44BsnZUo6yTEiJ1WoQE/u3ZMiB2bOpMsct9JRrh09ShNKl5bysZIloyMLFtDkSpUICkoIFJEzatemc1u3Ulh+AF/YqhU94gunihJwRQCKodLlKtKEvyaJIgcDTQyiGzdtJpuc5Fiqo0aPtd9osXDjxk2iLHJWJxR8JcuUlwEZ4pvt3rOHKletQcuWr5Dit1hJXqVaTVkfN04cgjWMddAW0Pa69egtyjAoQKJEjiKWNL8NGCgxAKEM/Z2njUBJ2Llrd7rHilQoK9mlkbrwfNSoUaR/v/b7zRRlxckZYhdKqlGrrjw0PH/xnDp1+VkULijk134i/qBfbdsb4Qko69CPyJEjiaJhAitWa9SuJ0Uw+O/6cw+CYtHIyNFj6CAr+TBI9Kv/D1jhiuNWvGQZQkxOPByxKy21bNPWVMXbt6cffuxEL1++YCb3pL7uPXu7bRtKUNQN5QBkKg/kq1avJQpDxJCEZVC1mnWoyTfNWbkXTiylatWpz+3YroFdf+5O7Tv8JIq/1PxCZRkrXYoUK2Xfz7FsVQbrsqvXrtL16zeofKWq0h5i44G7Y9s4vyZNniLx9PBQiPMZsQYhftUFJUU4ftCExRR4QqZOm0Ho6wlWKEEZDyVlBW6fXV9FmVaxcnWJMZcxYwb5HRQoXIwVkzdE4eFYl1Ro+QgoJyj00ZctW7eJhRx+q9Z9t1T9xiQerF31NUbM6PL728r1GsFDNupOmCChHE9XTJ0xQx1QCuEFA37zUNZW5t84jgH6XJ1/Q2s4bh8UWojdxyEZ5JxwVpe7fQZDMJnDSvRkyT6iPwYOoQaNmgaZdavhEdjvb5s1pS0b19LX+fK+UQXiRcbha55VcM6c4hcFRqAoLpg/v8ye4/s6zjMjeGEAhohzCClcqKB8d+HfE/hCMQjJ81Vu+caHtb4e3brKSwyzEkpiKHTNSwK/2ovGsSgnjh9LJUsUN5vLCxTMpE3zsSzDYKzDT51FUdqoge0aZi/sZgLXOPy2P0mXzl4yKcebhOCcefb0mUzjN2kkfATbIPHcOdvzD+4jc+bOk9VJ+QUHrE8Q0xL7NXb8BInVWZ6VhI4Cy8rOXbuJpWW2rFntqwNaH/aheavvhDGUxSFF/vzhK1Egdhi5y2mXoDys+vNa+n7YDlEk3rz3lL75bQs1/2OrlD954S71nrSfSndYLfU859ilbYZsp6Fz/nFaHxY+e/7K/v/ixSsaPPsIjVtyQl4uPXj8nL5qsZT+mHmYEseNQtuPXKOi7VYQFI+Q4+fvijKz7i8b6MylezK/6eAVytVsMc3d8C8lSxCNxiw+TpnqzSPExVRRAkpACbwNAdwj8CyHsU3atGnkeQLP3ng5CoEiEs+hGzZtYuVkOOLQPjwueP3SbwuPuVvxs3WfX/tRTH7xhRfmNfk5vlKVGnT+4gW6zs+I9Ro0tis68cLbjHvcjTXeZr90WyUQ4gnwg6PHy9vGjOQkMd7jSpSwx3g8tny5MNkwYIB92cLWrQPEyVXMSMRuhKDN2Y0aee+dMkXm8fEvx75ETMmL+/bJMlcxI+c2beqNel4+fy7lnj95IvMru3SR+Rl163pPqlTJmxWhMn9x716pd6fGjBQe+vEmgWPHj0scMVYa2leyMk/iXSHe2MxZs+3TpgBiPLJCwMz6+h4+8k8pz+6Ishx1sCudxEHDAlZUyfrr16/Lek7UIHHATMzIgLaHOGCsUJO68MEWLt6jx46XecT+QjywM2fPyjy/sZR5tsz0RrxDrFuxYpWsQ5w1E38NC1hJaFu/crWsxwdivJj9dreffrVtr5An2A3RO3/BIhLXA8tZQeSNeHOI73bx0iXpw8zZc2STGzdvyjy7Yrrt/4ULF6Rsz159ZFt8GPaINYfjjf2fNn2mff3kKdNkGeLc+dW2Yxw/HAPEnuOEFlJX+w4dpR4Tz+2fo8dknq0mpUz1mnW82eLJ3u6GjZtkPfrE1qYy3euXX+3rWYkqy3D8nLWN+GwmTp45rv6pCw20++FH+zF9+PCRnIut2nxvbxu/D3BCbENzTrBFpaxHDEBWZnsfP3FC5q112SuwTASEEzZDTCJwfe4TA9Bx3y1VvzHpV1/xm0RsPsQXNAKG5neEfrpiivKO+2nKs7JNqlvBvxkwO8zxAs15iHh7EJx7OLZsFSnzjnW522e0hXiB5lzjJCT24yMVhpAPfgEg/bLGjERsUnBhywvpJeJCYh77BMFvHvPm2on9ZEtQWWc+cL3glz0yy1bh3jhXsY35t5Z3rM/UgW+c6xX5eoY2WJkuq9y1Z90e11SUr1qjthxTrMO1BMsuX77i/c8/R6VPOAf8I+Z3Bm5WARt+SSTXR9SNPrNlivwmzHXBnLe4BpjrgLUObGc4o2+OgridWH/t2jVfqwJaH45FuYpVpG9sWS51+qrwPc+YmJFo1kwv2fqf9MIaM3LFjvMSW3L637bzEgX+mHlIlu09ccN7xprTMr14i21brC/cdrl32Z9s907M+yW9J+6T7dftvSTFBsyw1X3s3B2Z58uRd93eG7y9qtruRVNXn5Ly8zb8a682T/PF3qx89H72/KUse/j4uXfictO8sR8qSkAJKIG3IcAvUuXazS+U7NXgWm7GJbjv4JkIzy+QXbttz88mZiTuy7iH4BkNgucdzPfr/7vM4xkO96HRY8bJvDVmpHlWw3OTEbRnxhpmmX4rgYAQwLnoKl4klocUUTdtVhcfnDWL7l64YFccP7x+XdybH1neeJxet45YSUgfZcliL+efiaKcmTuSJRNkeJ+MmsjQXXnsWIKVIywv4W59ka3HIK/YQscvObdtG8EiEi7kRiKwxcIlzj7JUeTpEvfzi4YNxeIS65NynzWLtiGl384IwBJl3txZtGPHTonzxQNlWs/Z4CE8GHO2iZ/L4C4LmTFrtr0csrbiLSIsyHhwSpkyfcqZX22Zd2NxfNYSxYuKBZx9gwBMlGZ3CbiH7uK4r8WKFaUC+b+2u0EWKVxQMrIuXrxUrGTgDglXa1hUrfDJMp8z55fSGqy0SpcsKZZE1ubhfmwEb0yP+bg0uttPv9o29eG7UMECNH3GLPo8Ww5x4yjE7o7tvv9O3DRhjQQLK/S7auVKduvSouyuOX3GTKnGXf/NehSGKzoEMRKPHDkq03CrNq6Lt9lqFXKMraWKM0tXbcMF0lFysYuoyUhtLKVy5bS5jSZMYDvWOA9QZvrUSXIesOKZzpz9l3bstFnsPH/2nF1cT0jVxuoLM5iGtaUrgSUYjh8kVcoU8g3X64DWdY6vxbDOYkU5x5vrK/WYjyP//ENNGjWQ84kVeeJuW7hQAWrTuoX9XDZl/fr2LydTB8IMGFdqs8w/3wiLgGzErvpaq0Z1giVw717diZXzYiHXk2MAGnHF1Kx3/M7N/TRZoz//7H+yGlatsOzD771tuw5idQp3ZLjd47fkStztc6mSJeznGurHfuL4VKGKrqoMEct/6tCetrEbb8EixSU2ISyLYZWI/kN27dwt7uZpfCwNsYwfGPFlF1yTo/qEDED8Q1hXDPrjN8rBoQr4xQr16PWLZOmGi5iz+lARrsWwJj3Fbtv4LVpd3P1qz3QC4RdgMe7llYpGDBssFs5n2BKXB1g0bMggsUY01xKzjbvvsGHCShHH9mG1HIVdqpE1u2+f3mJ9koWvlehzRL6W4Ntk9DbXAMe2tm1eL9anPXr+Iuz379lhz6oNnvwCS9zKEyTwnak8IPUhlAmOxYZ1qwP1e3Xsc1DPt6iYkeZvPEetBm2jXJ/a3KFNG7uO2WKjF/3iI7OISuVKTj+P20uHTt+mSBFtxya3jxs1CqVPEYuO/Gu7D8B1+tb9p/ZtG5RMR7GjR5T5KatOUd+pB2l429yUP4vN0nU3u2FDJq04Kd/4uHnviVhdXrv9xL4sd2ZbPx8+fkH72Z27TZVPKUJ4W1+iRg5PJXMmo2UaC9POSyeUgBIIHIFyZUpTAXah3rZ9J51lb0iEWoF3zKf8fMEKSInTDK8HhPGBwPLdet/EMnhnwSIf4sUeP5ACPuFL8AyXNGkScfGWFU4+XI01nBTVRUrggyFg+0V9MLsT8B15xm6MO0aN8rUhlHxwgz62dKmv5Zv++MPXvH9mUnG8xzSFCtn/MQ+B0nDpDz/Q1GrVaPeECfSYB+gpcuWyrXMYeMhCnw+2hpSpSGwC/vLZM/u/V9689HHBgjKPAlFiv3ZjwnxYfmBXUQKuCCD+SZGiJcSlAK4FYcOF5RutLb6jdWBonUZ8OFdy9+49GVyz5ZLEQMQ3FA+Ig/iS3bvYEpKVN/F8bQ5XXkfxb3uIZTl08EBWemQU11O4C7OFilSHOH+VOHbZbHbdu3Pnrri6Vq1SSdbBVRsSzSc+GKbD8b47CuJQGgkf7vU7HHf76Vfbpj58Qzkzd/YM6SdizTT9tgWVLF2Obt+2DfSqVa1MiEMGV8LZs+dSNY7TCCWlf/sf3UfRgbbC+fQfl5l79237H4FdHc2xglIEx8m4krpqG3U5ivWYIvwE6jLKKcwbwYNdC3ZlLFW2Av05aowoRhAXD4JjjuMEscZzi2l5qSMrHT5MDEwsNvsIN/yA1nXXJ0xGVOZrmOAbTKA0+ugjVmJz4p42rVsSW7yJS2q+AkXEhcehSy5n/cvJVICYq4ERd30tV87mropzbhErUZC4w+pa6oqpq77EshwjxPk0AtfimdMmS6y/8HwvggK0cLGSNHnqNFPkjW93+5zsI9sDPzbE4ABJTRCWIKQLroMbWVnVv+8v1KJFM1FcZciQQZR66PvGzZupZPFi9t1IkTwZ3fG5DpiFuC6k9FG4L+AYi4hNiHiscGluyK7RGNAs4Os4xLE+LOO35eJudoFdvRfOmy0xUbEc4q49lIF7WdnylShz5kw0A4pMjgcLGTNuvHxPmz5DFJXtf+wo8x06dhZln8z48QH3fgjuD1aB4jRZsmSyqGyZUrRqxRKCu/nPXTrSsqULZXlyn/XW7TCNawAEL7zgfv39d23kZYNJAIR1SAKENmrXqo5ZP8Wv+n79tb9c8zp26ir7b3hAaYvYrcEt4cOFoVE+7to/jNjpqzvP2Y0aEjOaTYGIacRxhMAl20i0KK/vf+Et98oJy05S/2mH7P9ww4as23eZvh2wldpWzUR1i79++XDn/jOKHiUCPWVXbvOfPkVs+qZsenYTf91evJi2PrDhpNSXKI4tbq/M8AdcvFWUgBJQAm9LAG7YmT/PTk2bNZdwHjBYSPNxaqkWz4AQhJWyCl6GWQXxsI0YpWWsWDHNIrffrsYabjfUAkrAgwm8Hh168E68Tdd3jR9Pjx0efAt17kzNOYD8/ypX9lU1Es2c4riOQSHXjx+XBDPIrF1/8WIq2qsXJf3sM6naqoBxbAsWldH5YheerQQKdOxo/0/MQegTsHUbliMT+Lnt2+2bIpbkg6tX7fM6oQQcCSxcuFis05DBdAFbSGKghyQgEAy+jLUbLMaMnLbEODPLzDes71C2PVv39ez+s/wjcHPKFCk4KUsM+oytphDHzNzgcc4j3pmRgLQHC79xEybKG8nhQwfR8X8OcoKWBpLw4+rVa1JlRU56gkQlJpkErAohn7ISAHKIrXyMIDaff8XdfqIeV21b21jEVptX+Tfaq2c3yVALxSqsBbeyFTQEiSGg2Bs3fqIkhKlcqYIsf9v+G4VOCVZ+mOPUrGljUWpAMeVX27LSrw+fwaOzIkhahIQsUMisW7OKfu/fl7L5WJ1j0OmVKpVsBktdI9ss1zSzzD/fAa0rOT+AQpAswzD5uUsnSbCDN91QYiDJx/fftaa/Vy6jNauWy7kOJX6gxA9O9vpYmRcYcddXHGMkSkG25sV8PGpxMirzAB2Y9lxtgzifiINavnxZUUru3b1dlJ7jx//lahPiDEqu1/EaKMSMwLoQv5fMfB8M6TJrzly2bl4pLxTq1Kopv7WVnIzKWFEgoU/evLaXltiX9JxwCrGojDznF5KwrMS1FAKrQZNMxpRBrOj7Pi8aHOvDC40y5SvLy4xlixe8YZ3qrr2NmzZLvE4oQCdNGGtPhIW2kSQMMRqzs0Uu/j/ll0MQKPFhEeJO8MIBlibspm0vCit6CAaGuE/06z+Ar5XXJKEUEm1dYoUqFIleXqm4lG9BX73SpLdbsmOteQFjfc5C8jK0a40V6bsm25y7+pC1u1HD+vb9N8cILKyKfWd1v69ln7A1Y+8m2WjWurO+smt7JYkhXdh3wmaxiJmNB67IskxevgfgstDhY/3QknR5QQ37P2I6ItlM2Z9WU7k8Kalbgyy+tvj4oxgEhWXXep/T7y2+lP+KX6cir6QxKJaPRaV1gxhR+dmXlZdr916yLqZlOy7QlxlsVve+VuiMElACSiAABEZw0jFYNv5zeD9N+msctWvbRl6MYAwEwwK8SLQ+d/zLXjQmZrqzZqz3GGfrdZkSUAI2AqFaGYkM1nsnT37jXHjBD/dIOPOS/x0FVpNISvO2EsXn7QoUhUhYc+XQIVrbp49U+4ID3Psln3PGbbhi7xg9WpLWHFm4kFawApVjR8pmGcuWleQ1+6ZOpWvHjtHGAQP8qk7XKQG74pFjdkkCESSaQTZQCJR9yZMnl2lksUU21sHsGoikB0aQoKL3L78SBr4QZLKGICEAkrjABbd+wyaiSMNN3SRAgDsh6kGSGAwojbhr78yZs9Sr96/EcdXE8m4DW7agLbhNX7p0mTjWoSjv4sWzWewg825qr1SSwMBYFaKtLzmLNwahffr2F8u22XPmSeIN0w933+72E9s7a9uR1wUObs0xNUVBe/nyZYKrMMQMZsEMCsixnIDBar32tv2HOzuUnLBUw0Ab7udt2/9IU9myKYGPW7WrtqWDgfyI63Nczv57Ts43uIl37d5DakOCD2TnhgJ2MGeSRkIVjr3GSWQCdx3zT12xYsYijmkp1qeJWUEH1/SxnEAH5wOCmsNdG+cIlCXQkWF6DK+HhRkeSCGpOAkZxFoXLEChdMe5it/R+xZ3fUV/4C69cuVqUdY7S+zhqs+O++mqHJbjBQSuJ+CA3y6Uk9fYDT5NGpulVEDqMu1AYTWeX0Lg+tKtRy85j3E+h3SJHCmyJJnBeQEOSIgFC+DaNavLuYSXJjlzfGHfjTq1a8g1EvsKJRySfUGQIRqCLOL4feCFBs5HXCNgRV22bGmn9SHZF6611atVJY55JVnTkfBp6zbbC0y/2oPlKRJm4ZpRqFABWrV6jX17hEPASw0M4Mx/A850DWlQr6490zbuETgPcA10FFjQNm5UnzjupAz6zp+/QL34t5cly+eivMb6e/fvUbfuPQkvNHDvQBIshHDIxhnnIch+jd8mBGEDMLjEvQll165bTwMHDZZraFau0wj6njnzp2bW13dA6vumaWP7voNBUc6UDsF0urRpfdUbnDMtKmSkLzLYrFBNP0rnTi7Kvk5j9hASxazceYF6T9xPH8WPSv5RRpp6zPeVW49FEQkFYtOyn9BedsvedfS6/F+9/ZhqF7X99r8bul2yaW85dJUqdVkj5aJGCm+q8fXdsmIG+nv3JRo46zAdPXeHevy1j05duCfKThQ8ydMdR+2mY//dle1WcfZvzD95ZjvXHOd9Va4zSkAJhGoCsGpEdmuOcS3hpJDsES/Dnvg8u1WuWIETtm2yP3f80qdfqOalO68EgopAqFZGQhFpMmZbga7t3ZsGszsPYjk6CmI7nvSJM+e4zjpvXBLNt3UdpmPwgDd3q1aEjNkj2XWbk9LQ5zVrUkR+yL/ik9UbVpB4+DZi6spap47EhNw6bJi4k28eOJCy169PmTgTNwTTKLO+Xz+aWrUqPeHsjrCmVFECrghg0ATLxW9btKb/ZflClFNdOv0kxQ/xzRgDvbq1a4liCLHOYBlWkV2fjRUVFPQYAO5npRIEFiaIYbZm7XrJqg23aSgKunXtJOvhCjpwQH+uZ5VkesbgM6dPbEHb9n63x0kGZNBt3kp2ZXc9xFArV6GyZMNDP8aMGsEZ714PampyfDxIJbaSNIKsrJP5DSisiJAlDwPbYsVsVpOmjOM3XNjD+bgcu9tPs61j24686tetS4iBV69hY8qdtwD9/scgwj4hzp4RuGFCarHSwnAPVP993GdxaYHrIuLFQVGG7MYcnFsySg8ZOEDeBPvVtrkemQzUpqy7b8SFgztp+3ZtRXGA861WnfpUv24dUXKYOJxDBg1gpXUxUUhCkVWRreogcPt217a5bhpOftWFOr/+Oq8oaJD9G8psWGoi1iXOh3z5C4tyB8vSf5JOzm24aA8cNESOVaMmzUT5XqN6VVT1Rl0HDh6Uc9WZ8kU2cPFh4uc5ugG523drdTg//eoryhqrW/z+krNLsCtxZOrIzNV2WA4l7oDf+vL1Yb/8PuHim5Bj88HiFOJYl3/2+bP/ZZbfCSdyoZMnTtL4MX+K4kkqDCEfVld106WSJYuzO3ANzrjchr7KV4BjU/1L40aPlN/ili3bxMUav0sjOIadO/4ocSC/zJWH1rBLPa6txnK9fbvvCOcesnji2gFFH5RiTZs0Jsf6ELJg1WqbdwcUuC1bf2f/x/kM8au97WypDEUmrN5bcxgM6/Yr+Fr+hvg8v8BS0wiuzVCYOnvZizJQXOJ+hGsCYp1CBvBvz8RubPHtN/yyIjUVL1VW7h0p2F29f78+9mclxGxcvHiJbIcYXb/17SMvGoqXLCMxMmPFjk1TJ//l6/qGFxEZ2ALVmQSmPmf1BNeyMJZwCaYPcNf+s11umfW5lVH8WJFp/i+FCErEkj+sospd11LcmJFo1R/FyeqaberAdziuG//OBBmur995ItaPpTqsooLfLbf/r+AYjzkyJqAxHfLQih0XKU+LJVS8/UpCvMq+zWyKeGf3le+rZaZm5dJLHMsvmy4ixKns3TgbNSyVTrpw5dYjGjbvH7p4/aHM7z1xU+Y534TTeWf91mVKQAmETgING9aT+JBFi5embF/mFiMKWLpDIYkxAu6r8LqCEQWeOxBOxHgQBYYYnk/NM6qz7a1jDWfrdZkS+FAIhGEzYttd2oP3aCu7MOXObXuwCshu7OQEMluGDkWQMn9vFpaVG2UHDSKvfPn8vY1fBRE7EglzovHAzAwy/SpvXQeFBraNAUWjRWlpyiCm5FO+gEYNZLwxU49+hx4CnJmVHj169EZQZkMA6zEQNYlnzHJX37i8XLt2neLGjWN39baWxXpY+2BgbZQd1vUBbe8WJ1/B78JZ/5D8hDPW0Ya1q50+ACBhSWweqBoXcWs/3E272093bZv6Hz16zA84tzkZQ+I3+gj3EAzQt25aJ3ELzTbm+236jzqgqIDyBIojR3HXtmN5/87DchAWcokSJvS1v7COnDx1OsfOK2rf121suVW9Vl2J15ghg3PFgbN2/VsXlIVP+PyObokfivMP1mCOSS3QDsrDRTRJksRvnDPO6nLWt/e1zK++cuZIeQGB0ACIxxcQCcx+wk0Y55iVM9oMSF05c+cTBVyLFt/SzRs37Yq5gPQ9uMsiRAXOL6viEbF7cf1ydr7BPRuxIk1cRcf+4zy/fv2GJHIx1zC/6nPc3nHeXXuO5f07j37mL1iUtm/d6OcmuM8gsYyVj3UDrMdADpbb7gRudlc4DEbUKFHfcGl3t62z9UFdn7M2gnMZlIhRIoUTS8l33Q88fkOJGI+VoRF9EtO4a/MZx7dEH5PGi+rs0dfd5rpeCSgBJeCSAMYRkSJGlJfjzgrh3n2PPRqdjTOclddlSiC4COB526/zFEkBQ4KEamUkDgAe/AOijITCMKBKw5BwoLUPSiC0EkDiALgBw2IIMRlh4fm+JCjahisnEiyMY2siJLpA5tr3JcHVNgb7mT7LJrHmmrMl1MOHj8S9ElaRSzjOXUAySwdlXe+Lu3/aecgvDU6dOu1n0XRp07hU1kDRM3PWHHFdxe9j+5YN9uzCflYaAlYaZSSsPlU8iwASVkGJ2LRJI8/quPZWCSgBJaAElIASUAIeQsBTlJGvfRg9BGxQd9PqPhTUdWt9SkAJBD+Bo0ePiyISMdaMu/T76lVQtA3LNcTDhGt7z+5d31fXpZ3gahvKilnTp9CkKdPohx87Edx2v/oqFyFrekAUkdiJoKzrvcJ309gxjgf8Y8cufpZCqAKvVKmclgGXX37tx1bQcWnUyGEeo4jEzqRLl5bicr9VPI8AXN2cWcF73p5oj5WAElACSkAJKAEloATehkCot4x8G3i6rRJQAkpACSgBJaAElIASUAJKQAkoASWgBJSAEggJBDzFMjJUJ7AJCSeK9kEJKAEloASUgBJQAkpACSgBJaAElIASUAJKQAmEFgKqjAwtR1r3UwkoASWgBJSAElACSkAJKAEloASUgBJQAkpACQQzAVVGBvMB0OaVgBJQAkpACSgBJaAElIASUAJKQAkoASWgBJRAaCGgysjQcqR1P5WAElACSkAJKAEloASUgBJQAkpACSgBJaAElEAwE1BlZDAfAG1eCSgBJaAElIASUAJKQAkoASWgBJSAElACSkAJhBYCqowMLUda91MJKAEloASUgBJQAkpACSgBJaAElIASUAJKQAkEMwFVRgbzAdDmlYASUAJKQAkoASWgBJSAElACSkAJKAEloASUQGghoMrI0HKkdT+VgBJQAkpACSgBJaAElIASUAJKQAkoASWgBJRAMBNQZWQwHwBtXgkoASWgBJSAElACSkAJKAEloASUgBJQAkpACYQWAqqMDC1HWvdTCSgBJaAElIASUAJKQAkoASWgBJSAElACSkAJBDMBVUYG8wHQ5pWAElACSkAJKAEloASUgBJQAkpACSgBJaAElEBoIaDKyNBypHU/lYASUAJKQAkoASWgBJSAElACSkAJKAEloASUQDATUGVkMB8AbV4JKAEloASUgBJQAkpACSgBJaAElIASUAJKQAmEFgKqjAwtR1r3UwkoASWgBJSAElACSkAJKAGPIvDs2TOP6m9wdRaclFVw0dd2lYASUAIBJxA+4JvoFkpACSgBJaAElIASUAJKQAkoASXwrghsP3CWxi06SHtP3KA7D56+q2Y+qHpjR49EWdPFp0Zl/0c5P/P6oPZNd0YJKAEl8KERUGXkh3ZEdX+UgBJQAkpACSgBJaAElIAS8FgC4xfsoj5TDlDY8JH5PyZFiKHObP45mA9fvaINR+7TugNrqFPtz6hh+S/8s5mWUQJKQAkogWAgoMpIC/RXfAO7fPky3bp9m5IkTkzx48e3rNVJJaAElIASUAJKQAkoASWgBJTAuyMAi8hfpx6iCFHjEoVRJWSASIcLR+HCRaBwEaMKw4xe8dVCMkAAtbASUAJK4P0RCNed5f01925aOn/+PCVPnjzQlXt7e9PIUaOpZeu2NGToCJo2fSaNHjOOVq5aTQlYIZkmzccBrvvFy5d09OgxWr5iJR04cJBix47F/7EDXE9QbbBz1246feYMpUyZwl9VQjH79OlTCh9e9dX+AvYBFFq4eAm9fPGCEiZM4Gtvrl+/bvstJIhPUaNG9bXO2czSZcvp5ctX8ttxtv5tlj148ICWLF1GifllQZQokQNclbvt0ffDh4/Q0WPH3vhPmTIlXeKXFWvXrqO06dLSw4cPCeUT+JNLgDurGygBJeDRBPAcMHvOXErBzyeRIkWy78uTJ09o67bttP/gQYrDzwXRo0ezrzMT8+YvoDt37vCzTTJZdObMWVq/YSO94mur4zUaBS5cuMjrN/FL1HhOr9OO9Z0/f4H+XrOWbt26RUmTJqGwYX0rPPxqD89Mh/g6uXnLVonPljhxItNtX9+PHz+mxUuWUpIkSShyZP9fr18yt33799Pu3XspWrRoFDNmTF/13rx5kzZu2kxn//2XEiVMSBEjRvS13nEGMeQ2bd5CBw8dpsh834gdK5avImZf799/QIkSJXyDha/CPPPw0SO5D+B+EC9e3Dfad7fesT6dVwKOBHpP2Ern70RQRaQjmIDMhwnDFqWR+Dp6m0rnTReQLbWsEvAXAYwBIPHixfNXeWuhPXv30onjJylVqpTWxTqtBIKMwP37950+D5oGwvGLm5AgoV7ThIfqnzp1oRkzZ79xPKBMbNaiFfXv24eqVK74xnpXC27cuEFVqtWkM2f/tV+gfu7ekz77X2aaNWNqgB7KXbUR0OXTZ8wiKJXy5c3jdtO7d+9SvYZNqGvnnyhb1qxuy2uBD4NA6zbfU4tvv6FPP83oa4f+PfcftW3XgebOnuEva+Gu3XpS40b1KUP6T3zVExQzN3gQir7MmzODssUJ+Lnpbnv0HQNdZ5I1axY6cPCQtF+yRHH+Pd2w90WtqJ0R02VKIHQT6Nu3P40ZN4Fy5PjSrlC7evUa1apbn06ePCXPB7jetGndkr7/rrUdFp5LevfpR0MGDZBlzVu2kRcf8Ni4fOUK1a9Xh3p06yrr8OKwQeOmtH79RvHowPqKFcrT7/1/Zesg24OmtT4oymrUrCPXMlNf2rRpaPaMaRQnju2FqV/tHTp8mJo0bS79wAAM/a9QvhwNHNCfwvDg3yq/9vuNJk6aQssWL5AXstZ1rqbv3btHpcpWoP/+O2/fn2FDBlGZ0iVlkx07d1GDRk3lZRAUlXgpNHHCWMr/dT6nVc6aPYe69/zFvg7le/fqTnVq1ZRl4ydMpB69Xq/HPi1ZNI+SsgLVmUCpi3uQ2XcwnDZlIqVObYtN5269szp1mRJwJLD/7CNWRLIyUuXtCLBVqbB8u1p0ayXglADGDE0aNaB0adM6Xe/Xwjlz59OJEycpf37n9y6/ttV1SuBDIuD7VfiHtGf+3JeOnbs6VUSazfGg3+GnToQHTP8IFHm16zagu/fuywP4np1bafeOLTR54nh5+B80ZJh/qgnWMrfZGmPfvv3B2gdtXAkEF4F6dWvTuTMn3vhPxZaRBXjAu2LpomB5oRBcPLRdJaAEAkbg2rXr1Kx5K1FEOm7524A/RBE5Z9Z02rtrG40ZNYIG83PB6r/X2Ise5wEKlHzZ+AXI4