-
Notifications
You must be signed in to change notification settings - Fork 1
/
util.py
435 lines (351 loc) · 13 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import torch
from torch.utils.data import TensorDataset
import torch.nn.functional as F
import numpy as np
import survey
import wandb
import optuna
from config import RunConfig
import random
import os
import math
from math import pi
def load_data(n=10000, split_ratio=0.8, seed=42):
# Fix Seed
torch.manual_seed(seed)
x = torch.linspace(0, 1, n) + torch.rand(n) * 0.01
y = torch.cos(x * (2 * pi)) + torch.rand(n) * 0.01
ics = torch.randperm(n)
ics_train = ics[: int(n * split_ratio)]
ics_val = ics[int(n * split_ratio) :]
x_train = x[ics_train].view(-1, 1)
y_train = y[ics_train].view(-1, 1)
x_val = x[ics_val].view(-1, 1)
y_val = y[ics_val].view(-1, 1)
train_ds = TensorDataset(x_train, y_train)
val_ds = TensorDataset(x_val, y_val)
return train_ds, val_ds
def set_seed(seed: int):
# random
random.seed(seed)
# numpy
np.random.seed(seed)
# pytorch
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
class EarlyStopping:
def __init__(self, patience=10, mode="min", min_delta=0):
self.patience = patience
self.mode = mode
self.min_delta = min_delta
self.counter = 0
self.best_loss = None
self.early_stop = False
def __call__(self, val_loss):
if self.best_loss is None:
self.best_loss = val_loss
return False
if self.mode == "min":
if val_loss <= self.best_loss * (1 - self.min_delta):
self.best_loss = val_loss
self.counter = 0
else:
self.counter += 1
else: # mode == "max"
if val_loss >= self.best_loss * (1 + self.min_delta):
self.best_loss = val_loss
self.counter = 0
else:
self.counter += 1
if self.counter >= self.patience:
self.early_stop = True
return True
return False
def predict_final_loss(losses, max_epochs):
if len(losses) < 10:
return -np.log10(losses[-1])
try:
# Convert to numpy array
y = np.array(losses)
t = np.arange(len(y))
# 첫번째 값 기준으로 decay fitting
y_transformed = np.log(y)
K, log_A = np.polyfit(t, y_transformed, 1)
A = np.exp(log_A)
# Predict final loss
predicted_loss = -np.log10(A * np.exp(K * max_epochs))
if np.isfinite(predicted_loss):
return predicted_loss
except Exception as e:
print(f"Error in loss prediction: {e}")
return -np.log10(losses[-1])
class Trainer:
def __init__(
self,
model,
optimizer,
scheduler,
criterion,
early_stopping_config=None,
device="cpu",
trial=None,
seed=None,
pruner=None,
):
self.model = model
self.optimizer = optimizer
self.scheduler = scheduler
self.criterion = criterion
self.device = device
self.trial = trial
self.seed = seed
self.pruner = pruner
if early_stopping_config and early_stopping_config.enabled:
self.early_stopping = EarlyStopping(
patience=early_stopping_config.patience,
mode=early_stopping_config.mode,
min_delta=early_stopping_config.min_delta,
)
else:
self.early_stopping = None
def step(self, x):
return self.model(x)
def train_epoch(self, dl_train):
self.model.train()
train_loss = 0
for x, y in dl_train:
x = x.to(self.device)
y = y.to(self.device)
y_pred = self.step(x)
loss = self.criterion(