iXLRBGJZ4jtWzfSqJHD6K+Jk2n3nr1SHtaSUESiPqwfPPB3eV5Zt36D0/rmzpsvzyLr/l4p5aF4g2J01JixUt5deyP/HEOJkySmA3t3ybNNrx7daP6ChWRtDxWtXbdeFJH2Tvhzot9vNgWs6V+jhvXpx46dxRoRlqZtvmvH1pAJaPOGtdyHndS82TcE5emlS5feaAHeHX37D6CqVSrR/j07hDcUp126dqfbt+8QLCKhiCxXtgwdPrBH9iljhvTU5JvmhGc/R4EiF0riBvXr0q7tm2WbZ8+fk3muc7fesT6dVwKuCNx5/H6HZ+lTxKIlvxZ6ozslcnxEEzvmofEdvqJcn/r2mkkUJzJ1rv0/mtezAHWp8z8KF/b1y4hC2ZLQ8n6FaVjrHJQg9mur6Ap5U9CK/oXfaOddLnjfLN/lvmjdHw6B1q1a0IDf+304O6R7ogQCSSBUW0buZ/dpWAy6ElgLFClUSFy48WYd1lDuXI3+XrOO3TuPy8DAWJjBWgAWiW3btKIj/xylR48es9lsFBlsTJoyTdxBEyVISKVKlaCcbEEBgTvRBh5k5PkqN83hwQMeqsuXK0tZPv+Mxo3/izBYKVQwP5UoXozdVaPIgOXFi+fiMrVx0xby8kollgSfpHPumgDT3b/YYuHIkX8oPlsClCtXhr7Ino3gVjV8xCjuAdH4CZPY6uCR9N1VeSmoH6GKwNDhI+U83MODYZzr2bNnpQp8brpyU4Ar4MpVf4sFS+ZMn1JdVvZF83H3xuBy/vyFtHffPrpy5Sp9lDQpr69lf8sIi55ly1fIQDdK5CiUK1eON1jDVRDhEG7evCXWx7Aawm8C4p/t36jQjwXn/vtPfmtw03YmfvXFWXldpgSUwIdHoE3bdnKPbtWyOQ0dNsLXDq5dt4GKFiks91uswHRqr1Q0d94CKlLYpgzYvGWLWEvgOoZrW948X9m9GooVLUIpUiSnRRxWI3u2rHSInxUgmXws2nPmsF0jb9x4beFtre/06TPUsnkzuyVf5kyZxIr9+PETUo9f7WVgRd3DRw+paeOGdkvHcmVLU9duPTgMzFkqWCC/1AFFKsLewELTvy9yZUP+mL9gEbVs8bp/jdnqBM88eB7CMxUsP7t17Wx3X8f1fsSfo9jlfB3VrVOLJk2eKlVhGs9JeI5DGePKDQtLKE//4/A+p06dlrLYnxgxYsh0jepVRbmJbWHdb63vLr+orc/3r6pVKovVKbb5hO8FCIEDcbdeCumHEvAHgTBhw/mjVNAUSZEoGk3tnJeiRvY9JGxQIg11qJ6Jbtx9QrGiRaScGb+ibwZso02HroriccmvhXmbcHTpxmOqVTg1fZk+PpXtvJYiRQhHQ1vloOU7LrACMyH1bpRFtkNvO9bMTMt3XgyajvuzlvfJ0p9d0mIhlABeUM3j+4O5N+TOnZNqVq9mD1kGQ50lS5fTTQ5vYqz1za7gRR7GHBCMexDmrVbN6hzyNQxNmTKdjZTuUulSJe1W/Hv37pNxS6o6KWXMv55fIH7NBg94YYjxTO5cOQn3I8cQKqY9/VYCHwqB9/vqLYRRw8O8kXhxOUi0RWByPXPaZPqxQzuqXKkCweJxw8bNlhLOJ3GhglIGij1H+Y6VkbCCgCISrtxFipemQYOHygVr244dVK1GbY4vNU82O8MPt7//MYjduRrIPBSnterUp0pVqstFDu5JcBVasHCxrN+ydSt99/0P/Ja/D7s2JaKFixZThUrV6N9z5xy7IUqhkmXK08g/R0vsqd179lDlqjVE6YPCESNGsG8TMUIEt+XthXUiVBCYOnW6nItQkidL9hH9MXCIuM1BYe4oGIg3atKMjh8/Lud93/6/U2k+96D0hnT9uTu17/CT3GxTe3nRMh54FylWSn5vWD9uwl8yMLzOvxcoAr9t8dqVEeunTpshfYGrA1wMUX+FSlXpBce+hLjbXgo5fHi/8pbtUYf5Nw8YZzj0wqjRY+nF8+cOW7nvyxsb6AIloAQ+SALfNmtKWzaupa/z5X1j/xAvMk6cOL6Whwsfnk6dtinGsAKWjgXz55cyuO5lzJhBpvGBl5tQCl68aLMELFyooKzrwtfSNRzPFopBCF5kGrHWB/fuH9p/b1ZxPRflpZIJq+FXe3iJNHH8WHkxayowz0VpfWJr41rZ4afOoiht1KCeKeavbzxnwY3a+hLVuEsjPuOzp8+kHuNOjpnwEWwKlHMcTgSCZ585c23PUf/LnEme42DVbgQWm5BUHD/b3LN81Rfe9vyDWOQQa31J+WUZrFkQIxOcxo6fILE/y7NlJcTdeimkH0ogBBFoUjodrehX5A1FJLr4fZWMtO/kLcrbegV90WwpPXzygn6qlUl636FGJooeJTwV/+FvKtJ+FQ2YdYTSJotJn6eJS8W+TCplfvhzDy3edp6yp7PF04NyM3LEcJwh/JCs1w8lEJII4JpeoHAx2rhxk7zEwv2h6889aBgbYEAwvi/P44sNmzaxcjIcNWz8jRgVmX3AOLxVm7bU59d+FJNfVM1fuIhq1q7H4/YadP7iBcI4pl6DxnZFJ4wXcH+BYMw/YOBgqlGrrigin7NxUacuP9OYseNN9fqtBD5YAmE/2D3zx46Zh9dqVavQbnanxhsICBSRM6ZNEqXirt17aNmyFbL8nBPFnqywfOw7cIDg5uNOxvKbflgPbFq/hn7p1YNWLV8ilhDdevSi5xZFx2/9+sj68WNs1op4u79owVyOY/kLFStWhFat/ttXU4jr16VzR1q72tZnR6sMFJ44eYrEY1o0fw717P4zLWe3U7yt6cIXXVhiNGErAUjDBnUpZ84cfpaXgvoR6ghAGY5zrEunn2jW9Cni9rdo8VJfHDCwhEIdvy+cs7/37yuxHqHQQ5IonOf//ntOrFzwG+japSMN+uM3qQMDcygse/X+lRo1rC8D4El/jaMOP7SztwEL41/4pg8Xu9kzp9Gvv/SiVSuWyMAa1jXutrdX5DAxacpU+jhdRl//89h60y9x1xe/ttV1SkAJfFgE4AlhrLMd9ywX31NnzppNsFCEYEACN+kHnDwFAldfJFv5KncumT/L10vHBC5xWZl55epVWf/xx6nlGoj4Uxgc4ZkAyka8KII41icLfT5w3WrNbs+4nuM6C3HXnhTy+UACGcTcxnOCiUeN+Nvbtu+QWNsmZqV1G7+mzT457i/iMsLSEwn40Ncp/ELs1u3bBMv6KexdArnPyc0giMs9f65zj5eVK1fLtojPGYuT2GRiS33IOI4biYEnEpzNmGnbFkpRiKv6SpQqJ/cn9K1M6VJS1vrhbr21rE4rgeAiUOyLpLTtyDUas+SEry7ABTt8uLA0Y+1ZWf70+UvacvgapUgYTeY/+zgO3bz7lM5ft/1OJiw/xVZhRCVzfkTH/7vLL02IorGlZYJYkeneo+cUlhe0qpCBpq05S6hLRQmENAIw+smS5XOaMmkCtWvbhiaMGy3ze33ClvXu01es5TFex3gG421ngpj2vTkucZdOP4olf/WqlWn0yOE0jsfxuH85hjSx1jFwwG80fOggKQ/PBzwLqCiBD52Ab5v8D31vHfYvAlv9QWLGjCGWWVBm4C08zKph3QhFZL36jeRhHuWMmw+mXUnCBAnoMr/Bdyfbd+yUixrcrSAwwy5RrJhYRCDLpZHs2bLJpClXlF20jCT76CNCMHcjeCg21g3YtwL5vyaYgTsKLriQGTwgMoKMmlCOwmLTUdyV1+QdjsQ8cx43yZdO4mQhsykED5dGSpUsQeb3A6sdbHvkn3+oClU0RSTbKmaKFS1sX5bl88/lt4VMrNh++tRJkr0ag/MzPOg25/PzZ8/ppI8LndXCp1TJ4tTfJ6YYXg5gwIjETHhIsAr68sknthAFrra3lrdOw5qpVo3q1kW+LJN8rfCZcdcXKxdn2+syJaAEQgeBnzq0F2VdwSLF7QlacN/GNRSya+duuUam8bE0xDJjmY1pCCy2o/qEokC8QlhX4EUOEuWsWLFK4iAiSzeeZZzVhzpwv0cimFOsFMV12Bpmw6/2sC0EybxgxeHllYpGDBsszzBnzpwV5SQSzsB68DYrDAMiYTnZBMSxfcRljBI5sjyD9e3TW6xPsmTLIX2G9wb6bjJ6u1KAzuKs5j906Cgvx1q0+FbageUkYgTDDRxKVNxPMBiFJOBnOYir+rZtXi/WrD04hA+OJWJSWp8R3a2XyvVDCQQzgcrd1ksPvi37ia+eZExlS2b17xWbkh8rr9x6LApKTCeKE4XuPLRZKmP+JXuU4PkxSdyodPz8Pbrz4BmtHVhM3LiHLzhOzct/wr+lMPT7zCMorqIEQhyBcmVKS1z4bdt38ku5sxLm48SJk/Qpj3EwDkKcZng9GLdpKAut903sEMbqsJCHeLG3F6SAT/iS8JxQLmnSJOLiLSucfHz5RXb7UoQYOeYTPsW+UCeUwAdIIFQrI9NxrB/ER4IZNAYCiOkIFxyIoyISy3BhcCfImA03IAwWwof3jXfbtu20ZNlyDrjelF7xhS2JQ7bG+PHjSfUwzzZidR/CFI+bWAAAQABJREFUMgwwjIQhi3aIFyZPnsysku948eJKIh1fC3nm7t17sr/Pnr1+kMC+4f/ly1eOxQNc/o0KdIFHEEjB54+zJABQVEMSJUxk349kH9lutliAGzMSCsCqxCovnttcpRPyOiMomzBBfLGKxM0dVjlLli6TmGnZ+MaO2GhwhcBgFFlVIVaXRjNYxfK7Puujsuug9VzG4BKDe3fbow5nkipVSrE6drbO1TJ3fXG1nS5XAkogdBHAfXbjutXiUg0lG655g4cM54G6TRG3cfNmKsmxoI3gunyHk61YBclXYCUIWcBW4LAOR2IWSEN2jcZzzQJ2EYMy0rE+lIFrdnVWJCIm9MJ5s30927hrD9vDmrNWnfpiETmWQ8+YeItjxo3HarZ8nyH/9zg2NaQDJ6CpUa0q1a5VQ+ZdfZh7xR2OzWgVKE6TJbM935QtU4pfNKWlbdt2SNzKfPzyqHDRkpTcZ711OzM9fOQoeYkFr49OP3WwDyaxHt4hiMOJ+NlQAOO5rHjJMnbLUlOH+UZiG9zHYFmZLWtWzoLehuo1bCwDVcT4crfe1KPfSiAkE4gbM5J07+FT23McZh75TEcMH1bcraFwtAoUknDDhnzVcrnEkdx57Dqdunif9owuTeOWnqTcmRJQp1qZ6fb9Z9T9r/2iuLTWodNKILgIGDdstA+jhM8++x+l+Ti1dMeMMeCVYBW8DLNK4kSvx0lGaRkrVkxrET+no0WLal8fPpxvHYJ9hU4ogQ+MgO3p9wPbKf/uTuWKFewPpYjdOJD/Ic4UkXB5gnuVOzEJaAYPHe6rKNyJunbvSVu3bpM37qlSpRKlpYlZhMLGHPvj1LaLn68K/DGzc9dueyw+FIcpOJKLOIoXK1tgAdD+++/kQRwP43DTTpkihViJmvJwuYD4t7yttH56KoF0nOwIVrCIaWYVY62IDKpGMBg1goQCsGpEIgSrGDfBLVu22RcjyyyS3nz6aQY6evSYKCIRcmDdmlXi9pAtSxYp+4pPPmPlu4OtiI2YvmA+Of8mIUhqgHMY/z936SRJcPBG0t32snEQfbjrSxA1o9UoASXg4QRgobds+Uqx0KtTq6Z4Y6xctdpuRYGs2nnz5rHvZfr06QmxqIw8ZwUm3KBxv4ZAoRk7diyzWr7DsgUGks5BHOvDC6cy5StLErFlixf4UkSivLv2Nm7aLIpIKEAnTRhrV0RiW7hq44Vudo6Zjf9PM2bEYrkWwyLEncA9G5YmeJYxcpit6CG4n+AlVT/Ojn316jVJSoOkfpc4diaUlV5eqbjUm4JM5bCmR6xMhBUxA0SUlGQ4HBonRfLk1LRJI0nAg5fGECRTcxTsu1ea9L6sVYzCFX1zt96xPp1XAiGVwMXrj6Rr8X2UkpiJGyMSGyx407MXr+j+4+cUNZJvZUkEVlKev/ZQtsMz3OTVp0XZ+AMnwWEdPg2bf0yya5++9EAS4gxo/oWU1Q8lEBIIjOA8CrBs/OfwfkJYKLhqw9oXL5gQdgUvEq1jH+RkwD3ElTha+Lsqp8uVQGgn4PtOEspo4KKDWHUIEouLBhSSePDFwyjiLBnBW//hQ21uSGaZq2/ETmrx7Tc0hJWRj9jqoGDB/PygfEsCqiMu1LQpE8WVp2qVSuJahTiNsGTAGxkkr4FSMHz4wB+Wnr37cEbJ2mIZ8d9/56lLx5/e6GqVyhUli3jnrt2oWdMm9IAVk3DXQiB8xI0y8ZrwYI23PO7Kv9GALvBIAuXLlZFzsmmzFlS9WhUe4MYmhBP4a+JkatKoAbvnvM7uiMHieI6zlePLL2jwsOFiaYuwAFb5mN8owo1hNFsew4UuNSvZh42wBYL+Om9eihPX9obxLMeNRHxJKDS7du8hVUAhikEp3k6ifSgX8cZwxMg/7U18xGEKsH7suAliFfPll9lpwl+T5H8lx3Rxt729oiCYcNeXIGhCq1ACSuADIBA5UmRxF4YCDJZ4g4YMpcjsglybrRgxuMF9O2eO14P0OrVrUMXK1eV6i/AYxvoQGZ0hFVghh0QqCOmSLevntHzlKtrOysofO7RzWl+3Hr1FedeaM33jxasReFLAss+v9mD9jkR58CQpVKgAx6dcYzandOnSUAm26MS/EbxwQgiOBvXqyksjLIdydDu7wXXs2MHXPQXrkJyncaP6nDDgT8k4CoVrLw7BAddp3Euw/t79e9SNX+yOGDYEG0gCNDy7ZMtqe5GF7NdP2esD96yDnGn8j0FDZFvcD5Dt1EjuXDnYSj+BJCu4fv0GdfzxB8mKjTjHiF9swpBY68vNcTzx3Nj7l1+pMys2EZJn4KDB4m6flfsYgWN6+7XetK3fSiCkEzjBrtaQHBkT0I6jtvBNGVPFogdPbJ5bl28+JsSNNJIqcXSJC3nigm07sxyZtWsW8qLBc48StofC8ucJ+6hgliTUvf5npph+K4FgJ4Dx7hY2GLpw4QIhqS1iE0MnYGILw4Dp136/2cc+CJGiogSUwNsTCLzW6+3bDhE11KxRTfphFJJ/r1nrq19QRCKY7edsru1faccWh5EiRRI3LAwSIHh4h+LTBKVHHDvEPurFD7WzZs+RMhUrlOdlvWQ6MB+IGYlBCJKDoL1uXTvb3U3Dhg1jtwiAaxHiS3Xu2p1M0hEoQbt17STNwhUcgxJYFFy5clWS5fhVPjB91W1CHoGCHNcExxnZok3Wagys4Nr2Ew/UrIJwBBi0wcI2tVcqGj/mTxmEmTJwp8bAceiQgdThx07Upm17WYWykyeOtw9M27drK1ndkdkd5yzeRCKjHCw0CxUsQEMH/0Gt27ajps2ay/awxjnDSksjCCLdsXNXGZBiGawhsSy9T7xId9ubeqzfVssZ63JMh+E/CMqE9XGrNK7j7voiG+qHElACoYYA7ruOUpLj3u7YuZOat2oj108o2caNHiluv0uWLifEjIILsBHcrzt3/FHiQPbo9Ytcb3GdTpQooRRp3+47fnn6UOIomm2+adqYLf0a00yOg2it786du/akd0iWZxWUw33fr/bwfAQrREjrNt9bN2d35da+smDLSr4HQGCpaWT//gOiPO3ww/dvKCNRBorLEydOifUl5vGCdwBf003sRrzsxXNJ8VJlsVqecRDvG/cbCOJnwnoUyshFi5fIMsT6wr9VZnCczFy8v31695QBZp6vC8o9qCYnMmxYv569qLU+vJD7rW8fPnbfiSs3CkFROnZ0X3vCInfr7RXrhBIIwQRu3X9K/119SA05A/ZJVjBmSMEJn1LFsSe0GbHgGP31Ux4a0z43jVx4jH7/9gt6zhaTSzh7tlU61c7MCWte0bhlJ+0Zu5MniEZJ40Whx081kY2VlU4HL4GGDeux1ftxKlq8tHQE98NGDetLTGF4GuC+ihdXuA9DcM/EuDuwIuMIHku4Eowxwvmx3tV2ulwJeBqBMGwR6OOM62ldf93frezClDt37tcLAjG1la0hYem1jx+U73DQ9UR8gfk6Xx5+oG3IFl1egajRtgni1j1+/IQQC8k8LFsrg/n31WvXKEH8+G9lEYmMlsjOiazCcGFC/Enz8G5tzzqNQw+32bhsoWasAKzrYa0WLXp0+4DBXXnrtjrt2QRgGfyIFY0miL91b3LmzieZ55EE4CZnODWDYmsZx2koLZHd2lmyI8SOvMZJaBIlTGhXmDtuj98RbtzR+Xx0JqgbVjvO+ovy7rZ3Vmdgl7nrS2Dr1e2UgBL4cAggBhWuFVbF402Oz4t40s6uY1CwIVakiavoSALW5BgowQrd3M/9qs9xe8d5d+05lvfvPPqZv2BR2r51o5+b4J6B2NtWPtYNsB73BFdZy61l/TMNVrFZCezuuQl14bkNmb+jRon6hou8f9b7pz9aJnQTyFBvwXsF0IwT2LSplIGs7WZIGYumdMorSkSMFI9xluyKP6+z9+u3ZtmpdC5bLNcnz15Stwn7adHW18rI6FHC0/bhpajPtEM07e8zst2C3gXJK0l0CscvD+ZuOifb2Ct8hxNHJ5Z/h7Vr1R8SgVusA4jEVu4wkHAmuHdjTOFsPOOsvC5TAsFFAGF5/DpPrUn3gquPaFeVkcFJPwjbtiojg7BarUoJvEHAKCPbtG75xjpdoASUgBJQAkrAFYE/R40RJSJiNKooASXgnIBVKei8xPtbCkvG2w+e0oPHr5PZmNaRsOajBFHpNCepcRRsB2XlyEXHfa0qmj0pnb/+kI6eu+tr+bucUWXku6SrdSsBJRASCXiKMjLUu2mHxJMnMH1CrAtYEagogXdNAFno43J8MRUloASUgBJQAgEhAFc3Z14iAalDyyqBD5kALG9DkkBx6EpgEelMEYny2M5REYnlq3ZfwpeKElACSkAJKAFSZeQHchJ816bVB7InuhshnQCyzKkoASWgBJSAEggoAVVEBpSYlg9tBBB+IF7MiHTz3rPQtuvvZH/BUkUJKAEloARCJgHXkVNDZn+1V0pACSgBJaAElIASUAJKQAkogQ+SQK6M6n0SVAdWWQYVSa1HCSgBJRD0BFQZGfRMtUYloASUgBJQAkpACSgBJaAElECACdQtkjrA2+gGzgkoS+dcdKkSUAJKICQQUGVkSDgK2gcloASUgBJQAkpACSgBJaAEQj2BzGkSUv+mWUI9h7cFAIZgqaIElIASUAIhk4DGjAyZx0V7pQSUgBJQAkpACSgBJaAElEAoJFDmq5SULnksmrD8JG0+fF1jSPrzHECMyDyZElCDEmnpkxSx/bmVFlMCSkAJKIHgIKDKyOCgrm0qASWgBJSAElACSkAJKAEloARcEIAyre83X7hYq4uVgBJQAkpACXg2AXXT9uzjp71XAkpACSgBJaAElIASUAJKQAkoASWgBJSAElACHkNAlZEec6i0o0pACSgBJaAElIASUAJKQAkoASWgBJSAElACSsCzCagy0rOPn/ZeCSgBJaAElIASUAJKQAkoASWgBJSAElACSkAJeAwBVUZ6zKHSjioBJaAElIASUAJKQAkoASWgBJSAElACSkAJKAHPJqDKSM8+ftp7JaAElIASUAJKQAkoASWgBJSAElACSkAJKAEl4DEEVBnpMYdKO6oElIASUAJKQAkoASWgBJSAElACSkAJKAEloAQ8m4AqIz37+GnvlYASUAJKQAkoASWgBJSAElACSkAJKAEloASUgMcQUGWkxxwq7agSUAJKQAkoASWgBJSAElACSkAJKAEloASUgBLwbAKqjPTs46e9VwJKQAkoASWgBJSAElACSkAJKAEloASUgBJQAh5DQJWRHnOotKNKQAkoASWgBJSAElACSkAJKAEloASUgBJQAkrAswmoMtKzj5/2XgkoASWgBJSAElACSkAJKAEloASUgBJQAkpACXgMAVVGesyh0o4qASWgBJSAElACSkAJKAEloASUgBJQAkpACSgBzyagykjPPn7aeyWgBJSAElACSkAJKAEloASUgBJQAkpACSgBJeAxBFQZ6TGHSjuqBJSAElACSkAJKAEloASUgBJQAkpACSgBJaAEPJuAKiM9+/hp75WAElACSkAJKAEloASUgBL4QAm8evXqA92zoN0tcFJWQctUa1MCSkAJvEsC4d9l5Vq3ElACSkAJKAEloASUgBJQAkpACQSMwLb9p2n84sO09+RNunP/ScA2Do2lw4Sl2NEjUta08ahhmUyU6/OPQyMF3WcloASUgMcQUGWkxxwq7agSUAJKQAkoASWgBJSAElACHzqBCQt30y+T91HY8FH4PwZFiBHrQ9/lINm/h2wdueHIfVp3YC11rnObGpTLHiT1aiVKQAkoASXwf/bOAj6q44njAwlOcdeE4oUKUrzFXYs7BC0UK+7uUBxKseLu7k5wKfBHi9MWT3Dvf35z2ePlIhcoEpn5fO7uye6+fd+727c7OzP7/gmoMtLCFKb9f//9N929d48SJ0pE8eLFs5zVTSWgBJSAElACSkAJKAEloASUwIcjAIvIAbOPU4SocYnY2k/lLQi4uJCLSwRyiRhVGKZPGVstJN8CnyZVAkpACXxMAi69WD7mBT/Eta5evUrJkyd/56L//fdfmjDxN/qpZRsaPWY8zZk7n36bNIXWb9hI8VkhmTr125v5v3z1ik6dOk1r162nY8f+oFixYvIr1jvX8b9m3H/gIP154QKlTJkiSEVBMfvs2TNydVV9dZCAhaJEUMbv2r2HVq1aQ0+fPKWECRNQhAgRPugd/tffG37fly5fphT/oR34oDeohSsBJRDmCKAfsHDRYmmXIkWKZL//p0+f0h7PvXT0jz8oNvcLokePZj9nNpYsXUZeXl7ct0kmhy5cuEjbtu+g169eU4IE8U0y++e1a9f5/E6eRI1LUaNGtR83G47lXb16jTZt3kJ3796lJEkSU/jwvhUegV0PfabjJ07Kc+L58+eUKFFCcxlfn0+ePKGVq1ZT4sSJKXLkyL7OBbbzirkdOXqUDh48TNGiRaMYMWL4Sn7nzh3asXMXXbx0iRImSEARI0b0dd5xB3XcuWs3/XH8BEWOEplixfRtYWbu9cGDh/K8c2ThWN6jx49py5at9BdPXseNG8fP9Z1dz7E83VcCjgT6T/Wkq17c/1ZFpCOaoO+HC8cWpZHI654Xlc6XNuj5NKUSCCKB1WvWSsq4cXnS4C3l0OHDdPbMOXJzS/mWOTW5EggagQcPHvjbHzS5XXjiJjhImNc0oVPdqUs3mjd/oZ/vA8rEps1b0JBBA6hypR/8nA/owO3bt6ly1Rp04eIl7qjaGqgevfrQV19mpgXzZr9Vpzyga7zt8bnzFtCtW7fou3x5nWb19vamuh6NqHvXTpQ1Sxan6TVB6CEwfcYswm8VkiZNavpl5GjZHj3qFypXprRsv++39/F7m79gIf++b1Oe3Lned/W0PCWgBJTAOxEYNGgITZoyjXLk+NauULtx4ybVrFOPzp07L/0DKNZatfyJfm7d0n4N9Ev6DRhMo0cOl2PNfmpFGPTAY+Pvf/6henVrU++e3eUcJnLqN2xM27btsJ//oUJ5GjZkIFsH2Tqa1vKgSKteozYd++O4PT3a+oXz5lDs2LYJ08Cud/zECWrUuJnUA/0b1L9C+XI0YvgQCseDf6sMHDyU8ExZs3KZTMhazwW0ff/+fSpVtgJduXLVXr+xo0dSmdIlJcu+/QeofoPG9OjRI1FU4nP6tMmU//vv/C1ywcJF1KtPf/s5pO/XtxfVrllDjk2dNp16931zHve0asUSSsIKVP8ESt02bTvYvzt8J3NmTadUqdwlubPr+VemHlMCVgL4Tx+9/IQVkWF+iGbF8m7brMwVlu+WW3MpgUAJdO/Zhxo1qE9p06QJNJ1/JxctXkpnz56j/Pn9f3b5l0ePKYHQSMD3VHhovEMn99S5a3d/FZEmGzoFHTp1IXRAgyJQrNSqU5+87z+QDvih/Xvo4L7dNHP6VOn8jxw9NijFfNI099ga48iRo5+0Dnrxj09gAVvwQBHZ4qdm9MeRA7Rp/Rr5LFqkMHXu0p3++efGB6mU/t4+CFYtVAkogU9E4ObNW9S0WQtRRDpWYejwX0QRuWjBXDp8wJMmTRxPo7hfsHHTZnvSMzxAgZIva5Zv2LJwjSgi0YfYu2cHTZwwln6fPpMOHjos6WEtCUUkysP5USOGSX9l67bt/pa3eMlS6Yts3bRe0kPxBsXoxEmTJb2z6034dRIlSpyIjh0+IH2bvr170tJly8l6PRS0Zes2UUTaKxHEjcFDbQpYU78GHvWoY+euBCUqLE1btW7L1pDxadf2LVyH/dSsaROC8vSvv/7ycwV4dwwaMpyqVK5IRw/tE95QnHbr3ovusbUULCKhiCxXtgydOHZI7iljhvTUqEkzf1fkRR2gJK5frw4d2LtL8jx/8YJMv87Z9fxUUA8oAX8IwDLX67Fvxb4/yd7rofQpYtKqgYX8lFkiR1Ka3jkvTe2Qh3J94dsiO2HsyNS11pe0pE8B6lb7S3IJ/6bOhbImprWDC9PYljkofqw3VtEV8qWgdUMK+7nOhzzwsVl+yHvRskMPgZYtmtPwYYNDzw3pnSiBdyQQpqfdjrL7NCwGAxJYCxQpVEhcuDGzXrJEcadWjZs2b6VTp8/IwOCLLzJK0bAWgEVim1Yt6OT/TtHjx0/YbDaKDDZmzJrD6U9TwvgJqFSpEpSTLSggcCfazoOMvHly0yIePKCTW75cWfrm669oytTfCYOVQgXzU4nixShKlCgyYHn58gXBPWjHzt3k7u4mlgTp0vrvmgDT3d/ZYuHkyf9RPLYEKFeuDGXPlpXgVjVu/ESuAdHUaTPY+uCx1D2g9JJQ30IFgUGDh1G+vHnEQse4qcVkdzYMNhs3bUZwhS5bphSHMhhHWXiQvGr1GooWNRo1bdKQ4sSJQxjk7vHcJ9Yx3+XLI79XYykDJT2sj/HfwG8pAw/4GtSvx/+nSO/0e4OL4bIVKyUUQo5vs9OLFy8D/A7wP9/j6UkpU6SgNWvX8/+4GJUqWUJc/PD/v8gWzJ9/nootZapT0qRJpRz8DzDgh/VQtGhR+b+RTayjjaUR7mPe/AU8AP5b8tasXs3uTrls+Qr539SsUc1eJygbsmbNIv/nFStXs8VSeDp//k+6eu0a1a1TizJnyiQuj1u3bpeYtYULFaCCBfLLfxuFwB0xoLraL6IbSkAJBAsCrdq0lWc0JnbGjB3vq05b+D+OCR48byHYTuXuxu3nMipS2KYM2LV7t1hL4NmOUC9ol41XQ7GiRShFiuS0YuUqysZtynHuK0Ay+fQ3cubIIfu3b9+RT7xZy/vzzwv0U7Omdks+tD0Z0qejM2fOSvrArod2+9HjR9S4oYfd0rFc2dLUvWdvDgNzUdosFAJFKsLewEIzqBO5cnF+W7psBf3U/E39GrLVCfo86A+hTwXL0J7du9rbW1iJjv91Irucb6U6tWvSjJmzpShso5+EfhzSGFduWFhCeXqFw/ugDYbgfj777DPZrl6tiig3kRdcrOV580RtPW6vq1SuJFanyJMubRoJgYPMzq5nLE/lQvqmBAIhEC68SyBn3++pFAmj0eyu+ShqZN9DwvolUlOHapnotvdTihktIuXMmIeaDPekncdviOJx1cDCnMeF/rr9hGoWTkXfpo9HZbtuoUgRXGhMixy0dt81VmAmoH4NvpF8qHXnGplp7f7r7/cGnJT2MVk6qYqeDuYEMEG1hJ8P5tmQO3dOqlGtqj1kGQx1Vq1eS3c4vImx1je3hIk8eCFAEAIFYd4wDgjHSvpZs+aykZI3lS5V0m7Ff/jwEX5W3iW32illzL+NJxC/Zwt/jKVwPHeunITnkRmPmevopxIIbQTCtGUkOvNG4rIyxSowuZ4/ZyZ17NCWKlWsQFCmbN+xy5rE3200VHDzMQMNa6LWrIyEFQQUkXDlLlK8NI0cNUYaLM99+6hq9VocX2qJZLnA8R2H/TKS3bnqyz4UKjVr16OKlatJI4c4SnAVWrZ8pZzfvWcPtf65Pc/yD2DXpoS0nBU1FSpWlTh61jpgG25KJcuUpwm//iaxpw4eOkSVqlRnRc06SRoxYgR7logcK9BZenti3QixBGD1aNztHB98iAe2YtliUUTiBqHExm9x9x5PsdhBLLDWP7ej9h270KtXLwludvgt9urTT3jAmqV0uR9o2u8zJB4X4qdigN6wcVM5/7a/N8S0RBgE/H7jxI5NsKTB7z0gweB7MFvHwHoGcSXRyThx4iTlL1hUBvqIM7lg4WL5P+I8pGfvfjRm3AQZ9EeJHEUsc4YOHyHn9u7dR8VLlpEJgMRsIYTBat7vC9Jpn8E82gkM6K0yndNAsQnZsXOn1GUix6U9xNZNiFO2nNsiMD1w8KC4SoLloCHDJL2zukoifVMCSiDYEPixaWPavWMLff9dPj91QrzI2NxuWcXF1ZXO/2lTjOE4LB0L5s8vSS5fuUIZM2aQbbxhggdKwevXbZaAhQsVlHPdevSizRzHEIpBCCYyjVjLg3t3+3Y/m1NcznWZJILiDRLY9aJxLMrpUyfLxKwpwPSL0qT+XA5hMNahU1dRlDaoX9ckC9In+lnob1gnUY27NOIzPn/2XMqxKvVcI9gUKJcvX5FzeBYsWmzrR32ZOZP049xSvonJBYtNiBvHz8YkL8RXea62/g9ikUOs5SVJkoRgzYJnIjhNnjpNYn+WZ8tKiLPrSSJ9UwLBiECj0mlp3eAifhSRqOLPlTPSkXN3KV/LdZS96Wp69PQldaqZSWrfoXomih7FlYq330RF2m2g4QtOUppkMejr1HGo2LdJJE37Xw/RSs+rlC1tXNmHcjNyRBcaMMvWF5KD+qYEggkBtOkFChejHTt2yiQWng/de/SmsTwWgGB8X75iFdrOfXhXVxfyaNhExk2m+hiHt2jVhgYMHEwxeKJqKRsm1KhVl8ft1enq9Wt0i8f9des3tCs6EZvfjF0w5h8+YhRVr1lHFJEv2LioS7ceNGnyVFO8fiqBUEvA9zRYqL1N/2/MdF6rVqlMgwb0lT8+rI+giJw3Z4YoFQ8cPERr1tiUdJd9FBX+l2Y7euTYMYKbjzOZzDP9UP7s3LZZFB4m7lPP3n3ZoszWsUUZQwcPECsuxE/Kl7+QzO5DMQTx8vaiDRs3ycyJHOC3xQvnyWx+xw7t6Kss34rSZ/hQ32bg02fOknhMmzeslcV5MHiAFUM3bnThNtaIrQRmzZ5LHvXrSMxIWB3g+v6lh7WoSsgn8L9Tp+Qm3NxSBOlmYG2ybs1KcuWYZAjCDGu/QQP62X+L+P107d5T3NnwQMciDT17dLXHIMWCBlBIQpH5tr83xCCDdQxCIGDF+/bt2lCuvPmd1nv82FHyX0JChFLApAFcAV1ZEYAycucrIJ2OYUMGSWcEM5hdOnWQcjH4f8zWkpC+AwbJf9bk7dShPWXLkZuGDvuFpkz6VdIE5W3ThjUSlwz//UxfZZUZ03FjRkrWzJm+EAtUKF6hlAysrkG5lqZRAkrg4xEwVoz+XTFXzhyEGLdNGjUQq2oMSOAmjdiDELgCY7GVXj26yT4st+EBYRVMwmABGcjnbNUNN2PEn8ILAmVjsmQ2K2/H8iSBzxu8NFq2biuxF+EODXF2PUnk8waLbcTczsn3ZO4ZFvCePGGzZeM6doW+Z03udPufG7ZQII4L1oANLD2xAB8mYvF8gQUJ0s1i7xLIg4cP5RNxuQOS9es3Sl7E54TVfyZuZyFTOG5kx/Zt2cL+hVi84xiUopCAyitRqpykQd3KlC4laR3fHK/neF73lcCnJlAsexLyPHmTTl7yIigmjcAF25U9OOZtuSiHnr14RbtP3KRCWWzt1Fefx6Y73s/o6i3b/2Ta2vOsvPyCSuZMSou3X+ZJE6JobGkZP2Zkuv/4BYXnAy0qZKA5my8SylJRAsGNAIx+vvnma5rBMYjNMwjKx8M+Ycv6cd8fk3ZrVi0Xa8VqVauIgZDjfSxZNI8XhUvCHmRfi9FQ8x+bUAd+vsAw48uvs0lIk9SpbZN3jnlHDB9KxYoWlsMwPkJfoEnjho7JdF8JhCoCYVoZaVYIjhHjM2lYBvbvK8oBmFVj8A9FZN16DWRwgG/duPkE9gtIED8+/c0z+M5k77790qjB3QoCa7QSxYqJRQRcUI1ky5pVNk26ouyiZSQZu5QimLsRdIqNdQPurUD+7wlm4I6CBhcyjwdERrCiJpSjsNh0FGfpoRBSCdkE8HuH3L0btMEjFoqBIhJy8qRNkXnk6DG7u5oZhJ5md+bixYrSksULaB//5qFIhGXith07JO/Ll37dq5393mApiEGk+d1hUFmieFFZwEYKDeDt2+zZ7GfwgMd/ylgf4gTcsWGpCCnNrnyYkTxw4AAV4/rjvwRrZwzscX10DqDEhMDSGdZJcMsIqqRyd7MvkIBVcDHwLVQwvz074prhBXFWV3sm3VACSiDYE+jEE4VQ1hUsUty+QAue21CyQQ7sPyj9D+tgxbh+mZtDuxmVXbghiFcI64qRvwyVhXLWrdsgcRAxAYS+jH/lIR+e91gI5jxbjs+dbZt8xXFIYNezpSCx9IYVh7u7G2GiB32YCxcuinISC87AetA8B0weZ5/hfVYOdrw+4jJG4Ykr9MEw6QXrk2+y5hBO8N7A88us6G1CaTheCzGR23foTJh8bt78RzkNS0aEyYAbOJSoaIcxGIXE574cJKDyPHdtE2vW3n36y3eJmJTWPqJ/15MC9U0JBCMClXpuk9r8WNZmGW2qltEtlmxe+sem5MfOP3efiIIS2wljRyGvRzZLZey/ev0vv15T4jhR6czV++T18DltGVFM3LjHLTtDzcqn4/9SOBo23zaJgjwqSiA4EcAinQV4kstz736elLsoYTfOnj1HX7BnwitWJCJOM7we8KyDIEyKGTuZ+8C4AopIiLu7u3wWKJBfPjFmSpIksbh4ywF/3qzjFBh9GI8rf5LqISUQagiEaWVkWo71A3dKKB3E7ZndqOGCA3FUROIYGgZnghWz4QaEwYJRVpg8np57aRWviNmMG7PX3LDBOswq8eLZFEIwzzZidR/CMQwwjIQjnnq0SPLkySx7xI1kHFlIx9dB3vH2vi/3i/iSRnBveL169docsn++bXp7Rt0IMQTS+vy2z50/b49bZiqPgWEPXjEuc+YvJFYWjiPOqJH7Dx7IZgR2lzO/KfyfMMiDOyJiq1TiGb4LbOGDgR7+I1Cyw9rWcdCJgpz93rw4bpf5r5g6hA9vU4yaff8+Y/uEYoD1CwQzn6a+2IfCETHaILCI/DJzZlq/YaO4g8MlHJaSgwf2k/NmoCo7/JaAF1QITOCaaZUECRPad8EHkipVKvsxsxGUupq0+qkElEDwJ4Dn7I6tG8WlGko2xIMcNXqcxJFF7Xfs2kUlLZaQKfi57sWLrVgFi6/AShCyjGMswjLSTF54sGs0+jWIXQtlpGN5yAPX7GqsSERM6OVLFvrq2zi7HvLDmrNm7XpiETmZQ8+YeIuTpkzFaZozd568zLOhAy9AU52tSGpxXN7AxLSjaOOtAsVpsmS2/g3iFqdLl4Y8OT4xQn58x67whYuWpOQ+5635zPa4CRNpCIfzgBU+2nYzmMT5Pr16sCVKEYmfDQUw+mUIw5Esmc2y1JRhPmHJjvyYBMuaJQvHWG5FdT0aykAVMb4ggV3PlKOfSiA4E4gTI5JU79GzNxPGj322I7qGF3drKBytAoUk3LAheX5aK3Ek95++ReevP6BDv5WmKavPUe5M8alLzcx078Fz6vX7UVFcWsvQbSXwqQgYN2xcHyFWvvrqS0r9ua1fbsYK8EqwCibDrJLI0rc3z5mYMWNYkwS6DaMII64uYVpFYzDoZxggEKZ/6ZV+qCCuouhcInYjBIvM+KeIRMcU7lXOxCxAM4oX+WjbppU9Ocyzu/NKxa9YSYng625ubmLNABfWSJFsD31YQEE+Z6XEqVOn7XmDuoEFRrDwhlGoYHXLbNmy+Mnu7paSEPeu3c+t7aboyItA+LASffLU5o7KOigRZ+n9XEAPhDgC+M1gRm7suF9lUAsrWyOIJTpj1myxvDHHxAfHZydZUtssIFwJTZwyrGwK122Us5zjml64eElcolOlss0UGotE/PeMBPX3hg4CLFnQOYAlChSaiJVmFnAw5QX0Cath1Csy/+8wEDWChRbQecB/EgtLwRISbtPDhw5iF+wREh+sR7cuosjfuXMXNWpQ32SlzWwVmcXHogblY4VwIyYOmtnHJ1yWjBh+iG35Nd8bBNaXHdn9cdQvwwKtqylDP5WAEggZBGAx9/TJU1lsBTVGO4ZJj+a8qAwEq2p369JZtvGWPn16js+7x76PCQpYVv7YpJEcg0ITSjmrhGcLDCy2AnEsD21zmfKVKEH8eLRw3hy7RaHJ7+x6O7jtq13XQxSgCCNj+i/ID1dtY7GO/Rs3bkpbBstPWIQ4E0wQwdIE/REs7ANBWwhBHwxt/ZChv1CuXDlkURocx3koK93d3XjPr2DxsF9GjibEysRCNlZBuI9fJ06ihh71Cdb+kKnssg1J6mPdIjs+b+be169dRenT2VxajcLVTKwFdj1rWbqtBIIzgeu3Hkv14rFS8k9WJkLifBaJDRb+pecvX9ODJy8oaiTfQ8gIrKS8evORpH3N/9WZG21xcDvxojXo6o1depqOTi7DC+DcJPdE0Wl4s+xUuvNmSa9vSuBTExjPRgewbEQIKsRHhsC4COMUjJEwkYiJuMYcYgWCGPN4hgQk5pkQ0Hk9rgSUgI2AzdY4jNJAo9O/b28JCA8EUEg2aNTUl2s2jmPWf9wYmxsS9gMTxE5CfAisONy330BZ5ANKGQ92h0JcqH58PShQqlSuKMUgTiNW5p0zd74sXgPrK1dX3w/4wK7neK5PvwFSHjrfsDyrWL68YxJZFRgHEdMPq2nD1bueRyNxu0KDiwEBBB1vuJBWrvSD7AeUXk7qW4gnMGqEbcEUDDThsgaXBARUxmIqcEfAau7+CSwKYQk5cPBQ+c3AraBNu440m61j4vOAN2HCBJLt9JkzshAUlJuwNIRA8fe2vzcTp7R33/7yW0cdMRh9G4HVJu4PcSvRocDCUVgQ6gkrCTC4xsqt+L3DZRwrZl/nATzuEdbGWN11Owe4xj2cPXdOYkVC2WriusFiCQNkLEoDFh07dwu0arCyxMrZiDmJ1fjQHkBZC6UmLHUCq2ugBetJJaAEgh2ByJEiyyIzWFQGz1cEqUfs3Fo1qklbhOd2zhzZ7fWuXau6tAlQkkG5hwW7IFjRGVKB22WEv0A/AxaPWFQFk41leZVrtG2O5WFxLrSXiHeFiVe0OXjtYc8NSGDXe8hxGbE4GdrCQoUKcMzqzfb8Z86elTYQk7DmVd9H+Ve/bh37SttQjqJvhAlaR8HiPA0b1JP+EAZ9V69ekxi9sKjHMwjn7z+4Tz15YhcTtmgr23XoJGEysmb5RorDgmKTpkyT7T94ghV9IeNOZ+4Vn2CAsDpYrADPLlxrG7f7WDiwe7fO0v6iEGt5uVlhiX5jv/4D5doYqI4YOUomjDAZ5ex6Uil9UwIhgMBZdrWG5Mj4xusjo1tMevjU5lny950nlDBOZPuduLFyEZOsZ6/Z8pkTWFm7RiF3GrfsNCE/FJY9ph2haevOk3vi6CaZfiqBT04AVo1YxfratWsSsgw6AfTln/I4BQIDJvT98SzG2Ln/gMGfvM5aASUQGgi8u9YrNNw930ON6lXlTjAgwCyGY9w3KCJnzZhmt1gKym23ZYtDKDRgrYWBAQSddyg+zew7LMgQ+6gvd2oXLFwkaX6oUF4W0pGdd3iDtRcGIVBs4nqwwCxWzBZjMnz4cHbXJLgWIb5U1+69ZACDS0EJ2rN7F7kqXMHhboQZfqyyPGRQ/0DTv0NVNUswJIA4J3NmTZewBVBqP3pkm+GGogwWhBgIQhzdEuCuhphjbdt3FIsZpMHvZ/SI4TKbWJQtXPD7+rF5S5ySwVy3Lp0IwaCxCAP+E2/ze8PAcsTwIZx/sCxGAEsaTAIEJPjtOwoUit686jcGnnihDMSBrFrFNsDHYLQb/z/KVbDt4781id0RMVGAMAuwdoTCEC/khetfzRrV5DLVq1URpWzLVj/LPlwoEePSWEP651I+eGB/at+pMy8k1VrygPnAfn1k21ldJZG+KQElEOwI+Nf2lCxZnCcA91OzFq2kjUV7NuW3CeL2u2r1WrFQR5tqBM/rrp07ShxITMCkcneT57GZ5GnXtjXHsn0kcRRNHrRljRs1pPk8qQSLd1Oel5e3LHqHdFgszypIh3Y4sOuhf2Qmfkz7ZsrAojDWVbDluM8zA5aaRo5ybGH0izq0/9ked9icwycUl2fPnhc3cOyjbR/Oi4qZ2I2Y7EW/pHgp2+QY+jiI922eT4ifCetRWK6v4AkhCCae8LLKPH5m5eL7HcDtLJSReb8vKP2mGtx+e9Sra09qLQ8xv4YOGsDfXWtx5UYiKEon/zZInnXOrxfXXq5uKIHgTODug2d05cYj8uAVsM+xgjFDCl7wyS22fUGb8axc/L1TXprULjdNWH6ahv2YnV6wxeQqXj3bKl1qZeYFa17TlDXn7Ct2J48fjZLEjUJPnvmdkLDm1W0l8DEJeHjUZQOCM1S0eGm5LJ6HDTzqiSfWAw5HhefqrVu35VmMBHhmYmzwrgJPLOPK7V8Z4XkBKRdOo6IEQjuBcKyA83HGDbm3uoddmHLnzv2fbgBWAZjtwCIcXrwCZEJuYL7/Li93aD04lpv7O5d9nxUesLZCLCTTWbYWBvPvGzdvUvx48f6TRSRWtISb58L5c8R6AjH1TOfdej3rNr76mzdvUZw4se1WANbzULhEix7dPmBwlt6aV7dDNgH8LrEQU5w4cexu/0G5Iwx2MQA31o7WPAgh8PjxY1HeWY+b7bf9veH3CEshDMr9+2+ZcgP7hHXOTf7/oUPhXxlYzRrxXa2uh6Y8DHhvs3UNZlMDygvFbXT+DwVVoAB+8eKlH7dL5HdW16BeQ9MpASXw6QnAPRttolEUokaIH4v2xjEmLc6hvUGsSBNXEcesgri0GChhIRdYVUMCK8+a179tZ9fzL09QjqGe+QsWpb17dgSaHG0hYm9b+Vgz4DwGciYsjfXcu2yDVSxWAjvrN6FsPB+x8nfUKFH9bavf5fqaRwlYCWSou8y6+8G3m/ICNq0qZiDrdTOkjEmzuuQTJSJGiqeveNMPPbba6zK0aTYqncsWy/Xp81fUc9pRWrHnjTIyehRX2juuFA2Yc5zmbLog+Zb1KygWkS48UbF452XJYy/wA26cmu7XS+wDXk6LDsEE0O+PxB6MMOrxT/Dsxtjev3GBf+n1mBL4VAQQliew36l10b1PVUdcV5WRn5L+e7y2VRn5HovVopSAElACSkAJKAEl8F4IIEYjlIgm7tZ7KVQLUQKhjIBVKfipbw2WjPcePqOHT94sZmPqhAVrksaPao8raY7jE/mgrJyw4oz1MBXNloSu3npEpy57+zr+IXdUGfkh6WrZSkAJBEcCIUUZGebdtIPjj+dd6gTrLFgRqCgBJaAElIASUAJKIDgSgKubf5bkwbGuWicl8CkIwPI2OAkUhwEJLCLNAjeOaZDPURGJNBsO/uWYVPeVgBJQAkogjBJQZWQo+eJb8yrgKkpACSgBJaAElIASCK4EVBEZXL8ZrVdwIhA3RkS6c/95cKpSiK0LWKooASWgBJRA8CSgkVGD5/eitVICSkAJKAEloASUgBJQAkogDBFAGINcGeOEoTv+sLeqLD8sXy1dCSgBJfBfCKgy8r/Q07xKQAkoASWgBJSAElACSkAJKIH3RKB24XdfOPM9VSHUFKMsQ81XqTeiBJRAKCSgyshQ+KXqLSkBJaAElIASUAJKQAkoASUQ8gh8mSYhDWn8TcireDCrMRiCpYoSUAJKQAkETwIaMzJ4fi9aKyWgBJSAElACSkAJKAEloATCIIEyeVJS2uQxadrac7TrxC2NIRnE3wBiRObNFJ/ql0hD6VLECmIuTaYElIASUAKfgoAqIz8Fdb2mElACSkAJKAEloASUgBJQAkogAAJQpg1qkj2As3pYCSgBJaAElEDIJqBu2iH7+9PaKwEloASUgBJQAkpACSgBJaAElIASUAJKQAkogRBDQJWRIear0ooqASWgBJSAElACSkAJKAEloASUgBJQAkpACSiBkE1AlZEh+/vT2isBJaAElIASUAJKQAkoASWgBJSAElACSkAJKIEQQ0CVkSHmq9KKKgEloASUgBJQAkpACSgBJaAElIASUAJKQAkogZBNQJWRIfv709orASWgBJSAElACSkAJKAEloASUgBJQAkpACSiBEENAlZEh5qvSiioBJaAElIASUAJKQAkoASWgBJSAElACSkAJKIGQTUCVkSH7+9PaKwEloASUgBJQAkpACSgBJaAElIASUAJKQAkogRBDQJWRIear0ooqASWgBJSAElACSkAJKAEloASUgBJQAkpACSiBkE1AlZEh+/vT2isBJaAElIASUAJKQAkoASWgBJSAElACSkAJKIEQQ0CVkSHmq9KKKgEloASUgBJQAkpACSgBJaAElIASUAJKQAkogZBNQJWRIfv709orASWgBJSAElACSkAJKAEloASUgBJQAkpACSiBEENAlZEh5qvSiioBJaAElIASUAJKQAkoASWgBJSAElACSkAJKIGQTUCVkSH7+9PaKwEloASUgBJQAkpACSgBJaAElIASUAJKQAkogRBDQJWRIear0ooqASWgBJSAElACSkAJKAElEJYIvH79Oizd7jvfKzgpq3fGpxmVgBJQAh+dgOtHv6JeUAkoASWgBJSAElACSkAJKAEloAQCJOB59E+auvIEHT53h7wePA0wnZ7wIRAuPMWKHpGypIlLHmUyUa6vP1c0SkAJKAElEIwJqDIyGH85WjUloASUgBJQAkpACSgBJaAEwhaBacsPUv+ZRyi8axR+fUYRPosZtgC8490+YuvI7Scf0NZjW6hr7XtUv1y2dyxJsykBJaAElMCHJqDKSAthmPb//fffdPfePUqcKBHFixfPclY3lYASUAJKQAkoASWgBJSAElACH44ALCIHzD5OEaLGJWJrP5W3IODiQi4uEcglYlRhmD5lbLWQfAt8mlQJKAEl8DEJuPRi+ZgX/BDXunr1KiVPnvydi/73339pwsTf6KeWbWj0mPE0Z+58+m3SFFq/YSPFZ4Vk6tRvb+b/8tUrOnXqNK1dt56OHfuDYsWKya9Y71zH/5px/4GD9OeFC5QyZYogFQXF7LNnz8jVVfXVQQIWwhPh+166bDmdOn2aEiSIT1GjRvV1R48ePaJVq9fQhYsXKW2aNL7OBXUHv8FLly9TCv6vXr5yhbZs2Upp0qah8OHD0188CbB4yTLatn0HdyJdaN/+/fZzQS3fpLt46RJt53LSp09nDtk/3/Y+vby8ac3adcIFbPA6feYMXb/+lzCKHj26vWxsPHnyhLbv2EmrOc/xEyfo8eMnlCRpErlHXwl1RwkogVBPAP2AhYsWS5sXKVIk+/0+ffqU9njupaN//EGxuV8QPXo0+zmzsWTpMvLy8uK+TTI5dOHCRWkfX796LW20SWc+r127zud38iRqXD/tN9I4lnf16jXatHkL3b17l5IkSeynjQrseugzHT9xknbt3kPPnz+nRIkSmmr4+kR7uHLVakqcODFFjhzZ17nAdl4xtyNHj9LBg4cpWrRoFCNGDF/J79y5Qzt27iK09QkTJKCIESP6Ou+4gzru3LWb/jh+giJHiUyxYvq2MDP3+uDBQ0qYMIEfFo7lPXr8WJ5feG7FjRvHz/WdXc+xPN1XAo4E+k/1pKte3P9WRaQjmqDvhwvHFqWRyOueF5XOlzbo+TSlEggigdVr1krKuHF50uAt5dDhw3T2zDlyc0v5ljk1uRIIGoEHDx742x80uTHeDg4S5jVN6FR36tKN5s1f6Of7gDKxafMWNGTQAKpc6Qc/5wM6cPv2bapctQYrbi5xR9XWQPXo1Ye++jIzLZg3+6065QFd422Pz523gG7dukXf5cvrNKu3tzfV9WhE3bt2oqxZsjhNrwlCPoHX/D9o07aD3Ei3Lp2oUUMPXze1iRWHOI/fc6mSJXydC+rO/AUL+Td4m/LkzkVHWUGP8kqWKE6u3BjWrFVX/i/ZsmaRgWfvvv3t54JavkmHAWy7Dp2ofLmy5pD9823vE5bSqKcMiD/7TMq5z407lLOQqZMnUqGCBWQbA1OPBo1ZYXlGOEHhgHS5c+WkCePGyISEJNQ3JaAEwgSBQYOG0KQp0yhHjm/tCrUbN25SzTr16Ny589JOQLHWquVP9HPrlnYm6Jf0GzCYRo8cLsea/dSKMOiBx8bf//xD9erWpt49u8s5TLDUb9iYtm3bYT//Q4XyNGzIQJnYQSJreVCkVa9Rm479cdyePk2a1LRw3hyKHds2YRrY9TDJ0qhxM6kHngeof4Xy5WjE8CEUjgf/Vhk4eChNnzGL1qxcFuT27/79+1SqbAW6cuWqvX5jR4+kMqVLStH79h+g+tzOom1Fu4zP6dMmU/7vv7Ne2r69YOEi6tWnv30f6fv17UW1a9aQY1OnTSc8b4zgnlatWEJJWIHqn0Cpa56FuHd8J3NmTadUqdwlubPr+VemHlMCVgL4Tx+9/IQVkWF+iGbF8m7brMwVlu+WW3MpgUAJdO/Zhxo1qP9ORhqLFi+ls2fPUf78/j+7Ar2wnlQCoYhAmLf979y1u7+KSPMdo1PQoVMXsSowxwL7hCKvVp365H3/gXTAD+3fQwf37aaZ06dK53/k6LGBZQ8W5+6xNcaRI0eDRV20Eh+fwLIVK/1cdMWKVX6O/ZcDBXjguG71ClHMY+bmAivuBw3oR4sXzqNKFSvYz/2XazjL+zb3OX7sKNq7Z4e8Thw7JPVLkSI5de3W036ZGTNniyISA+/DBzzpj6MHaeKEsWIBNXvuPHs63VACSiB0E7h58xY1bdZCFJGOdzp0+C+iiFy0YK60E5MmjqdR3C/YuGmzPekZHqBA0ZU1yzdsWbhGFJHoQ6ANQpvy+/SZdPDQYUkPa3IoIlEezo8aMUz6K1u3bfe3vMVLlkpfZOum9ZIeijcoRidOmizpnV1vwq+TKFHiRHTs8AHp2/Tt3VOs6q3XQ0Fbtm4TRaS9EkHcGDzUpoA19WvgUY86du5KUKLC0rRV67ZsDRmfdm3fwnXYT82aNiEoT//66y8/V4B3x6Ahw6lK5Yp09NA+4Q3FabfuvegeW0vBIhKKyHJlyxDaddxTxgzpqVGTZv6uyIs6QElcv14dOrB3l+R5/uIFmX6ds+v5qaAeUAL+EIC3iNdj34p9f5K910PpU8SkVQML+SmzRI6kNL1zXpraIQ/l+iK+r/MJY0emrrW+pCV9ClC32l+SS/g3dS6UNTGtHVyYxrbMQfFjvbGKrpAvBa0bUthXOR9652Oz/ND3o+WHDgItWzSn4cMGh46b0btQAv+BQJiedoN1FiwGAxJYCxQpVEhcuDGzDisuZ65GmzZvFYUEBgZffJFRioa1ACwS27RqQSf/d0pcN6NGjSKDjRmz5ojrZ8L4CahUqRKUky0oIHAngqtp3jy5aREPHtDJhaXXN19/RVOm/k4YrBQqmJ9KFC9GUaJEkQHLy5cvxGVqx87d5O7uJpYE6dL675oABdDvbLFw8uT/KB5bApQrV4ayZ8sqbqbjxk/kGrDV17QZbHXwWOoeUHpJqG+hhsD33+UTN2O4UadMYXPpx6AN7nywWrx46bL9XjFYDuj3i0RwA4TCDxbGOb7NTi9evLTnRfkY9MZgd7lff/1NjmPw+vLVS/r6qy/lHFy4YTUJlz0MoPd47hPLm+/y5ZH/grHCgaXLEnYx9+Tz7uzu8JmPBaP9Yv5svM19OmbHQCEDD1gxqIUSAa7cCMMAF+5U7m72/z3qXrxYUbFiwqSGEcSkhXL3wMFDlI7vsVixIvxp+59icIx7OX/+T0meO3dOqlGtqoRLQJuwjRUM37MiFzzu3LkrVpfVq1Vx6lZorq2fSkAJfHgCrdq0lWd0i5+a0Zix431dcMvW7VS0SGF53uIEttFuIExFkcI2ZcCu3bvFWgLPdoR6yZc3j92roVjRIoSJkBUrV0mbfJzbBUgmn/5Gzhw5ZP/27TvyiTdreX/+eYF+atbUbsmXOVMmysAhLc6cOSvpA7se2r1Hjx9RY7acR5sHKVe2NHXv2ZvDwFykggXyyzE8GxD2BhaasCR8G1m6bAX91PxN/Rqy1Qn6POgPoU8Fy9Ce3bva3ddhJTr+14n8jNpKdWrXJEwKQbCNfhL6cUhjXLlhYYmQJFc4vI9pZ3E/5rmB9hTKTeQFF2t53jxRW69OLVZuVhKrU+RBG44QOBBn1zOWp5JY35RAIATChToEb/MAAEAASURBVHcJ5Oz7PZUiYTSa3TUfRY3se0hYv0Rq6lAtE932fkoxo0WknBnzUJPhnrTz+A1RPK4aWJjzuNBft59QzcKp6Nv08ahs1y0UKYILjWmRg9buu8YKzATUr8E3kg+17lwjM63df/393oCT0j4mSydV0dPBnEBgfXBUHYY6q1avpTsc3sRY65tbwpgGXggQjJkQ5q1mjWocaSEczZo1l42UvKl0qZJ2K/7Dh49IP96tdkoZ82v/3pDUz7BGIExbRqIzbyRunDhmUz4RF2/+nJnUsUNbsdSCxeP2Hbt8pfFvBw0V3Hyg2HOU1qyMhBUEFJFw5S5SvDSNHDVGGizPffuoavVaHF9qiWS7wJ3bYb+MZHeu+rIPxWnN2vWoYuVq0sjBPQmuQsuW26zYdu/ZQ61/bs+z/APYbSghLWclUIWKVSVGn2M9oLwpWaY8TWAlEOIDHjx0iCpVqS6x8ZA2YsQI9iwRI0QQN6jA0tsT60aIJwAlHX5bGzZsst/Lxk2bxBXt2+zZ7cec/X6hcEOoAvzG4sSOTbB2wW/SCCwhJ/42mV6zotHF9U2nO1LEiGIliXMvX7yQ5K1/bkftO3ZhpeRLggsffue9+vSTc1DyYR+WLvhfIb4jXAOdSVDvM6By4EK4ktuPb7Nnsw/K4a6N+2rQqCkrClZLWATkhztli+Y/SlH479Wu60E9e/cVLrs5blxRbgdg1QMFbYHCxWjHjp0ygMYERPcevWnsuAmSF23C8BGjqHrNOtKBecGTD1269aBJk6fKeX1TAkogeBD4sWlj2r1jC6GdcRSEb4jNbaJVXFxd6fyftgkIHIelY8H8+SUJ2oWMGTPINt4wCQOlIOLWQgoXKiif3Xr0os0cTgOKQQgmMo1Yy0N71L7dz+YUl3NdJlCheIMEdr1oHEt4+tTJMjFrCjD9ojSpP5dDGIx16NRVFKUN6tc1yYL0iX4W2kgzOYNMxl0aYTCeP3su5ViVeq4RbAqUy5evyDk8ZxYttvWjvsycSfpxbinfxOTCpBfEjeNno42F+CrP1db/QSxyiLW8JEmSEKxZECMTnCZPnSaW7+XZshLi7HqSSN+UQDAi0Kh0Wlo3uIgfRSSq+HPljHTk3F3K13IdZW+6mh49fUmdamaS2neonomiR3Gl4u03UZF2G2j4gpOUJlkM+jp1HCr2bRJJ0/7XQ7TS8yplSxtX9qHcjBzRhQbMOi77+qYEghMBZ31wjO/LV6xC23fuZAMBF/Jo2ESMisw9YBzeolUbGjBwMMXgiaqly1dQDQ5BVbFydbp6/Rrd4nF/3foN7ZNgiLlsxkXavzcU9TMsEvA9DRbGCJjOa9UqldlFtK8M7GEpCUXkvDkzRKkI66U1a9YJmcu8+IYzOXLsmLj5OEs3mWf6YT2wc9tmsXKAUgVxn6CkKM9WikaGDh4gMfqg/MiXv5DM7q9YtlhOe3l70YaNmwgz+Ubg5opBRccO7eirLN+KVcbwob7NwKfPnCXxmDZvWCuL82DwACuGbqz4gHsp4gXOmj2XPOrXkZiRsDrA9f1LD2tRldBDIAIron9giz9YNOJ3AIGlStWqlekFLwJgxNnvF3HCYMGCMAVYlb59uzaUK29+k93+GT9+PBncTft9hvyOYVmz3DJJgADPUOzBhdv8zvHb7Nq9p7jKYUCO/8BvE8aJhSGsKD0aNZHBvP0i/mwE9T5NVljKoHMBMTEjYZ3UqWM7k4Tq1Koplsm/jBgtEwY4gf9i3Tq17XWH9dOJEydpw7pVMuB+wQpXdG5wj4l5EYlvvvmaZnD8M7NgA84ddgiZMGL4UCpWtLBcF5MTWJihSeOG9nrohhJQAp+WQGCxmXPlzEGIn9ukUQP6/PNUsggM3KQRexACV2D8p3v16Cb7F3mCAx4QVsEEDxaQgaAMuBkj/hReECgbkyVLKtuO5clBnzcssNWS3Z4xAdXAo54cdXY9a34sIIOY2zn5nsw9I/625959tGXjOnaFvmdN7nT7nxs3JI1p/0wGsIGlJxbgQ13xDICFONLNYu8SyIOHD+UTcbkDkvXrN0pexOeMyVb5mTJ9IUmncNzIju3bsvX+Cw7bY/OWgVIUElB5JUqVE8Up6lamdClJ6/jmeD3H87qvBD41gWLZk5DnyZt08pIXQTFpBC7Yri7had6Wi3Lo2YtXtPvETSqUxdZOffV5bLrj/Yyu3rL9T6atPc/Kyy+oZM6ktHj7ZZ40IYrGlpbxY0am+49fUHg+0KJCBpqz+SKhLBUlENwIwOgnsD54vwGDpE+/ZtVy8UaqVrWKGAg53seSRfN4UbgklCXL12I01PzHJtSBny8IM/Ll19kIIU1Sp7ZN3jnm1f69IxHdDwsEwrQyMgJb/UFixPhMGpaB/fvKLDzMqmHdCEVk3XoNZHCAdMbNB9sBSYL48QmLXjiTvfv2S6MGhQYErp8lihUTJQrcW41ky5pVNk26ouyiZSRZ0qS86vABsyuDGWPdgHsrkP97ghm4o6DBhczjAZERrKgJ5Sgs3hzFWXoom1RCD4FSJYvTzNlzxPIjSuQoYvnRq2c3Wu5jhYs7dfb7hcINAz3z28DAr0TxorKAzduQOnnylCQ/cvSY3RXODHBPnz5D19iqB5Izpy28AVYGK12ypFNlJPIE5T6RDgIFbVp2x7vBg+Vp02fKf23ZkoXkaFHd0KM+uwTWEYXjXh6QL+OZUQzW/2Srp25dO4sCAYNXY/mD/+nqFTYFAq6DWJqee/fTRV61HC5/Z/n1hcUqCmlgjWkELoinfdwrzTH9VAJKIPgS6MQThVDWFSxSXNoRTNrguQ0lG+TA/oPS/7AOVozrl7mrly9fUlR24YYgXiGsK0b+MlQWylm3boPEQcQq3ejL+Fce8uF5j4VgzrPb9tzZtslXHIcEdj1bCpK4k7DSdnd3I8TURR/mwoWL0t5hwRlYD5q22uRx9hneZ+Vgx+sjLmOUyJGlD4aJKViffJM1h3CC9wb6a2ZF74BWh1zAq5q379CZMPnc3MdSHZaMddntGm7gUKJCAYnBKCQ+9+UgAZXnuWubWLP27tNfvkvEpLT2Ef27nhSob0ogGBGo1HOb1ObHsjbLaFO1jG62xawu/WNT8uP4P3efiIIS2wljRyGvR28mqF+9/pdesVFF4jhR6czV++T18DltGVFM3LjHLTtDzcqn4/9SOBo23zaJgjJUlEBwIlCuTOkA++AwdECcZng94FkHQegqPHusgrE6FJEQd3d3+SzARhYQhG5KwkYHcPEOSLR/HxAZPR6aCYRpZSSUC4iPBDdHDAQQ0xEuOBBHRSSOYeDvTLBitsS+48GCq6tvvJ7skrmKV8Rsxo0Z3FMTO6zWGC+erVGD+6URq/sQjmGAYSQc8dSjRZInT2bZI24k48hCOr4O8o6393253+cWSzfcG16vXr12TP7W6f0UoAdCFIHsHN8R/wdYdUSOEll+F0Z5Zm7E2e/Xi2Nrmd+zyRP+HWIgwQoREoFd8czvFXXDABKujv/jeJSQaNGjyyfeXHg2PygSlPs05RQuXNAe5wVukbBYbNe+E03+bYIMVhFTdfrM2eIymT5dWol7idiXsC7F4gtYURczozdv3RQXS1Ou9dO4gOAY3Du/4vypP09lTSLb0aJFtR9zdfHdxthP6IYSUALBkgCeszu2bhSXaijZEA9y1Ohx9nZrx65dVNJiCZmCn+teHLfXKojjCytByDK2XIdlJGLYQjzYNRr9GkyEQBnpWB7SwDW7GisSERN6+ZKFvvo2zq6H/HAvq1m7nlhETubQMybe4qQpU3Ga5vCCXXiZ9rsDt4HV2YqkVs3qcj6gN4SNgeD5YRUoTpMls/VvypYpRenSpZEYwYhb+R23lYWLlqTkPuet+cz2uAkTaQiHCkF73KVTB/tgEuf79OrBluZFJH42FMDolxUvWcZuWWrKMJ/wYsFgFBNsWbNk4VXQW1Fdj4YyUM2dK6ckC+x6phz9VALBmUCcGJGkeo+evbRX87HPdkTX8OJuDYWjVaCQhBs2JM9PayWO5P7Tt+j89Qd06LfSNGX1OcqdKT51qZmZ7j14Tr1+PyqKS2sZuq0EPhWBwPrgZvwBrwSrYDLMKokSJrTvGqVlzJgx7MecbWj/3hkhPR8aCYTpkWylHyqIGzM6l4jdCIFC0j9FZLJkSQnuVc7ELEAzasw4atumlT05zLO79+pDr1hJieDrbm5uYs2AmEWRItke+nDNgnyeKpUs+mHPHMSN/QcOygI0CHoPgSl4tmxZ/OTGIh+w2mr3c2u7OyjyIhA+rESfPH0iedh7W8RZej8X0AMhmgBm76pUriju0pH5t1mRFyFwFGe/XyjSYG2CBzisRWDpgnhmZpEFx/IC2k+W1DbDCDdFEwMN8RXFrZktDL/IkEGyHv/juN2iZfcez4CK83U8KPfpK4PPDixnYN00aMgwXuRpugxwo3AstfE84L106RINGzLIng1WNalS2WZH0c4gdhmUvJhlNRY3iK+GQTXcIzGrum7NSkJsNggmNpBPRQkogdBBABZzT588lQVWcEdoI9dv2EjNeVEZCFbV7tals2zjLX369IRYVEZesAITlpU/Nmkkh6DQNIvJmDThud3BYisQx/LQfpYpX4kScIiMhfPm2C0KTV5n19uxc5fEvYUCFGFkTP8F+eGqbazhsX/jxk2xEoflJyxCnAncrmFpgv4IFvaBwMoegj4YniNDhv5CuXLlkEVpcBznoax0d3fjPb+CRcZ+GTlaYvdiIRurwCr114mTCBbteXLnklNo0yFJfaxbZMfnzdz7+rWrCJNOEKNwNdacgV3Ppxj9UALBnsD1W4+ljvFYKfknKxMhcT6LxH2Xf+n5y9f04MkLihrJ9xAyAispr958JGlf83915kZbHNxOvGgNujFjl56mo5PL8AI4N8k9UXQa3iw7le68WdLrmxL41ATGc4z7gPrgGFdjIhETcY05xArkEoduwzMkIDHPhIDO63EloARsBIJmQhRKaaHR6d+3twSExy1CIYnFJ6yu2TiOWf9xY2xuSNgPTBA7CfEhRrMysm+/gTyI8BTFiQe7QyEuVD++HpQzUPZAEKfxFLubzpk7XxavwUpbrq6+H/CBXc/xXJ9+A6Q8dL4R57Fieb+KpMqVfpBsiLuH1bTh6l3Po5G4XaHBxYAAgo73tWvXyVl6SaxvoYpAqZIlZJAHt4SS7LbtKM5+vyaWaO++/eX3iIVXMGB8W0GoAVhCYlEa/B7hktymXUeazVY3iDf5LVtxYvA6YNAQWeUOC0CZuGlBuZaz+wyojEbcGYEbOmLIIOg1FJuwSML1m7doLZZJUPiPHf8rDR4yXFwDI7ObIayX0HnBfw/3glVdET8OilbMqGKF7GvXrkm4BLRHGGg/9VlkIaC66HEloARCDoHIkSLLIjNYVAbPVyxChbahFlsxYnCD53bOHNntN1S7VnVpQ6Ekg3IPi4FBsKIzpEK5soQYvZiggcUjFlVB21O2bGl/y+vZu5+0xYh3hYlXrACK1x723IAEdr2HHJcRC4ahTS5UqADH691sz3/m7FmJbYlJWPOq76P8q8+hK8xK21COom+ECVpHweI8DRvUk/4QBn1Xr16jvtzGYgIILnE4f//BferJE7un2Coefad2HTqJRXrWLN9IcVj9GpbokD94ghV9IeNOZ+4Vn3geIawOFgzD8wXX2rZ9hywc2L1bZ7bGt1m8WMvLzQpL9Bv79R8o18Zk0YiRo8TdPgvX0dn1pFL6pgRCAIGz7GoNyZHRZq2M7YxuMenhU5vn1t93nlDCOJFxWMSNlYuIC3n2mi2fOY6VtWsUcqdxy05Lfigse0w7QtPWnSf3xG88Wkx6/VQCn4qAsz44DJi28/MCz2KMnfsPGPypqqrXVQKhisC7a71CCYYa1avKnWBAgFmMTZu3+LozKCJnzZgmbpe+TgSy05YtDmEtAEswDAwg6LxD8Wlm36F8QOyjvtypXbBwkaT5gS3QsJDOuwpi0WEQAsUmrgcLzGLFikhx4cOHs7smwbUI8aW6du8lAxgkgBK0Z/cukhau4HA3wgz/P//coCGD+geaXjLpW6ggYGJ2YWAFJR8sE1OmSCH3BmsbI85+vxj8jRg+hJV1g2XBAJQFRb0RE2IAbgzmmubTeg6ucIhn1rZ9R7HGQX78NkePGE5QnOM18/cpch6u0xD85mF9GJiYazm7T4nC7k9BUD4O5v9vqbIVZMXrGVwHWBrDQmny5Gm0avUayYX/IVwDO3VsL/tw3f5l2BBRRmCxLPxnsZgCLIoQZuH0mTOyujYS4z6xqAQsTOEG7p+EZ5d0F2aoogSUQPAjgOeuo2ByZ9/+/dSsRSuJUYi2cgqHe0Bbt2r1WokJi20jeF537dxR4kBicieVu5s8jxMmTCBJ2rVtzXGtH0kcRZOnSeOGbL3RkOZzHETEoDLleXl5y4JfSIfF8qyCdGhzArse+kdmUqllq5+t2aUdcwznYdpP67PjKMf/Rb+oQ/ufZRLHVyG8A8Xl2bPnxQ0c5/DcGM7W5saSHJO96JcUL1VWsqK9R7xvKCohiJ8J69FGDepz/2aVHMOkGl5WmcfPlVx8vwP69RFlZN7vC0q/qQYvCOhRr649qbU8tPtDBw3g7661uHIjERSlk38bJM8i59eLay9XN5RAcCZw98EzunLjEXnwCtjnWMGYIQUv+OQW276gzXhWLv7eKS9NapebJiw/TcN+zE4v2GJyFa+ebZUutTLzgjWvacqac/YVu5PHj0ZJ4kahJ8/8TkhY8+q2EviYBDw86gbaB8dz9dat2/IsRr3wzEQf/l1Fxj+B9N+1f/+uZDVfSCMQjhVwPs64Ia3qb+q7h12YcufO/ebAO2zBKgCzHVgow4tXgEzIDcz33+XlDq2H3c3yHYql+/fvs+v0U0IsJNNZtpYDF8wbN29S/Hjx/pNFpG2RjAu0cP4csZ5AvD7Tebdez7qNr/7mzVsUJ05suxWA9by3t7fE4kMHHOIsvTWvbocNAs5+v/jNwJoHA2f/fv9vQwkDaQzujeWuY95bt26xMjCWv79lx7Qfev8utyFPnz6Vjop/9224JUyQwD5JYOqEvJHYehqKTBUloARCJwG4Zz958sSuKMRdIrA94vGaxVOsdw4FG2JFmriK1nPYRnuDgRIWcjFWfYGV55jfcd/Z9RzTB3Uf9cxfsCjt3bMj0CxYTAYL9RhFqmNinMdgDhNS70PAKhYrgZ31m3AttN9Y+TtqlKh+XOTfR120DCWQoe6yjwqhKS9g06piBrJeN0PKmDSrSz5RImKkePqKN/3QY6u9XkObZqPSuWyxXJ8+f0U9px2lFXveKCOjR3GlveNK0YA5x2nOpguSb1m/gmIR6cKTB4t3XpY89gI/4Map6X69xD7g5bToEEzAWR8cz26M7a0hSULw7WrVQzEBhOUJ7HdqXXTvU2JQZeSnpP8er21VRr7HYrUoJaAElIASUAJKQAm8FwKI0Qgloom79V4K1UKUQCgjYFUKfupbgyXjvYfP6OGTN4vZmDphwZqk8aPa40qa4/hEPigrJ6w4Yz1MRbMloau3HtGpy96+jn/IHVVGfki6WrYSUALBkUBIUUaGeTft4PjjeZc6IdYFrAhUlIASUAJKQAkoASUQHAnA1c0/a/HgWFetkxL4FARgeRucBIrDgAQWkWaBG8c0yOeoiESaDQf/ckyq+0pACSgBJRBGCagyMpR88a15FXAVJaAElIASUAJKQAkEVwKqiAyu34zWKzgRiBsjIt25/zw4VSnE1gUsVZSAElACSiB4EtCVD4Ln96K1UgJKQAkoASWgBJSAElACSiAMEUAYg1wZ44ShO/6wt6osPyxfLV0JKAEl8F8IqDLyv9DTvEpACSgBJaAElIASUAJKQAkogfdEoHZh9/dUkhajLPU3oASUgBIIvgRUGRl8vxutmRJQAkpACSgBJaAElIASUAJhiMCXaRLSkMbfhKE7/jC3CoZgqaIElIASUALBk4DGjAye34vWSgkoASWgBJSAElACSkAJKIEwSKBMnpSUNnlMmrb2HO06cUtjSAbxN4AYkXkzxaf6JdJQuhSxgphLkykBJaAElMCnIKDKyE9BXa+pBJSAElACSkAJKAEloASUgBIIgACUaYOaZA/grB5WAkpACSgBJRCyCaibdsj+/rT2SkAJKAEloASUgBJQAkpACSgBJaAElIASUAJKIMQQUGVkiPmqtKJKQAkoASWgBJSAElACSkAJKAEloASUgBJQAkogZBNQZWTI/v609kpACSgBJaAElIASUAJKQAkoASWgBJSAElACSiDEEFBlZIj5qrSiSkAJKAEloASUgBJQAkpACSgBJaAElIASUAJKIGQTUGVkyP7+tPZKQAkoASWgBJSAElACSkAJKAEloASUgBJQAkogxBBQZWSI+aq0okpACSgBJaAElIASUAJKQAkoASWgBJSAElACSiBkE1BlZMj+/rT2SkAJKAEloASUgBJQAkpACSgBJaAElIASUAJKIMQQUGVkiPmqtKJKQAkoASWgBJSAElACSkAJKAEloASUgBJQAkogZBNQZWTI/v609kpACSgBJaAElIASUAJKQAkoASWgBJSAElACSiDEEFBlZIj5qrSiSkAJKAEloASUgBJQAkpACSgBJaAElIASUAJKIGQTUGVkyP7+tPZKQAkoASWgBJSAElACSkAJKAEloASUgBJQAkogxBBQZWSI+aq0okpACSgBJaAElIASUAJKQAkoASWgBJSAElACSiBkE1BlZMj+/rT2SkAJKAEloASUgBJQAkpACSgBJaAElIASUAJKIMQQUGVkiPmqtKJKQAkoASWgBJSAElACSkAJhCUCz58/D0u3+873Ck7K6p3xaUYloASUwEcn4PrRr6gXVAJKQAkoASWgBJSAElACSkAJKIEACew9dpGmrPiDDp+9TV4PnwWYTk+8IRAreiTKkjYeNSj7JeX8yv3NCd1SAkpACSiBYEdAlZHB7ivRCikBJaAElIASUAJKQAkoASUQVglMXXaABsw6RuFdI/MrBkX4TJ3ZgvJbePT6NW0/+YC2HttMXWp9RR7lswclm6ZRAkpACSiBT0BAlZEW6K/5Afb333/T3Xv3KHGiRBQvXjzLWd1UAkpACSgBJaAElIASUAJKQAl8OAKwiBw4+zhFiBqHKJwqId+KtIsLubhEIJeIUYVhRvd4aiH5VgA1sRJQAkrg4xFw6cXy8S73Ya509epVSp48+TsX/u+//9KEib/RTy3b0Ogx42nO3Pn026QptH7DRorPCsnUqT9/67JfvnpFp06dprXr1tOxY39QrFgx+RXrrct5Xxn2HzhIf164QClTpghSkVDMPnv2jFxdVV8dJGChKNGdO3do3foNhN9AggTxnd7Z6jVrJU3cuHH9pH348CGtWr2GErFyP0qUyH7OOzvgLP+27Tvo8JEj3FkPJ/9Vx/LWrF1Hx0+c4PYhGUWMGJGWr1xF//vf/+jU6dP215UrV+nFy5f+5reWh3Zi37793C5sot2795C3tzdPWMSlyJHf/r6s5QZlG98H/o9B+T6CUp6mUQJK4MMTQD9g4aLFlIL7J5EiRbJf8OnTp7THcy8d/eMPis39gujRo9nPmY0lS5eRl5eXtF04duHCRUJ79/qV/+3ytWvX+fxOaZOiRo1qirF/OpZ39eo12rR5C929e5eSJElM4cP7VngEdj20hcdPnKRd3A4iPluiRAnt17FuPHnyhFauWk2JEyd+q3byFXM7cvQoHTx4mKJFi0YxYsSwFkt4Ru3YuYsuXrpECRMkkLbdVwKHHdRx567d9MfxExSZn0OxYsb0lcLc64MHDylhwgR+WPhKzDuPHj+mLVu20l88eR03bhw/13d2PcfydF8JOBLoN20PXfWKoIpIRzBvs8/9wvCukbgdvUel86V9m5yaVgkEiUBg4x9nBRw6fJjOnjlHbm4pnSXV80rgnQg8ePCA/OsPmsJceOImOEiY1zShU92pSzeaN3+hn+8DysSmzVvQkEEDqHKlH/ycD+jA7du3qXLVGnTh4iXuqNoUND169aGvvsxMC+bNfqtOeUDXeNvjc+ctoFu3btF3+fI6zQolS12PRtS9ayfKmiWL0/SaIHQRgDJ+2C8jKVOmL2j1iqVOb657zz7UqEF9SpsmjZ+0t3nQ2KZtB1qyaB5ljf32vyVn+SdMnER79+6jggXy07Qpv/m6/vXr1+nH5i3l2PatG3nAH51atvpZ9mH5DHn+4oUMbLHdskVzatumFTb9CBSBzX5qJYN3nMT/GgNilDNt6iTKkD6dnzzv80Cv3v2oatXK9MUXGd9nsVqWElACH5DAoEFDaNKUaZQjx7d2hdqNGzepZp16dO7ceXs70qrlT/Rza1tbheqgX9JvwGAaPXK41A5tDwY9aG/+/ucfqle3NvXu2V3OYdKofsPGtG3bDvv5HyqUp2FDBrJ1kK2jaS0PirTqNWrTsT+O29OnSZOaFs6bQ7Fj2yZMA7seJncaNW4m9TDtYIXy5WjE8CE8JxRO6mTeBg4eStNnzKI1K5fJhKw5Htjn/fv3qVTZCoRJInO/Y0ePpDKlS0q2ffsPUP0GjenRo0eiqMTn9GmTKf/33/lb7IKFi6hXn/72c0jfr28vql2zhhybOm069e775jzuadWKJZSEFaj+CZS6eKaZe0cd58yaTqlS2WLTObuef2XqMSXgSODoxcesiGRlpMp/I8BWpcLyv5WiuZWAvwQCG//4m8FycNHipXT27DnKn9//Z5clqW4qgVBNwPdUeKi+Vf9vrnPX7v4qIk1qdPQ7dOpC6IAGRaDIq1WnPnnffyAd8EP799DBfbtp5vSp0vkfOXpsUIr5pGnusTXGkSNHP2kd9OKfhgAsUmbPmUfff5ePTrDlCwasIUG2bN3Gs9/evqq6lq0J/ZPmPzahvXt2yOvwAU/as3MrlShejK2ixxGshfyT3Xs8RRE5dPAA+vPcKUK+zRvW0n2edeo/YJB/Wd7rsdkzf6daNaq91zK1MCWgBD4MgZs3b1HTZi1EEel4haHDfxFF5KIFc6UdmTRxPI3ifsHGTZvtSc/wAAWTHVmzfMOWhWtEEYk+BNqtiRPG0u/TZ9LBQ4clPawloYhEeTg/asQw6a9s3bbd3/IWL1kq7frWTeslPRRvUIxOnDRZ0ju73oRfJ1GixIno2OED0rfp27snLV22nKzXQ0Fok6GIfFsZPNSmgDX1a+BRjzp27irWiLA0bdW6LVtDxqdd27dwHfZTs6ZNZKLor7/+8nMpTCINGjKcqlSuSEcP7RPeUJx2696L7t3zEmtTKCLLlS1DJ44dknvKmCE9NWrSTDwDHAuEIhdK4vr16tCBvbskDya0TL/O2fUcy9N9JRAQAa8nH3d4lj5FTFo1sJCf6pTIkZSmd85LUzvkoVxf+PaUSRg7MnWt9SUt6VOAutX+klzCv5mMKJQ1Ma0dXJjGtsxB8WO98R6pkC8FrRtS2M91PuSBj83yQ96Llh16CMAAYviwwaHnhvROlMA7EgjTlpFH2X0aFoMBCawFihQqJC7cmFkvWaK4U6vGTZu3svvnGRkYGCsmWAvAIrFNqxZ08n+n6PHjJ2w2G0UGGzNmzRF30YTxE1CpUiUoJ1tQQOBOtJ0HGXnz5KZFPHhAJ7d8ubL0zddf0ZSpvxMGK4UK5hclSpQoUWTA8vLlC3GZ2rFzN7m7u4klQbq0/rsmwHT3dx4onDz5P4rHlgDlypWh7NmyEtyqxo2fyDUgmjptBlsfPJa6B5ReEupbqCEAqxNY3vzGA2TM2M2dN18seq03CEX1qtVr6Q679xlrFXMeFjhwjcbANErkKJQrVw5zyv4J1z6EL7hz566UDSsf/IYhQclvL8hnI2fOHGIduZnd5ir+UN5+eumyFZQtaxb7oN1+wmEjadKkVKtmdanTmbNn7W6R1mTnz/8pu7DAdPWxNkL4hh7duoi7JQbJOA5lLgb7ezz3iZXQd/nyyP/WWAzBLQOzobdv35H/aLUqle0WNYGdg2I1U8aMPINqGwygjZk3fwH99dff9Pnnqahm9Wr2eo8ZN0HaEbRvh1hhAbfDurVr2a9jvS/dVgJK4P0TaNWmrTyjW/zUjMaMHe/rAlu2bqeiRQrL8xYnsJ3K3Y3bjWVUpLBNGbBr926xlkC7iLYyX948dq+GYkWLUIoUyWkFh5xA+3ac+wqQTD5W0zlz2NpctDFGrOX9+ecF+qlZU3t7kDlTJrHsPnPmrCQP7HoZWFH36PEjatzQw27pWK5saereszeHgbkoFuooBIpUhL2BhWZQJ3JNXdFu/9T8Tf0astU9+jzoD6FPhedTz+5d7e0dnh/jf53Ik0VbqU7tmjRj5mwpCtvoJ6EfhzQI0wHBMwvK0ysc3se067ifzz77TM5Xr1ZFlJvIC4t3a3nePFFbr04tVm5WEqtT5EmXNo2EwEFmZ9czlqdyIX1TAoEQCBfeJZCz7/dUioTRaHbXfBQ1su8hYf0SqalDtUx02/spxYwWkXJmzENNhnvSzuM3RPG4amBhzuNCf91+QjULp6Jv08ejsl23UKQILjSmRQ5au+8aKzATUL8G30g+1Lpzjcy0dv/193sDTkr7mCydVEVPB3MCF/g5toSfD+bZkDt3TqpRrao9ZFlg4x9M5GEMA0EIFIR5q8lGBOFYST9r1lw2UvKm0qVK2q34Dx8+IuMgt9opZcy/jcdN37OFP8YQGB/lzpWT8DxyDKESzBFq9ZTAWxP4uFNvb129D5sBnXkjcePEMZvyCZfT+XNmUscObalSxQoSH277jl2+0vi3g4YK7jtQ7DlKa1ZGwgoCiki4chcpXppGjhojDZbnvn1UtXotji+1RLJd4PiOcJWtyVaWECgWatauRxUrV5NGDnGU4Cq0bPlKOb97zx5q/XN7djcawK5NCWn5ipVUoWJVunT5spy3vsFNqWSZ8jTh198kBt3BQ4eoUpXqokRCuogR37iGRIwQQdyhAktvLVu3QzaBBQs5vhkPdDOzi3aVKpVEWQ9rXyP4fZevWIW279zJD2cX8mjYRAae5vyUab/LQO4W/74vX7lid5M252F1id8xFJ0YmA0aMox/p1XoJcdshDjLb8qxfuK/W6xYEYlNaY6jQwHLTijZnQniUppJCTMZ4JgnT+5ccghWzzNnzxGLGhyoxq7TcKU0CsrWP7ej9h27sFLyJcHdEP/JXn36SV7U6YdK1ej69b8oY8YMtGPHTipQuJi0BYGdQ+ZZPGlx5NgxKQdu6cVLlpEJiMRsoYTBct7vC9JpH2XC7Nlz5f88Y+Ys+X+jg1S63A8yCSIF6JsSUAIflMCPTRvT7h1bxMLc8UKIFxk7dmxfh11cXen8n7YJD5yApWPB/PklDdpRtBdGMLEBpSDaEUjhQgXls1uPXoQJGSgGIZjINGItD+7d7dvZwlXgPMJZYHLDhJoI7HrROBbl9KmTZWLWlG36RWl4cgaCwViHTl1FUdqgfl2TLEifeNagf2KdRDXu0ojP+PzZcynHqtRzjWBToFy+fEXOoe+zaLGtH/Vl5kzSj3NL+SYmFyw2IW4cPxuTvBBf5bna+j+IRQ6xlpckSRIJ54EYmeA0eeo0mYwqz5aVEGfXk0T6pgSCEYFGpdPSusFF/CgiUcWfK2ekI+fuUr6W6yh709X06OlL6lQzk9S+Q/VMFD2KKxVvv4mKtNtAwxecpDTJYtDXqbk/9m0SSdP+10O00vMqZUtrC1cF5WbkiC68QnjI8LiRm9C3MEMAbTr65OibYxILz4fuPXrTWJ7ghzgb/2Ac3qJVGxowcDDF4ImqpctXUI1adXncXp2uXr9GGBfVrd/QruiEYQaeLxCM+YePGEXVa9YRReQLNi7q0q0HTZo8Vc7rmxIIzQTCh+abc3ZvpvNala2TDrI7NWYgIFBEzpszQ5SKBw4eojVr1snxy/4o9uSE5Q0KA7j5OJPJPNMP64Gd2zZT/769acPaVWIJ0bN3X3rx4oU9O9xCcX7qJJu1Imb3VyxbzHEs+4sCZsPGTfa02Fi8cB5169qZtmy01dnRKgNpprOSAvGYVixdRH169aC1q1fIbE03bnRhidGIrQQgHvXrEKzOAksvCfUtVBDAQBAWI5gFxIDXDLCWr3ijtO/HLskYtOL3OmzIIPm9mZuHVW3ffgMJbnUYsM74fQp1aN/WnBZlWH9+SMMlbuH8OTSwf1/asG6VDIRhDeMsv70gfzbKlColboHGVXsNWxPBaggLRzjKuAkTKWfu7+SVJXsu+uLLLKLIHDywv8SVdEyPfVjkzJ75u7gKwsUPHRbkRUw01BsCy8YVK1fToAH9aMyoETRl0q/y34VLJSYF/jhu64Dj/wwr6enTplCdWjXp7r17gZ6Twi1vffk7gMJ4v+dO+f8e3LdHYqcNHfaLPRW+o22bN8j5MaN+kQH+qdOn7Od1QwkogQ9HAJ4Qxtrb8Sq5+Jk6f8FCgoUiBAMSuEk/5MVTIHAFxmIrZgLk4sVL9niTkoDf4rAy858bN2QXltFoU2Fxjckh9AmgbEyWLKmcdyzPlIFPeGm0ZLdnTG6i3YY4u54k8nnDAjKIuY1+golHjfjbnjxhgljbJmalNU9g2+aeHBesQVxGWHpiAT7UdRZPuKDdhEU6JmogD3hSCYK43EsX++/xsn79RsmL+JwxeREbxEWGTOG4kRh4YmIKFucQKEUhAZVXolQ5ed6hbmVKl5K0jm+O13M8r/tK4FMTKJY9CXmevEmTVp31VRW4YLu6hKd5Wy7K8WcvXtHuEzcpRQLbYltffR6b7ng/o6u3bP+TaWvP80QEUcmcSenMFW+sKUjR2NIyfszIdP/xCwrPB1pUyEBzNl8klKWiBIIbARj9fPPN1zRrxjSJH4849Ng/7BO2LLDxj/VeECO/H8cl7talo1jyV2PDjt8mjOMxwUR5fjmGNLHmHTF8KI0bM1LSYwyDvoCKEgjtBHzb5If2u3W4vwhs9QeJEeMzMYOGcgSz8DCrhnUjFJF16zWQwQHSGTcfbAckCeLHp795Bt+Z7OVVeaEwgFIBAjPsEsWKiUWENW5dtqxZ5bxJV5RdtIwkY/dSuNUaQafYWDfg3grk/55gBu4oaHAh83hAZAQrakI5CotNR3GWPh6boquEfAJwvTZiXSFu2u/TqXatGhJDC3HKYPVj3AbwsMR/BXLuvM2yx2qRU6pkcRriEwMMynwM8LCQEh7qVjn5v/9RunRp5VBA+a3pHbcLFvheDhlX7cVsGdPAo75jMtmHyyNcI1GXOeyGjt89lPi4l8AE9cLkAQbgnuyGjWv9ygvoyOwmK/ZPnrQp+44cPWZ327vHA2bIabY8grU0BtKwYsT1CxcqQK1aNufVb+MRLI4COmetExQLJ06cpCaNG9rdRmBpDesouIUYQV2NIgAWQJAnT56a0/qpBJTAJyLQqUM7UdYVLFLcvkALntv4/0MO7D8obSrCQBiBtaFVYEke1Se0BeIVwrpi5C9DZaGcdes2yIIsWKUbfRn/ykNZaPewEMx5VorOnW2bfDXXCOx6Jg3iCcOKw93djcaPHSXPBFh4QzmJBWdgPWjaP5PH2Wd4XmwC4nh9xGWMEjmy9MEw2QPrk2+y5hBO8N7AM8is6G3aPcdrLeBVzdt36EyYfG7e/Ec5DUvGuux2DTdwKFHxTMDgExKf+3KQgMrz3LVNrFl79+lP+C4Rk9LaR/TvelKgvimBYESgUs9tUpsfy6bzVauMbrFk/9I/NiU/dv65+0QUlNhOGDsKeT2yWSpj/9Xrf/n1mhLHiUpnrt4nr4fPacuIYuLGPW7ZGWpWPh3/l8LRsPknkVxFCQQ7AuXKlKYC7CbtuXc/T8pdlLAbZ8+eoy/YMwEhmAIb/5ibwVgdFvQQd3d3+SxQIL98woMqSZLEEuJKDvjz9m32bPajsM40Hk/2g7qhBEIhgTCtjEzLsX4QHwlm0BgIwFoJAWUhjopIHEPD4EywYjbcgDBYcGXXK6t4eu6lVbwiZjNW5rzmhi2xw2qN8eLZlDowzzZidR/CMQwwjIQjnnq0SPLkySx7WPE3jiyk4+sg73h735f7ff78TUcC94bXq1evHZO/dXo/BeiBEEEAijkIVn81ApdCDFqh9MZvGwKrHKtgMAiBWzLE6oJoBpc47u1zPior3qy/PQwGMRh3lh9lBCT4/yIWy4pVq8Sl8QJbExUrWlhitDrmwQAU8cQgcEUvVbo8/dSiNa1euVQGtY7psQ/XbCj7ofRzd3OTV43qVcXCCS6Jx3lgjsVsIBHYbdDcH+qF+wMTxKZcx1bIiAGLuJrIh/OzeRYWA+DAzknB/PYvd/YhZqAsO/yWgBd0sIqJf4ZjLi62dgiLcakoASXwaQngObtj60aZzICSDZMjo0aP4/+pTRG3Y9cuKskLahlJwc91L15sxSpYfAVWgpBlbFUOy0gszALxYNdo9GuWsYsYlJGO5SENXLOrsSIRMaGXL1noq2/j7HrIjwmYmrXriUXkZA49Y9qbSVOm4jTNmTtPXqZN7MAL0FSvWkVi80qCAN5MO+bFsRmtgmdQsmS2/k3ZMqV44iqNTAjFihWTvuPF1goXLUnJfc5b85ltWMNjUgxeH106dbBPpuE8vEMQhxPxs6EARr8MYTCMZakpw3yiHcVkHCwrs2bJwqugt6K6Hg1loIoYX5DArmfK0U8lEJwJxIkRSar36JkthA52HvtsR3QNL+7WUDhaBQpJuGFD8vy0VuJI7j99i85ff0CHfitNU1afo9yZ4lOXmpnp3oPn1Ov3o6K4tJah20rgUxEwbti4Phbx/OqrLyk1ex5ATJ8+oPGPJOK3RAkTmk37cyZmzBj2Y842okWLak/i6tN3tx/QDSUQSgnYer+h9Oac3ValHyrYGwvEbhzBL4h/ikh0TOFe5UxMzLlRvDKvVeBO1L1XH9qzx1MUCW6s0IDS0sQsQlpjjv15KlvjZ80flO39Bw7aXUaRHqbg2bL5tfZyd0spFgDtfm4tHXF0xqHISZkihViJmmsZY4ygpjf59DPkETh16rRY3MH1GitFmxdcgSGz58wVt0MMpDEQNQL3YywoADFWufvY6teI1XI3Of+HIHB5xm8OLywAk5RnETGD6Cy/KTOgTyxMgNhoWHQHHQlHhZ1/+RBvciy7ROAe2rHVTEACS0ismg3lrFWM9dLrf19TsqS22VCszG3urylbMMLaGopMzKpCSQAXwU3r18hq3LDEQVyZwM5Zrxc9enRRYO7cuct6mDazVWQWH4seXyd0RwkogWBFABZza9auFwu92jVrSPuwfsNGuxUFVtXOly+vvc7p06cnxKIy8oIVmHCDxvMaAoUmlHJWCc8WGFh0DuJYHladLlO+klhjr1m5zJciEumdXW8Htz1QREIBOmPaZLsiEnnhqo0J3WxsBY7XF7zoFgRtOyxCnAncs2HliL6MEViCQ9AHg8XkYF4d+8aNm7IoDRb1+4tjZ0JZ6e7uxqn8ClYqhyISsTK7delk7/MhpSyGw6FxEM6jcaMGsgAPJo0heC45Cu7dPXV6X9YqRuFqrDkDu55jebqvBIIrgeu3HkvV4vkoJbET57NIbLDwLz1/+ZoePHlBUSP5NriIwErKqzcfSb7X/F+dufFPUTa250VwWIdPY5eeltW1//zroSyIM7xZdkmrb0ogOBAYz+sowLLxfyeOSpiptm1aibUvJqAQdiWw8Y9/9TfPBP/O6TEloATeEAjTykg0OojfZla6hUKyQaOmvlyzgQqz/uPG2NyQ3qDzfwuxk5r/2IRGszIS8fN2s/IRceQ82B0KcaH68fXgylOlckUpAHEaETx+ztz5sngNlIKurr4f8P5fyf+jffoNkPJ+GTla4kJWLF/eT8LKlX6QY1279xRrACiM6nk0IrhdocE18ZrQ8b527To5S+/nAnogxBFAvDFI8WJvwgBgH8ovuLXhN3zz5i2CAv//7d0JnM3V/8fxjzW0IZOlElqkX3vqV9q0oGQrJWuWbOlfCilpkkhIm7KkRQtaqJC2369FlNK+/gollazZKpRk/ud9+N6+c907F5kx3zuv4zFz7/0u53u+z+93rpnP/Zxz3nSDOz/sxthSJsmtg4ZoM1/0R6SCgBoj8ZX/vOqDliNHjQ5W+8xArX/QZV5qoiYNFq3u2oMGD/X3XKr9YxUleXL6aaf5NY8+Ns7/oZxks60Wq3t2R9elWx8O6DwTlWYXNbX5LtuyqZvoSbPe6o/lpydOsk5drvCBxqOPPtoPi6BMR40jqZ8dda+4ptd1Nt5lCWVklHPvM+bPVZmnykwKJpfS5Ao5rYtvj2aX1TXQBFRz580zjRWptikISkEAgfwtUGK3En6SGX1wov9fNUh9CdcFuXXL5v49QeM5n/Tvv/9Ib9O6hf8/Xe+5CsINcYE1Fc3orHKBC8jpPU/vXXpf0aQqmuSqUaMGCevr13+gD941d5mK+uBVE1zpa9aWIFxOx9OYipqUS+9zZ599phuf8rXY/nPmzvXvQfoDLvhq72axVmnf9tLYTNsKjup3I31AG1/0u1jHy9r534f0odePPy40jZGrzHG9T2v9L7/+Yv3cB7v6AE2/O/Xqfb3PWD/+uGN9dZrQK8ju/8zNNK7fhYLhRIJz1aMCmBpWR5MV6D1bx5ruZuzWxIGZN/ZxGe6bM/7D9dWqdbL/Y3Xgrbf5Y+v/jLvuvsf/H6APg1IdL/58eY1AfhWY67paq/z78IxYEw+vsrf99vvmnluLV6y38mVLxNZVqbCHHxdy7sLN+wUrNLN2y7Or2ojJX5v2V8DyprEf29iXv7GqFfcINuMRgV0uoKxGzWK9cOFCP2SZYgL6MOz3P/7wbcvp759d3ngagECEBXY86hXhkw43XV0tVfQHgT7FCI+7puUKRGow22Ncuva2lp4u43C33Xbz3bD0h4GKfnlX4DMYlF5jumnsowHul1oFNVQuvKCJWzbAP9+Rb8q+0h8hCmzqeP0y+/pJblRX4cKFYhkB6lqk8aX6Zt4cC74oCNov8wZ/WHUFV3cjfcK/ZMlSP1lOTtvvSFvZJ/8IaEiBJ9yg/cp0CbrbhVunwLkmXNDkNl06d3RjPv7sxyTTNhrfRPddUDRZylXX9LTOXbv5RapzvguUBUWZl336Zvo/ILVMGTNadtiW8SJT7R/UEzxqUPTgwwSNnajjafw0jceoEoxtGWyjn4tEpcc1V/kMRY13VvuM02IB+WDb2rVPtwnjHjVNMNWjV+9gsf8jeMhtA/1s2uq2p7HXel57nbVp28Fvo5+j4Xfd4YP8+rnrftX/uT9eh5v+mFVRoF8TZ+lDgGTrtF2x4sX8L/p6rmEeNNmQZiLXl4K46nqoLpmJSnDugUWibViGAAI7X0D/78aX+m4c3dnvvWfdruzueygoUPbQmFG+26/G7dV7qt5LgqL3jb59rvPvuf0H3GrVqlbx/3+XL7+v36RXz6vduNZr/TiKwT56n+7cqaM95cZBDNenCb6CSe/0XhYu2k7vVzkdT78fKYinclX3HuHdfcZ3eBZsv9K9P6soUzMon7gxdfV7Ue9re/j3zWB58KjA5dy53/jsSy3TB7x3uP8jgrEb9WGvfi859/xGfpd67gM0jfcdvM/p/V/Zo53chzZTn5/mt1Hmub7C5Un3Xn2yO99BA2/xwUiN5av/H1q69+MO7drGNg3XpzG/bncT83Rzw3qoK7eKAqUPjhns38NTH2+fWL08QSA/C6z89Q/7Yela6+BmwJ7nAow1KrsJn6qUiU1oM9IFFx+5/lR7oFctGzXlaxt2+Qn2p8uYnOZmzw6XG1of6Sas2WQPvTgvNmP3ARm7W6V9Str6P7b+QCK8L88RyEuBDh3auiSCOVb33Ab+sPr/8LIO7fyYwuppkOrvn+1tq34nz+n38sJu6JYibhsKAukuUMgF4LKPjB7BM57lujDVqlXrH7VcWQHKPNDkE6vdpBPlK1RwWV6nul9oO1i1alV3uG6Ng6eJIzQWUvDLcrgypX8vXbbMMsqV+0cZkQqiaHZOzVKs7AmNPxn88h4+Xvi5Lr2y3cqWLRPLAgivV8Bjd5cZp1/AVVJtH96X5+ktoPFTdG8nm7xI6/SfrDIrExXNQK0sm2RdqVPtn6jOvFqmGWiX/7zcZ3oGPxvxx9Yf/QpEBFnG4fXKCFLXwooVK2z1c5fTunAdeq4/uH92gQF9mpvovSV+e14jgED+EdB7qN4Hw4HHFW4iOY0nneh9UT/vGisyGFcx/kw0hIQ+KNJELkFWX071xe8f/zrV8eK339bXamfts+rau7Nm5LiLhrDQB2Vhn/AOWq//Y5LNWh7edluey6q0CwKn+r1Jden3Ns38Xapkqa26yG/LsdgGgVQCNdpOTrXJTl3f1U1g071pDQsft8aBe9u4G07zQUT9pfi1myX7wpveiB339q41rcHJm8dy/X3DX9Zv7Cc2ddbfwcg9Sha1d0ecb4MmfG4TXp3v95s80I277TIii7gPKp6Z+b3fJ1ZhLj756tGte4nl4uGoOsICK10MYDfXgzFZ8kKqv38ifOo0Pc0ENCxPsr/TdarhSfd25akTjNyV+jvx2OFg5E6slqoQQAABBBBAAIGdIjD6/gd8EFFjNFIQQCCxQDgomHiLvFuqTMZVv/1hv63/ezKb4OiasGa/jFL2rZukJr5oPwUrR02dk21V3ZqV7Mfla+2r79dkW56bLwhG5qYudSOAQH4UiEowssB3086PN8+OtEnZUcoioCCAAAIIIIAAAvlRQF3dyOTOj1eGNuUXAWXe5qeiwGGyoozIRIFIba/94gORWv6fDxbpgYIAAggggIARjEyTm+Dq7lemyZlwGggggAACCCCQjgIEItPxqnJOO1NAww/ss1dxW/HLhp1ZbYGtS5YUBBBAAIH8KcDIqPnzutAqBBBAAAEEEEAAAQQQKGACJx9etoCdce6dLpa5Z0vNCCCAwD8VIBj5TwXZHwEEEEAAAQQQQAABBBDYCQKX1qm2E2qhCglgyX2AAAII5F8BgpH599rQMgQQQAABBBBAAAEEEChAAkcevK8N7XxsATrj3DlVGcqSggACCCCQPwUYMzJ/XhdahQACCCCAAAIIIIAAAgVQoOEpB9qhB+xtY1+aZ299sZwxJLfxHtAYkacekWHtzzvEqlcuvY17sRkCCCCAwK4QIBi5K9Q5JgIIIIAAAggggAACCCCQREDBtMFdTkiylsUIIIAAAghEW4Bu2tG+frQeAQQQQAABBBBAAAEEEEAAAQQQQACByAgQjIzMpaKhCCCAAAIIIIAAAggggAACCCCAAAIIRFuAYGS0rx+tRwABBBBAAAEEEEAAAQQQQAABBBBAIDICBCMjc6loKAIIIIAAAggggAACCCCAAAIIIIAAAtEWIBgZ7etH6xFAAAEEEEAAAQQQQAABBBBAAAEEEIiMAMHIyFwqGooAAggggAACCCCAAAIIIIAAAggggEC0BQhGRvv60XoEEEAAAQQQQAABBBBAAAEEEEAAAQQiI0AwMjKXioYigAACCCCAAAIIIIAAAggggAACCCAQbQGCkdG+frQeAQQQQAABBBBAAAEEEEAAAQQQQACByAgQjIzMpaKhCCCAAAIIIIAAAggggAACCCCAAAIIRFuAYGS0rx+tRwABBBBAAAEEEEAAAQQQQAABBBBAIDICBCMjc6loKAIIIIAAAggggAACCCCAAAIIIIAAAtEWIBgZ7etH6xFAAAEEEEAAAQQQQAABBBBAAAEEEIiMAMHIyFwqGooAAggggAACCCCAAAIIIIAAAggggEC0BQhGRvv60XoEEEAAAQQQQAABBBBAAAEEEEAAAQQiI0AwMjKXioYigAACCCCAAAIIIIAAAggggAACCCAQbQGCkdG+frT/TTb7AAAfH0lEQVQeAQQQQAABBBBAAAEEEEAAAQQQQACByAgQjIzMpaKhCCCAAAIIIIAAAggggAACCCCAAAIIRFuAYGS0rx+tRwABBBBAAAEEEEAAAQQQQAABBBBAIDICBCMjc6loKAIIIIAAAggggAACCCCAAAIIIIAAAtEWIBgZ7etH6xFAAAEEEEAAAQQQQAABBBBAAAEEEIiMAMHIyFwqGooAAggggAACCCCAAAIIIIAAAggggEC0BQhGRvv60XoEEEAAAQQQQAABBBBAAAEEEEAAAQQiI0AwMjKXioYigAACCCCAAAIIIIAAAggggAACCCAQbQGCkdG+frQeAQQQQAABBBBAAAEEEEAAAQQQQACByAgQjIzMpaKhCCCAAAIIIIAAAggggAACCCCAAAIIRFuAYGS0rx+tRwABBBBAAAEEEEAAAQQQQAABBBBAIDICBCMjc6loKAIIIIAAAggggAACCCCAAAIIIIAAAtEWIBgZ7etH6xFAAAEEEEAAAQQQQAABBBBAAAEEEIiMAMHIyFwqGooAAggggAACCCCAAAIIIIAAAggggEC0BQhGRvv60XoEEEAAAQQQQAABBBBAAAEEEEAAAQQiI0AwMjKXioYigAACCCCAAAIIIIAAAggggAACCCAQbQGCkdG+frQeAQQQQAABBBBAAAEEEEAAAQQQQACByAgQjIzMpaKhCCCAAAIIIIAAAggggAACCCCAAAIIRFuAYGS0rx+tRwABBBBAAAEEEEAAAQQQQAABBBBAIDICBCMjc6loKAIIIIAAAggggAACCCCAAAIIIIAAAtEWIBgZ7etH6xFAAAEEEEAAAQQQQAABBBBAAAEEEIiMAMHIyFwqGooAAggggAACCCCAAAIIIIAAAggggEC0BQhGRvv60XoEEEAAAQQQQAABBBBAAAEEEEAAAQQiI0AwMjKXioYigAACCCCAAAIIIIAAAggggAACCCAQbQGCkdG+frQeAQQQQAABBBBAAAEEEEAAAQQQQACByAgQjIzMpaKhCCCAAAIIIIAAAggggAACCCCAAAIIRFuAYGS0rx+tRwABBBBAAAEEEEAAAQQQQAABBBBAIDICBCMjc6loKAIIIIAAAggggAACCCCAAAIIIIAAAtEWIBgZ7etH6xFAAAEEEEAAAQQQQAABBBBAAAEEEIiMQKEsVyLT2iQNnTVrVpI1LEYAAQQQQAABBBBAAAEEEEAAAQQQQACBWrVq5QuEovmiFf+wEVWqVPmHNbA7AggggAACCCCAAAIIIIAAAggggAACCOS2QFpkRm7YsCG3nagfAQQQQAABBBBAAAEEEEAAAQQQQACByAoUL148X7SdMSPzxWWgEQgggAACCCCAAAIIIIAAAggggAACCKS/AMHI9L/GnCECCCCAAAIIIIAAAggggAACCCCAAAL5QiAtxoyMl1y1apUtWrTI1q1bZxs3boxfzWsEEEAAAQQQQAABBBBAAAEEEEAAAQQiJVC0aFErVaqUVapUycqUKROptocbm3ZjRq5cudLmzJkTPkeeI4AAAggggAACCCCAAAIIIIAAAgggkDYC1atXt7Jly27X+TBm5HZxbfvGyoikIIAAAggggAACCCCAAAIIIIAAAgggkK4CUY5/pd2YkevXr0/X+4zzQgABBBBAAAEEEEAAAQQQQAABBBBAwKIc/0q7YCT3IwIIIIAAAggggAACCCCAAAIIIIAAAgjkT4G0C0aWLFkyf0rTKgQQQAABBBBAAAEEEEAAAQQQQAABBHaCQJTjX2kXjNSMQhQEEEAAAQQQQAABBBBAAAEEEEAAAQTSVSDK8a+0m01bN9mqVatMA3muW7fONm7cmK73HeeFAAIIIIAAAggggAACCCCAAAIIIFBABIoWLWqlSpUyBSLLlCmz3WedX2bTTstg5HZfDXZAAAEEEEAAAQQQQAABBBBAAAEEEEAgjQXySzAy7bppp/E9w6khgAACCCCAAAIIIIAAAggggAACCCAQaYGikW79lsavWbMmHU6Dc0AAAQQQQAABBBBAAAEEEEAAAQQQQCBXBDIyMnKl3u2tNC26aW/vSbM9AggggAACCCCAAAIIIIAAAggggAACCOS9AN20896cIyKAAAIIIIAAAggggAACCCCAAAIIIFAgBQhGFsjLzkkjgAACCCCAAAIIIIAAAggggAACCCCQ9wIEI/PenCMigAACCCCAAAIIIIAAAggggAACCCBQIAUIRhbIy85JI4AAAggggAACCCCAAAIIIIAAAgggkPcCBCPz3pwjIoAAAggggAACCCCAAAIIIIAAAgggUCAFCEYWyMvOSSOAAAIIIIAAAggggAACCCCAAAIIIJD3AgQj896cIyKAAAIIIIAAAggggAACCCCAAAIIIFAgBQhGFsjLzkkjgAACCCCAAAIIIIAAAggggAACCCCQ9wIEI/PenCMigAACCCCAAAIIIIAAAggggAACCCBQIAUIRhbIy85JI4AAAggggAACCCCAAAIIIIAAAgggkPcCBCPz3pwjIoAAAggggAACCCCAAAIIIIAAAgggUCAFCEYWyMvOSSOAAAIIIIAAAggggAACCCCAAAIIIJD3AgQj896cIyKAAAIIIIAAAggggAACCCCAAAIIIFAgBQhGFsjLzkkjgAACCCCAAAIIIIAAAggggAACCCCQ9wIEI/PenCMigAACCCCAAAIIIIAAAggggAACCCBQIAUIRhbIy85JI4AAAggggAACCCCAAAIIIIAAAgggkPcCRW52Je8Pm3tHXLlqlb319iybNu1F+33971a+/L5WrFix3DvglprXrVu/w8f5bsECe/PNGXbYYdWTtnPNmjX22utv2IIF39s+++xjJUqUyLbtipUr7dVXX7dVq1dbRkY5K1q0aLb1qfYPNv7wo4/8MQ44YP9gUdLH+fO/s+mu3Zv+2mT77puRbbusrCz77PMv7NNPP7f9KlXcLhudp+osW7Zstjr//PNPmznzbVu2fLlVrFjBChUqlG19/IsNGzbYzLfe9u0oUbKEld5772ybrF23zl53x1q0eLEzLWvFixfPtj7+RSrDjz/+xGa9864VKVLYyrlrlKosXbrM/vvqq/4+1TUrXDj7ZwOpjhfUr+P+8OOP9tNPi7J9LV/+s1WsUCHYzL6eM9d5vGVFixT15xtbEffkgw8/srnz5lmVKgfGrcmbly+8+JI/kO7z7S26f+fO2XVt3972sj0CCCCAAAIIIIAAAggggAACBU0ge8Qq4mf/6GPj7Kabb/FnccghB9uddw/3z4ffc6c1btgg186ub2Y/22+/Stata5cdOsYHH3xkvXpfb00aN0q4f5++mTbhiad8EHLFihW2++672/jHxtqxxx7jt3/s8fGW2a9/bH3N44+zRx5+wPbcc0+/PtX+wUG//+EHu/Ci5lavXh2rdfJJweKEj93+r7spaKRg1+IlS6xd2zbWv1+m33bRokV2Scs29sMPP8ba1C+zr3Vo3zZhXeGF//nvq9apSzcbNnSwHXzwQbFV06fPsG5Xdvev165d6497913D7KR/nxjbJvzk6YmT7OZbbo0t0j4DB9xsbVq19MuefW6yXdOzd6x9Oo8J4x61atWqxvYJP8nJ8K+//rIru/fwHro2Opb8HnvkoaRB2Bszb7bHx0+I+Z126il2/6j7/LXVcXM6Xrhden5Z58tN90V8qVz5AJs5/TX7/fffrWmzFvbFF1/Gjnd51852fe9e8bv4109PfMZ0L9Q+4/SE63N7YWa/W6zTZe3t0EMO2e5DTXrmOZs7d57Vrr1r2r7dDWYHBBBAAAEEEEAAAQQQQAABBAqagMtgS4vy1MRJWZWrHpJ1+x13Za1evdqfkx47dr48q8YRx2QtXrwk187z2JonZY0YNXqH63fBH9/2RBX876uv/bopU6dlbdq0KevnFSuyTj3jrKz6DZv4zRd8/71ff/c992a5zMEsl2Xpz/e+kZvbk2r/4Jh/btyY1fjCi31dnbp2CxYnfJz6/At+uzdnzPTrX3r5Ff/6/Q8+9K8HDR7q27By5aqsja7evjf28+td9mbC+rTQBcyy7rjrHr+drqNMwkXn265DpyyX7Zi1du26rHrnNfBf4W2C56pL16Rf/wFZf/zxR9b69euzul/Ty9etNv22dm1svdr3yy+/+NcuoBhUke0xlWFw/R546OEsOc7/7jt//gMGDspWT/Di088+922Z9sKLftFnn29+7QLO/nWq4wX1BI86p+XLl8e+dK/I8LFx4/0mapdeu+Cwf/3Qw4/41/PmfRNUke3x2utuyGrWonW2ZXn5Qtdu5Kj7d+iQLsvV/wzs0M7shAACCCCAAAIIIIAAAggggAACuS6QNpmRg4cMM2WX9bj6qlh3171dt9wB/ftZ567d7L33P7BGDc+34feOsOOOO9ZcIMh2L7W7de3S0XcHfubZ51wX29m+6+/pp53isxSDbsDqLvvkUxPtq6/n2K+//mo1ahxml7VvZ2XKlLYHHhrrs9Jee+0N1w24tLVscYkpUy6n+pQ59+zkKfaOO15V1xU2yGBMFAj//Isv7Kwza9v59c/1bdvHdV0+79x6dv+YB83dHTZj5lt+t86dLvNds6sceKBd0KSRTZr0jF1xeRdLtX9wjiNHjrYli5fYSSf9O1Ezsi1zwUdvffppp/rl9erWMWXhTX1+mikr86OPPrZ/HV7D+2iDE088wWcBrlq5ysqWKZOtruCFHO8Zfp9l3tjHBgy8LVjsH10w0Wf16dqqy72+jnfHeW7y1GzbBS/muMw4ZcYqWzPoet2wQX23/RTfnTmj3D7W7tLW1uzii1yX6iLev/qhh9i38+f7KlyA0oYOu9NnNyo7MJXh7Pfe8xmNbdu0dl2gi7hrWsUuanqBTXjyaetzfW9/ncL1/eXq73lNd38ddcCDqm3OAFU2okqq4wXXzG/svuk+DIrurUG3DfGZga1btvCL983Y1+4cNtSCrvdHHnmEX66u3eHs06AOPW5y9/DT7h5SRqq64Ldo3syqH3qozXdd8598eqK/z3WvBUXXTpm6wT0RLNejhk144403vb3qOvusM/09HWyjbubTXnjJNNSArlO4PO+GW9B9rvLqa69bRrly1qplcytUuJCNG/eErflljTU4v34si1P33ooVK61KmwMt2Ldo0SKuO/zrvvt8I5chnaiN4WPyHAEEEEAAAQQQQAABBBBAAAEEck8g+yB1uXecXK15yZKlPiB4QZPGsUBkcMAKFcrb1MnP+ECklj3iunK3atPO3p71ju9Wq7EXr+7Ry1w2mAsibjSXJedeX+u6+A70VWx0QZkGjS+0sY885sefLF16b7v3vpHWsXNXv77YlrEZ/9q0KTaGYU71uexGX7+66ZYqVdJefOllu23I7b6uRN+aXdTUxj40xgfNtF77Kxh49FFH+uMtXPiT1XBjTZYsWTK2uw8afbfAv061vzb6+JNPzWUlmrqz7733Xn6/nL4paHa4CzYGRcExBWg1ZqFK0wsv8MHfkaPv9+c3/L4RVq1qlaRdoLVP7dNPs/fffdvat71UL7MVnVvjRg3tUdcdfeKkZ238hCd9IFIBv0TlKBdse2rC4xYOlr3+xnS/aZUDK1ulSpXsqiuvMN0bOpcHHx7rx3ps4o6homCkgr3vuwC2SipDl31pe7ku8eFxOosVLea7a69x91N8fQra6fgKsinwGNxrdc45a5uO5zdK8k3X8RcXML998G2x+1FB+KYXNjEFdXXfD3b3m8ZjPKHm8UlqMX/9ru3dxwc6XSas1T23gQ/Ga6xO2Ux0XbmD8uWX//NDIoTvwWDdFBeg1s/bjz8tdN2uD7YP3XiU7S/r7L21jQKRTZo2szdnznR+RaxDxy7Zupy/PWuW6wJ/jQ+wyvi5KVOtZeu21vTiFr7O5T//bG3bd7RvvvnWH1KBzylTn/fPg317ufPQz5o+TGjTtoM/pt+AbwgggAACCCCAAAIIIIAAAgggkOcCaZEZ+b+vvvJwVapU3iZAZc29/OLzPotNE14o2DJ40ECf/aUKxo1/wjQOZPt2l5oCTWVKl7Z+N/W14487ztdfsWJFH5BUMEnZd8NdcLJunbP9/qnqU8BO4yKOGTXCj82oLMoOnbr4DLRtabyy3jQW49DbNo+HqGBkmbhsw7322jxWpAKre+2VPbgYv78mcbnq6h6mMQRPPKGmD8ylasd3LtCp7MxwUcbj525MQpUzzjjNZyYOGXpHbJOnnxwfC47FFoaeHHHEv/wreSQqbS9t5YNMGltTRcG0K6+4PNGmWy175ZX/+muqzEply4bLeec39kFDjRnZsMH5fpUC1N/O+8oKJ5kgJ97w6KOP8veQMvGU2acxMxU0U1m3dp3PBk1U3zfffmsNGl3ot6tb5xw7vMbfAV6/cMu3+OOF14WfK4PXdcH24y3GTyik7Z55drK/r/Vc40Xuscceepq0vPLSNDus+qGW2bePVT/8KBs1eowNv/sOa92qhT3hMoV7uOxOZZYq4KjM2ONdxnF8+dxNYqRAsvZT6dK5ox15TE03sdFnPvN04KDBPpj+4rQp/oOE5pc0c4HG5vHV2LOTnvRB5OOOO8aP9ams397X9jR9WHCUq++N6W8mzfJ849VX/AcJutcPP+IYe2f27Nh4q1sdiAUIIIAAAggggAACCCCAAAIIIJCrAmkRjAxm3XVj520T1im1TvaBSG385ZebA5nKDgy66a5yM3KrfO0yqc6tV9eefeZpmz37PdMEOcrAmj5jhl+vjDd1GQ6XVPUt/Oknv/lJJ22eeEXBnAb166cMRiroknnTzX4im6GDb7WT3QQpKoVdd9X48uefG/2i3XbbLbYq2f4Db73NdVcv5bu3xzYOPVH39MBDi9UNXSXoOutfuG+yKLUlO9ON02nqijz+8UeskgvcjnaZdM2at7KXX5jqu00rGBuU6i7YpW7oORV139XEOuecfZb16nmNrVunrshDrV79RjZ71oytrkG4LnU1VobfJc0utisSBC/feWu6KSjY3012c1adc+2TD2f7Nqq7dXxJZtiqRXOfqRlk8GlCH2WualIZzdKtkqi+g6pVs08/et/edcGxHr2uc0HhnvbA/SNjh012vNgGcU/U1VmlpWtPonLhBU2sXt1zbPKU501BQN0fySYVUnBWgUgVBWc1qdHHn3ziX1/kMl8VsHdjhFpNl12p5wpmx88Gro1vvOF6U8BcAcvvXBfvL/+3+edNM50r8KyZu8P7qpt/8PPsD+a+KdCpbFaVqlWr+sczt9wzcq3kZmvXPZKoKGu4fPl9/Srd5zqv9et/T7QpyxBAAAEEEEAAAQQQQAABBBBAIA8E0iIYqe6fKvO++cbqnHN2NjYFzW5ys/MeeeS//BiBWlnOZdUFRV1aVYoVK2oKkKhoRuS2bkxBZRwqyHGRy9Sa/90Cn02lIFPN44/32YnxATntm6o+NzmJNrPdQ1lpRYrk3FtesyFrtmYF8UaNGG71zzvX16FvytJU99Nw0Th6CugEwchk+yuDT7N0K0Cjrq4qbnIV/9ii1aX24JhRbv2TLlg33y/Tt8aNG1rlA/a31atWx5bpySr3+kDXBfonF2zVrM0KmJ56Si2/TWbf6+0pN86g2q/g470jRsX2beEy4VIFI2duGRezb5/rYl29e/W42pq7Nn7gAmJBYDZW6ZYnI0bdb0Nvv8M6dexgN7ixG8PBMnV312tlSirjtcfV3a1th44+OJZoJvFkhjqUuic/N+kpNy7ha7bIjbtZ02UIznMBzoVuHNNEXZe1j46vbt3q9q+A9ycuU1CZh8reU9Asp+Np/0Tl8XHj7QzX3T3RjOA6nroq60sek11XZs2GniwYWbVqlWyH2Ldchn2w9iO/7Jhjjvbd7tUdWu3UOJVBF/dsO7kX4ZnelXmr8UODYHTw8xY/jmjxuAB/hfLlY9UG13BbhhPQTvHjsRYrXmyrQHqscp4ggAACCCCAAAIIIIAAAggggECuC6RFMFIBHwU67hsx2k3e0tgH1wI5jcnoZhW2u+8MjcsY6n67/36bM67U7TgInilIp67bCtJNcVlkCkSqq2cQ5Bk8dJivXgGeoLiYpy+p6vvXlq64n7ugn8YOVNE4fsmKMg6VafiRG1tv4lMT/HmGtz2oWlU/hp+CpprcRmX27Pd9N2k9z2n/Um4CH41dGC7K3Pxzw58+461QocJ+vM3wej0/7LDDXJtnxRa7WbztnXdn2+VdOtkG91wl3D08CCD9+ttvPvCm4Nv2lKDOPff8u1txIRdIVFHwLlHRhCp33j3c+vfL9F3pw9to0h+NHRh0Q9a6IIicKMCck6H21eRI6grep0/vWAbkSBdYPNyNo5moqF3KJlRWZhAw1sRIKoXcv1THS1Snrr+C0h06tNtqtbo9l3cBvZH33ePX6b5VF/4SGRlbbRssCILSwWtNHqNJflQ0RmiL5pfY3c5Y117B22BynGB7PfrMzn79TRmZdw4b4vfTeSobd5P7gdHPrYZM0DiPmoBJxc0Ob8osTVYSXZ9k27IcAQQQQAABBBBAAAEEEEAAAQTyn0DOKXn5r71JW3TPXZsDhAoyqWuxun9qMg9NTKOun00aN0q475m1z/CZkJpERkGqr+fMtWtcl9nxLiMwI6NcrIvn13PmmMbkU3BTGWwqGk9SpWzZMn4G6a9c1mOq+pQZpqzFQYOH+ok0NCHLpGee8/Uk+qau4TPfetvPkL106TI/Q7DGJtSXgkqaSViZnJqBWhP5THZjFSrz7PLOnXx1Oe2vsSU1q3P4SxPRHHX0kX6ZsugSlTatW/jA18NjHzW1aYjLPlTR7NSVDzjAjwGobs+anETd2vsPGOTXb28Q0u/kvp3qutWr9Lquj323YIHvHny7m+1a551oEpbP3DiFCvgFXX4DLz2q63QtV5+6/ioopgCeJre56+57fPD5OBcgVhBN6xSAU8nJUNdAXdE1CY4mdlEgTS66Bj1d9qZKfH2aTEbtGHr7nT74pqxRBSc1tqLMUx0vqE+ZmEFZ4FxUDjl4c5awf7Hlm8Z4VBakxoyc77pKa2ZvjTt6UdPN41WGtw2eK9tRhprgR9mlOq9L27QKVvu2ahvdv80ubhpbHn6iMTerVa3i7ssltmzZcn+umhxKRRmVKury/eaMmd5ME+HcOmiIX54X32Shn5t5877Ji8NxDAQQQAABBBBAAAEEEEAAAQQQcAJpkRmpK6kx5SaMe9QeePBhu2XgIN91VMvVBfiWm2+KTZ4S3wVU3XSfGP+Y9bz2Op8tp32U6TX8rjt85lZdN7GIAn6XX3GVVvkglsbB05h7mrBF2ZQN3XoFbhRMedeNYZhTfcoGe/yRh/zxmjRt5uvUeHzKrEtUJroxD1UUrNJXuNSr+4UPyI0ZPcI6d73CjVs4xQc6FVysXft0v2mq/YsXLx6u0k3akjo+rW7N6jLdf8Ct/ksBJ2WeBmPzjRk9Mtv5KWio9QoOpirKuosvwbXt6YLEtc/anFWpY8o5fkIa7TvVjU+oooC0vsLlSbePunXfPniQdbvyaju3fkO/WlmqD44Z7K+5AmUPPDTWZy1qnMpUhvvvv58N6N/PRm7pFq62DRs62I513ZlVNrrswXB9B1au7LfPdFmDCmKqKHvwlpsz/fNUx9NGQX3BsATz5y/w+x58UDX/GP6miXmUfdujV+/Y4ut697Tml1wcex3/RBMKPe8clWGqosliwsFkXWvdY9Onz7C6devE7+5fKyP2Rjf5jQK7J558ql/WplVL35V89nvv+9ea0Gb58p/9faQFynBWRvKOFh0zyMRNVIfGmAzWL1u2zPsHEy4l2p5lCCCAAAIIIIAAAggggAACCCCwcwUKuW6PWzoY79yKd2VtylZbvHixy1gsm3TMvkTtW716jQtUFMrWxTjYbv369W7ilHVbTa4RrFeWmCaj0WQfQcmpPm2zfPlyN2Zg6RwnYAnqSvWoy6jss3Ll9vHtSLX9zlivLroaKzLRzM2qX12Bf3MuGvMvCAD90+Mqo1AlfpKTHalX98mSpUvdxDul/NiNO1JHeB9dA7WvXLly4cVJn8tvsRtjUhm4ycaWTLrzDqxQl/YVP6+wSm5ogkQT6iSqUtm2moQnfqImbavu34e5CWJuHdA/0a7ZlimDVhnEierRhho/UvfLttplq5wXCCCAAAIIIIAAAggggAACCCAQGYG0DEZGRp+GIhBBgZdefsXNrP2p75b+8ovP+275ETwNmowAAggggAACCCCAAAIIIIAAArtAIG26ae8COw6JQIEU0Lipr70+3Xc1r+EyIykIIIAAAggggAACCCCAAAIIIIDAtgqQGbmtUmyHAAIIIIAAAggggAACCCCAAAIIIIAAAv9IIPVsJf+oenZGAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQ2CxCM5E5AAAEEEEAAAQQQQAABBBBAAAEEEEAAgTwRIBiZJ8wcBAEEEEAAAQQQQAABBBBAAAEEEEAAAQQIRnIPIIAAAggggAACCCCAAAIIIIAAAggggECeCBCMzBNmDoIAAggggAACCCCAAAIIIIAAAggggAACBCO5BxBAAAEEEEAAAQQQQAABBBBAAAEEEEAgTwQIRuYJMwdBAAEEEEAAAQQQQAABBBBAAAEEEEAAgf8HSOLxXW8yfi8AAAAASUVORK5CYII=" } }, "cell_type": "markdown", @@ -1251,10 +391,9 @@ "1. (Advanced) to access the working directory of the command in order to debug anything that has gone wrong, look up the `container-host-path` of the `work` mount listed under `container mounts` (see image below)\n", "1. Select `Manage Files` from the right-hand side Actions menu to view the generated zip file\n", "\n", + "![Screen Shot 2024-08-19 at 3.11.29 pm.png](attachment:17b4eb61-ef8d-469e-99bc-75095ff62bc1.png)\n", "\n", - "![View workflow status.png](attachment:Screen%20Shot%202024-08-05%20at%2012.59.37%20pm.png)\n", - "\n", - "\n" + "The above screenshot demonstrates what both a successful and failed pipeline will look like in the *History* table. Successful pipelines will show up as *Complete* in black and failed pipelines as *Failed* in red." ] }, { @@ -1265,20 +404,20 @@ "For convenience (primarily during testing), I have created a couple of commands to install and launch pipelines via the CLI" ] }, + { + "cell_type": "markdown", + "id": "38fc637f-659d-4466-af59-68a6d4fa3cfe", + "metadata": {}, + "source": [ + "Save an access token for the local test XNAT" + ] + }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "id": "7cc01126", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Saved alias/token for 'http://localhost:8080' XNAT in '/Users/tclose/.pydra2app_xnat_user_token.json' file, please ensure the file is secure\n" - ] - } - ], + "outputs": [], "source": [ "pydra2app ext xnat save-token \\\n", "--server http://localhost:8080 \\\n", @@ -1286,21 +425,20 @@ "--password admin" ] }, + { + "cell_type": "markdown", + "id": "e561bd15-859b-4614-9c9d-a87f57cb539f", + "metadata": {}, + "source": [ + "Install and enable the build pipeline" + ] + }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "id": "637b160b", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Reading existing alias/token pair from '/Users/tclose/.pydra2app_xnat_user_token.json\n", - "Successfully installed the 'australian-imaging-service-community/examples.zip:3.0' pipeline on 'http://localhost:8080'\n" - ] - } - ], + "outputs": [], "source": [ "pydra2app ext xnat install-command \\\n", "australian-imaging-service-community/examples.zip:3.0 \\\n", @@ -1309,21 +447,20 @@ "--replace-existing" ] }, + { + "cell_type": "markdown", + "id": "2cef7925-e986-4545-bbc9-0a559ac43ab3", + "metadata": {}, + "source": [ + "Launch the installed pipeline" + ] + }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "id": "132d1dea", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Reading existing alias/token pair from '/Users/tclose/.pydra2app_xnat_user_token.json\n", - "Successfully launched the 'examples.zip' pipeline on 'subject01_1' session in 'SIMPLE_DIR' project on 'http://localhost:8080'\n" - ] - } - ], + "outputs": [], "source": [ "pydra2app ext xnat launch-command \\\n", "examples.zip \\\n", @@ -1350,21 +487,10 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "id": "03db8871", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "INFO - Dockerfile for 'australian-imaging-service-community/examples.bet:6.0.6.4-1' generated at specs/australian-imaging-service-community/examples/.build-bet/Dockerfile\n", - "INFO - Successfully built docker image australian-imaging-service-community/examples.bet:6.0.6.4-1\n", - "australian-imaging-service-community/examples.bet:6.0.6.4-1\n", - "INFO - Successfully built australian-imaging-service-community/examples.bet:6.0.6.4-1 pipeline\n" - ] - } - ], + "outputs": [], "source": [ "pydra2app make xnat \\\n", "./specs/australian-imaging-service-community/examples/bet.yaml \\\n", @@ -1382,19 +508,10 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "id": "3c57c1fb", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Reading existing alias/token pair from '/Users/tclose/.pydra2app_xnat_user_token.json\n", - "Successfully installed the 'australian-imaging-service-community/examples.bet:6.0.6.4-1' pipeline on 'http://localhost:8080'\n" - ] - } - ], + "outputs": [], "source": [ "pydra2app ext xnat install-command \\\n", "australian-imaging-service-community/examples.bet:6.0.6.4-1 \\\n", @@ -1405,19 +522,10 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "id": "cf75564c", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Reading existing alias/token pair from '/Users/tclose/.pydra2app_xnat_user_token.json\n", - "Successfully launched the 'examples.bet' pipeline on 'subject02_MR01' session in 'OPENNEURO_T1W' project on 'http://localhost:8080'\n" - ] - } - ], + "outputs": [], "source": [ "pydra2app ext xnat launch-command \\\n", "examples.bet \\\n", @@ -1434,6 +542,16 @@ "## Design a pipeline to run mri_synthstrip" ] }, + { + "cell_type": "markdown", + "id": "ca0b1578-2582-4629-8908-5486054a5e28", + "metadata": {}, + "source": [ + "In this next section we will generate a specification to build a pipeline for the `mri_synthstrip` brain extraction tool from scratch using the `pydra2app bootstrap` command and then build and test it using the same methods as above\n", + "\n", + "**NOTE:** You may need access to a GPU to run mri_synthstrip effectively" + ] + }, { "cell_type": "markdown", "id": "6ce5d0b8", @@ -1443,23 +561,21 @@ ] }, { - "cell_type": "code", - "execution_count": null, - "id": "cc0399d9", + "cell_type": "markdown", + "id": "06514bca-f2e5-438e-ba43-656de158e2ed", "metadata": {}, - "outputs": [], "source": [ - "# git checkout -b my-mri-convert" + "So we are able to add the pipeline we generate to the Australian Imaging Service Community repository (and get it deployed automatically) we first create a new Git branch to hold our changes" ] }, { "cell_type": "code", "execution_count": null, - "id": "c8859742-0e0d-4cc9-892b-ff32987a6a38", + "id": "cc0399d9", "metadata": {}, "outputs": [], "source": [ - "pip install -e ~/git/workflows/" + "git checkout -b mri-synthstrip" ] }, { @@ -1475,84 +591,15 @@ "id": "981bbfac", "metadata": {}, "source": [ - "Using the `pydra2app bootstrap` command we can generate a YAML specification for mri_synthstrip that we can edit later." - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "id": "14a6a1c6-1268-4b4a-bf32-fed9c5372e81", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "/usr/local/bin/pydra2app\n" - ] - } - ], - "source": [ - "which pydra2app" + "Using the `pydra2app bootstrap` command we can generate a YAML specification for mri_synthstrip" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "74648bf6", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Usage: pydra2app bootstrap [OPTIONS] OUTPUT_FILE\n", - "\n", - " Generate a YAML specification file for a Pydra2App App\n", - "\n", - "Options:\n", - " --title TEXT The title of the image\n", - " --name TEXT The name of the image\n", - " --org TEXT The Docker organisation of the image\n", - " --registry TEXT The Docker registry of the image\n", - " --description TEXT The description of the image\n", - " --author The name of the author of the image\n", - " --base-image \n", - " The package manager used by the image (i.e.\n", - " 'apt' or 'yum')\n", - " --version TEXT The version of the image\n", - " --command-task TEXT The command to execute in the image\n", - " --packages-pip \n", - " Packages to install via pip\n", - " --packages-system \n", - " Packages to install via the system package\n", - " manager\n", - " --packages-neurodocker \n", - " Packages to install via NeuroDocker\n", - " --command-input Input specifications, name and attribute\n", - " pairs. Attributes are comma-separated\n", - " name/value pairs, e.g.\n", - " 'datatype=str,help=The input image'\n", - " --command-output \n", - " Output specifications, name and attribute\n", - " pairs. Attributes are comma-separated\n", - " name/value pairs, e.g.\n", - " 'datatype=str,help=The output image'\n", - " --command-parameter \n", - " Parameter specifications, name and attribute\n", - " pairs. Attributes are comma-separated\n", - " name/value pairs, e.g.\n", - " 'datatype=str,help='compression level'\n", - " --command-configuration \n", - " Command configuration value\n", - " --command-row-frequency TEXT The row frequency of the command\n", - " --license \n", - " Licenses that are required at runtime within\n", - " the image\n", - " --help Show this message and exit.\n" - ] - } - ], + "outputs": [], "source": [ "pydra2app bootstrap --help" ] @@ -1562,129 +609,44 @@ "id": "8f706493-2ff8-44a4-9d1b-43236fcd7dcc", "metadata": {}, "source": [ - "**NOTE:** You will need change the `\"name-of-your-institution-goes-here\"` and `\"name-of-your-group-goes-here\"` placeholders to appropriate values" + "Run the `pydra2app bootstrap` command to automatically generate a YAML specification, which we can edit later" ] }, { "cell_type": "code", - "execution_count": 15, - "id": "63538fd6-de04-4117-b0d2-fc1884cf7f45", - "metadata": {}, - "outputs": [], - "source": [ - "export INSTITUTION_NAME=\"sydney\" # \"name-of-your-institution-goes-here\" # e.g. \"sydney\" for The University of Sydney\n", - "export GROUP_NAME=\"sydneyimagingtest\" # name-of-your-group-goes-here\" # e.g. \"sydneyimaging\" for Sydney Imaging\n", - "export AUTHORS_NAME=\"Thomas G. Close\" # \"Your name goes here\"\n", - "export AUTHORS_EMAIL=\"thomas.close@sydney.edu.au\" # \"your.email@goes.here\"" - ] - }, - { - "cell_type": "code", - "execution_count": 12, + "execution_count": null, "id": "17b98c06", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "bash: --docs-url: command not found\n" - ] - }, - { - "ename": "", - "evalue": "127", - "output_type": "error", - "traceback": [] - } - ], + "outputs": [], "source": [ "pydra2app bootstrap \\\n", - "./specs/australian-imaging-service-community/au/edu/${INSITUTION_NAME}/${GROUP_NAME}/mri_synthstrip.yaml \\\n", - "--author \"Tom Close\" thomas.close@sydney.edu.au \\\n", + "./specs/australian-imaging-service-community/au/edu/${INSTITUTION_NAME}/${GROUP_NAME}/mri_synthstrip.yaml \\\n", + "--author \"${AUTHORS_NAME}\" ${AUTHORS_EMAIL} \\\n", "--version 1.6 \\\n", - "--packages-neurodocker dcm2niix v1.0.20201102 \\\n", + "--title \"MRI Synthstrip\" \\\n", + "--base-image name freesurfer/synthstrip \\\n", + "--base-image tag 1.6 \\\n", + "--base-image package_manager apt \\\n", + "--base-image python python3 \\\n", + "--packages-system python3-pip \\\n", "--command-task common:shell \\\n", "--command-input head \"datatype=medimage/nifti-gz,configuration.position=-2,configuration.argstr=-i\" \\\n", "--command-output mri_synthstrip_brain \"datatype=medimage/nifti-gz,configuration.position=-1,configuration.argstr=-o\" \\\n", "--command-configuration executable mri_synthstrip \\\n", - "--title \"MRI Convert\" \\\n", - "--base-image freesurfer/synthstrip 1.6 apt \\\n", "--docs-url https://surfer.nmr.mgh.harvard.edu/docs/synthstrip/ \\\n", - "--docs-description 'SynthStrip is a skull-stripping tool that extracts brain voxels from a landscape of image types, ranging across imaging modalities, resolutions, and subject populations. It leverages a deep learning strategy to synthesize arbitrary training images from segmentation maps, yielding a robust model agnostic to acquisition specifics.'\n", - "# --license freesurfer /opt/freesurfer/license.txt https://surfer.nmr.mgh.harvard.edu/registration.html 'Required freesurfer license'" + "--description 'SynthStrip is a skull-stripping tool that extracts brain voxels from a landscape of image types, ranging across imaging modalities, resolutions, and subject populations. It leverages a deep learning strategy to synthesize arbitrary training images from segmentation maps, yielding a robust model agnostic to acquisition specifics.'\n", + "\n", + "cat ./specs/australian-imaging-service-community/au/edu/${INSTITUTION_NAME}/${GROUP_NAME}/mri_synthstrip.yaml\n", + "\n", + "echo \"\"\n", + "echo \"You can now manually edit the yaml file at './specs/australian-image-service-community/au/edu/${INSTITUTION_NAME}/${GROUP_NAME}/mri_convert.yaml'\"" ] }, { "cell_type": "markdown", "id": "06916664", "metadata": {}, - "source": [ - "You can view the generated YAML specification at `./specs/australian-image-service-community/au/edu/${INSITUTION_NAME}/${GROUP_NAME}/mri_convert.yaml` and make any edits that are required." - ] - }, - { - "cell_type": "code", - "execution_count": 15, - "id": "e0451e1a", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "authors:\n", - "- email: thomas.close@sydney.edu.au\n", - " name: Tom Close\n", - "base_image:\n", - " name: freesurfer/synthstrip:1.6\n", - " package_manager: apt\n", - " tag: latest\n", - "command:\n", - " configuration:\n", - " executable: mri_synthstrip\n", - " inputs:\n", - " head:\n", - " configuration:\n", - " argstr: -i\n", - " position: -2\n", - " datatype: medimage/nifti-gz\n", - " help: ''\n", - " outputs:\n", - " brain:\n", - " configuration:\n", - " argstr: -o\n", - " position: -1\n", - " datatype: medimage/nifti-gz\n", - " help: ''\n", - " parameters: {}\n", - " row_frequency: common:Clinical[session]\n", - " task: common:shell\n", - "docs:\n", - " description: SynthStrip is a skull-stripping tool that extracts brain voxels from\n", - " a landscape of image types, ranging across imaging modalities, resolutions, and\n", - " subject populations. It leverages a deep learning strategy to synthesize arbitrary\n", - " training images from segmentation maps, yielding a robust model agnostic to acquisition\n", - " specifics.\n", - " info_url: https://surfer.nmr.mgh.harvard.edu/docs/synthstrip/\n", - "licenses: {}\n", - "packages:\n", - " neurodocker:\n", - " dcm2niix: v1.0.20201102\n", - " pip: {}\n", - " system: {}\n", - "registry: docker.io\n", - "schema_version: '1.0'\n", - "title: MRI Convert\n", - "version:\n", - " build: 1\n", - " package: '1.6'\n" - ] - } - ], - "source": [ - "cat ./specs/australian-imaging-service-community/au/edu/${INSITUTION_NAME}/${GROUP_NAME}/mri_synthstrip.yaml" - ] + "source": [] }, { "cell_type": "markdown", @@ -1704,62 +666,10 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "id": "d6d655fd", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Traceback (most recent call last):\n", - " File \"/usr/local/lib/python3.10/site-packages/pydra2app/core/cli.py\", line 371, in make\n", - " image_spec.make(\n", - " File \"/usr/local/lib/python3.10/site-packages/pydra2app/core/image/base.py\", line 112, in make\n", - " dockerfile = self.construct_dockerfile(build_dir, **kwargs)\n", - " File \"/usr/local/lib/python3.10/site-packages/pydra2app/xnat/image.py\", line 59, in construct_dockerfile\n", - " xnat_command = self.command.make_json()\n", - " File \"/usr/local/lib/python3.10/site-packages/pydra2app/xnat/command.py\", line 34, in make_json\n", - " cmd_json = self.init_command_json()\n", - " File \"/usr/local/lib/python3.10/site-packages/pydra2app/xnat/command.py\", line 68, in init_command_json\n", - " \"description\": (f\"{self.name} {self.image.version}: {self.image.title}\"),\n", - " File \"/usr/local/lib/python3.10/site-packages/pydra2app/core/image/components.py\", line 89, in __str__\n", - " tag += \"-\" + self.build\n", - "TypeError: can only concatenate str (not \"int\") to str\n", - "\n", - "During handling of the above exception, another exception occurred:\n", - "\n", - "Traceback (most recent call last):\n", - " File \"/usr/local/bin/pydra2app\", line 8, in \n", - " sys.exit(cli())\n", - " File \"/usr/local/lib/python3.10/site-packages/click/core.py\", line 1157, in __call__\n", - " return self.main(*args, **kwargs)\n", - " File \"/usr/local/lib/python3.10/site-packages/click/core.py\", line 1078, in main\n", - " rv = self.invoke(ctx)\n", - " File \"/usr/local/lib/python3.10/site-packages/click/core.py\", line 1688, in invoke\n", - " return _process_result(sub_ctx.command.invoke(sub_ctx))\n", - " File \"/usr/local/lib/python3.10/site-packages/click/core.py\", line 1434, in invoke\n", - " return ctx.invoke(self.callback, **ctx.params)\n", - " File \"/usr/local/lib/python3.10/site-packages/click/core.py\", line 783, in invoke\n", - " return __callback(*args, **kwargs)\n", - " File \"/usr/local/lib/python3.10/site-packages/pydra2app/core/cli.py\", line 382, in make\n", - " \"Could not build %s pipeline:\\n%s\", image_spec.reference, format_exc()\n", - " File \"/usr/local/lib/python3.10/site-packages/pydra2app/core/image/base.py\", line 77, in reference\n", - " return f\"{self.path}:{self.tag}\"\n", - " File \"/usr/local/lib/python3.10/site-packages/pydra2app/core/image/base.py\", line 81, in tag\n", - " return str(self.version)\n", - " File \"/usr/local/lib/python3.10/site-packages/pydra2app/core/image/components.py\", line 89, in __str__\n", - " tag += \"-\" + self.build\n", - "TypeError: can only concatenate str (not \"int\") to str\n" - ] - }, - { - "ename": "", - "evalue": "1", - "output_type": "error", - "traceback": [] - } - ], + "outputs": [], "source": [ "pydra2app make xnat \\\n", "./specs/australian-imaging-service-community/au/edu/${INSTITUTION_NAME}/${GROUP_NAME}/mri_synthstrip.yaml \\\n", @@ -1767,6 +677,156 @@ "--for-localhost" ] }, + { + "cell_type": "markdown", + "id": "1066677e", + "metadata": {}, + "source": [ + "### Test the new pipeline" + ] + }, + { + "cell_type": "markdown", + "id": "11a56e4e", + "metadata": {}, + "source": [ + "Install and launch your newly created pipeline" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "8fab53b9-f6fb-42dd-ba1f-dc153ff5dd61", + "metadata": {}, + "outputs": [], + "source": [ + "pydra2app ext xnat install-command \\\n", + "australian-imaging-service-community/au.edu.${INSTITUTION_NAME}.${GROUP_NAME}.mri_synthstrip:1.6-1 \\\n", + "--enable \\\n", + "--enable-project OPENNEURO_T1W \\\n", + "--replace-existing" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "a1a44525", + "metadata": {}, + "outputs": [], + "source": [ + "pydra2app ext xnat launch-command \\\n", + "au.edu.${INSTITUTION_NAME}.${GROUP_NAME}.mri_synthstrip \\\n", + "OPENNEURO_T1W \\\n", + "subject02_MR01 \\\n", + "--input head t1w" + ] + }, + { + "cell_type": "markdown", + "id": "779803ec-756d-4369-b763-3e1a90045fbc", + "metadata": {}, + "source": [ + "### Create a test pull-request on GitHub" + ] + }, + { + "cell_type": "markdown", + "id": "2ecf3933-1360-42a4-acf1-eacefea46502", + "metadata": {}, + "source": [ + "Commit your changes and push them to your GitHub fork" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "686d7741-a77e-43da-b175-237f3ba9bef5", + "metadata": {}, + "outputs": [], + "source": [ + "git commit -am\"added specification for Freesurfer's mri_synthstrip\"\n", + "git push -u origin mri-synthstrip" + ] + }, + { + "cell_type": "markdown", + "id": "dba5c217", + "metadata": {}, + "source": [ + "Once you are happy with the performance of your pipeline (if not earlier), create a pull-request on GitHub from your fork:\n", + "\n", + "1. Navigate to your fork of the AIS community pipelines repo, https://github.com/\\${GITHUB_USER}/pipelines-community\n", + "1. Select \"Pull requests\" in the top ribbon\n", + "1. Click the \"New pull request\" button\n", + "1. Select \"base:main\" <- \"${GITHUB_USER}:mri-convert\" from the drop-down lists\n", + "1. Click \"Create pull request\"" + ] + }, + { + "cell_type": "markdown", + "id": "2691671f-5e88-4247-8084-67815356750f", + "metadata": {}, + "source": [ + "### Acceptance of pipeline into community repository" + ] + }, + { + "cell_type": "markdown", + "id": "b5bf5699-3983-4adc-b21e-083bc0498953", + "metadata": {}, + "source": [ + "A pull-request will then trigger the process for the pipeline to be accepted and deployed onto AIS:\n", + "\n", + "1. Maintainers of AIS Community Pipelines repository will be notified that you wish to add your pipeline to the community repository.\n", + "1. The repository maintainers (RM) will review your proposed pipeline for security issues\n", + "1. RM will potentially request some changes to your specification\n", + "1. RM accept your pipeline and merge your pull request\n", + "1. The pipeline is built using the continuous integration and deployment actions running on GitHub\n", + "1. Your local AIS node automatically checks for newly pipelines and the latest version is pulled to the node\n" + ] + }, + { + "cell_type": "markdown", + "id": "3c0511a2-c48a-4db0-83ec-840da07f97b7", + "metadata": {}, + "source": [ + "## Design a pipeline to run `mri_convert`" + ] + }, + { + "cell_type": "markdown", + "id": "55e24bc1-93a6-4725-a112-8060c19689ed", + "metadata": {}, + "source": [ + "### Bootstrap the `mri_convert` specification" + ] + }, + { + "cell_type": "markdown", + "id": "53df17f7-d212-403e-b5f9-095ea947f86f", + "metadata": {}, + "source": [ + "Using the same procedure as used for `mri_synthstrip` bootstrap a specification file for `mri_convert` at `australian-imaging-service-community/au.edu.$INSTITUTION_NAME.$GROUP_NAME.mri_convert:7.4.1-1`\n", + "\n", + "You will need to change the following options/sections at a minimum\n", + "\n", + " * Change the `--title`, `--docs-url` and `--description` options/YAML-sections to appropriate values, and `--version 7.4.1`\n", + " * Change the base image options to:\n", + " * `--base-image name vnmd/freesurfer_7.4.1`\n", + " * `--base-image tag 20231214`\n", + " * `--base-image package_manager yum` (Fedora based image)\n", + " * Drop the `--base-image python python3` option\n", + " * NB we can use Conda Python installed by default because the `mri_convert` command isn't a Python script that requires specific pacakges already installed\n", + " * Change the command options to:\n", + " * Change `--command-configuration` to be `mri_convert`\n", + " * Change the `--command-(input|output)` options/YAML-sections to match the CLI of the `mri_convert` tool, see https://surfer.nmr.mgh.harvard.edu/fswiki/mri_convert for reference.\n", + " * `configuration.position` is the 0-indexed position on the command line that the input|output is expected (negative numbers are indexed from the end as they are in Python, i.e. -1 specifies the last position, -2 the second-last, etc...).\n", + " * `configuration.argstr` is the flag prefix to be prepended to the argument on the command line, e.g. `-i` -> `-i /path/to/a/file.nii`. Use the empty string `''` if no prefix is required. If you need to place characters around the argument you can use Python string formatting syntax, e.g. for a input called myinput `-i[{myinput}]` -> `-i[/path/to/a/file.nii]` on the command line\n", + " * Add as many parameters to the command as you see fit to implement various mri_convert functionalities, e.g. `--command-parameter cutends 'datatype=field/integer,configuration.argstr=--cutends'`\n", + " * Drop the `--packages-system python3-pip` option as we will use Conda Python instead\n", + " * Include a licence hook for the freesurfer license with a nickname for the license, where it will be installed in the container, URL from which to acquire the licence and a description of why the license is required, `--license freesurfer /opt/freesurfer/license.txt https://surfer.nmr.mgh.harvard.edu/registration.html 'Required license to run any commands in the Freesurfer package'`\n" + ] + }, { "cell_type": "markdown", "id": "c454bd86", @@ -1774,14 +834,16 @@ "source": [ "### Install a project-specific Freesurfer licence using FrameTree\n", "\n", - "Download the Freesurfer licence file from Discord or request your own at https://surfer.nmr.mgh.harvard.edu/registration.html\n", + "To run a pipeline with a dynamic license (i.e. not provided at build-time by the `--license option`, you need to upload the license to the project you want to run the pipeline against. This enables licences with strict requirements to associated with specific users.\n", + "\n", + "To start off with please request a Freesufer license to upload from the [Freesurfer site](https://surfer.nmr.mgh.harvard.edu/registration.html). Next we will use the *Frametree* package that *pydra2app* uses under the hood to upload the license you have acquired into the project we want to run the pipeline on.\n", "\n", - "First, create a local reference to the test XNAT server" + "First step is to store the credentials used to login to the XNAT instance, which we will give the nickname `test-xnat` in this example" ] }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "1af18b4b", "metadata": {}, "outputs": [], @@ -1794,12 +856,12 @@ "id": "24db59c0", "metadata": {}, "source": [ - "Create a default dataset on the Open Neuro T1w project" + "The next step is to define a \"FrameTree Dataset\" within the project we want to run the pipeline on, i.e. the `OPENNEURO_T1W` project." ] }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "id": "93fcea4c", "metadata": {}, "outputs": [], @@ -1812,168 +874,90 @@ "id": "c0d492e4", "metadata": {}, "source": [ - "Install the freesurfer license into the OPENNEURO_T1W dataset" + "Now we are able to install the freesurfer license into this dataset we have defined" ] }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "id": "50108c2d", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "\u001b[38;2;0;255;0m100%\u001b[39m of 1.8 KiB |################################| 1.8 MiB/s Time: 0:00:00\n", - "/var/folders/mz/yn83q2fd3s758w1j75d2nnw80000gn/T/tmpjal7rus3/OPENNEURO_T1W/resources/__frametree__/files/_.json\n", - "INFO:frametree:Put freesurfer_LICENSE@ into dataset:None row via API access\n", - "INFO:frametree.core.cli.dataset:Successfully installed 'freesurfer' license for '' dataset on test-xnat store\n" - ] - } - ], + "outputs": [], "source": [ "frametree dataset install-license freesurfer ~/freesurfer-license.txt test-xnat//OPENNEURO_T1W" ] }, { "cell_type": "markdown", - "id": "1066677e", + "id": "1c5ddab4-0355-413a-ac59-00084a43d33d", "metadata": {}, "source": [ - "### Test the new pipeline" + "### Build, install, launch and debug the generated pipeline" ] }, { "cell_type": "markdown", - "id": "11a56e4e", + "id": "94fed61c-3da0-4428-ae01-82aeda2a64a2", "metadata": {}, "source": [ - "Install and launch your newly created pipeline" + "Like the previous sections we use `pydra2app make xnat` to make the Dockerized pipeline from the specification we have generated" ] }, { "cell_type": "code", - "execution_count": 24, - "id": "8fab53b9-f6fb-42dd-ba1f-dc153ff5dd61", + "execution_count": null, + "id": "273a0523-8d3b-4c0e-9d5e-f4fe2a3b7de2", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Reading existing alias/token pair from '/Users/tclose/.pydra2app_xnat_user_token.json\n", - "INFO - Deleted existing command 'au.edu.sydneyimagingtest.mri_synthstrip'\n", - "Successfully installed the 'australian-imaging-service-community/au.edu.sydney.sydneyimagingtest.mri_synthstrip:1.6-1' pipeline on 'http://localhost:8080'\n" - ] - } - ], + "outputs": [], "source": [ - "pydra2app ext xnat install-command \\\n", - "australian-imaging-service-community/au.edu.${INSTITUTION_NAME}.${GROUP_NAME}.mri_synthstrip:1.6-1 \\\n", - "--enable \\\n", - "--enable-project OPENNEURO_T1W \\\n", - "--replace-existing" + "pydra2app make xnat \\\n", + "./specs/australian-imaging-service-community/au/edu/${INSTITUTION_NAME}/${GROUP_NAME}/mri_convert.yaml \\\n", + "--spec-root ./specs \\\n", + "--for-localhost" ] }, { - "cell_type": "code", - "execution_count": 23, - "id": "a1a44525", + "cell_type": "markdown", + "id": "38a700fb-7912-455e-8a9c-8c1d6f5524c2", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Reading existing alias/token pair from '/Users/tclose/.pydra2app_xnat_user_token.json\n", - "Traceback (most recent call last):\n", - " File \"/usr/local/bin/pydra2app\", line 8, in \n", - " sys.exit(cli())\n", - " File \"/usr/local/lib/python3.10/site-packages/click/core.py\", line 1157, in __call__\n", - " return self.main(*args, **kwargs)\n", - " File \"/usr/local/lib/python3.10/site-packages/click/core.py\", line 1078, in main\n", - " rv = self.invoke(ctx)\n", - " File \"/usr/local/lib/python3.10/site-packages/click/core.py\", line 1688, in invoke\n", - " return _process_result(sub_ctx.command.invoke(sub_ctx))\n", - " File \"/usr/local/lib/python3.10/site-packages/click/core.py\", line 1688, in invoke\n", - " return _process_result(sub_ctx.command.invoke(sub_ctx))\n", - " File \"/usr/local/lib/python3.10/site-packages/click/core.py\", line 1688, in invoke\n", - " return _process_result(sub_ctx.command.invoke(sub_ctx))\n", - " File \"/usr/local/lib/python3.10/site-packages/click/core.py\", line 1434, in invoke\n", - " return ctx.invoke(self.callback, **ctx.params)\n", - " File \"/usr/local/lib/python3.10/site-packages/click/core.py\", line 783, in invoke\n", - " return __callback(*args, **kwargs)\n", - " File \"/usr/local/lib/python3.10/site-packages/pydra2app/xnat/cli/release.py\", line 204, in launch_command\n", - " launch_cs_command(\n", - " File \"/usr/local/lib/python3.10/site-packages/pydra2app/xnat/deploy.py\", line 137, in launch_cs_command\n", - " raise RuntimeError(\n", - "RuntimeError: Did not find command corresponding to name or image 'mri_synthstrip'\n" - ] - }, - { - "ename": "", - "evalue": "1", - "output_type": "error", - "traceback": [] - } - ], "source": [ - "pydra2app ext xnat launch-command \\\n", - "au.edu.sydney.sydneyimagingtest.mri_synthstrip \\\n", - "OPENNEURO_T1W \\\n", - "subject02_MR01 \\\n", - "--input head t1w" + "Install using `install-command`" ] }, { - "cell_type": "markdown", - "id": "779803ec-756d-4369-b763-3e1a90045fbc", + "cell_type": "code", + "execution_count": null, + "id": "2107b82a-220d-4a77-b192-cccf7a73fc7a", "metadata": {}, + "outputs": [], "source": [ - "### Create a test pull-request on GitHub" + "pydra2app ext xnat install-command \\\n", + "australian-imaging-service-community/au.edu.${INSTITUTION_NAME}.${GROUP_NAME}.mri_convert:7.4.1-1 \\\n", + "--enable \\\n", + "--enable-project OPENNEURO_T1W \\\n", + "--replace-existing" ] }, { "cell_type": "markdown", - "id": "2ecf3933-1360-42a4-acf1-eacefea46502", + "id": "302bf329-c38b-4440-b517-3c08ed9ec1dc", "metadata": {}, "source": [ - "Commit and your changes" + "Launch using `launch-command`" ] }, { "cell_type": "code", "execution_count": null, - "id": "686d7741-a77e-43da-b175-237f3ba9bef5", + "id": "e61face9-57a7-47da-8b04-00568fc79c44", "metadata": {}, "outputs": [], "source": [ - "# git commit -am\"added specification for Freesurfer's mri_convert\"\n", - "# git push" - ] - }, - { - "cell_type": "markdown", - "id": "dba5c217", - "metadata": {}, - "source": [ - "Create the pull-request on GitHub\n", - "\n", - "1. Navigate to your fork of the AIS community pipelines repo, https://github.com/your-github-username/pipelines-community\n", - "1. Select \"Pull requests\" in the top ribbon\n", - "1. Click the \"New pull request\" button\n", - "1. Select \"base:main\" <- \"your-fork:my-mri-convert\" from the drop-down lists\n", - "1. Click \"Create pull request\"\n", - "\n", - "This will then start the process for the pipeline to be accepted and deployed\n", - "\n", - "1. Maintainers of AIS Community Pipelines repository (i.e. Arkiev and myself) will be notified that you wish to add your pipeline to the community repository.\n", - "1. The repository maintainers (RM) will review your proposed pipeline for security issues\n", - "1. RM will potentially request some changes to your specification\n", - "1. RM accept your pipeline and merge your pull request\n", - "1. The pipeline is built using the continuous integration and deployment actions running on GitHub\n", - "1. Checks for newly pipelines are run periodically to pull the latest versions of the pipelines to your local node (although this is not setup at every node yet)" + "pydra2app ext xnat launch-command \\\n", + "au.edu.${INSTITUTION_NAME}.${GROUP_NAME}.mri_convert \\\n", + "OPENNEURO_T1W \\\n", + "subject01_MR01 \\\n", + "--input t1w" ] }, { @@ -1992,8 +976,8 @@ "metadata": {}, "outputs": [], "source": [ - "# git checkout main\n", - "# git checkout -b my-own-pipeline" + "git checkout main\n", + "git checkout -b my-own-pipeline" ] }, {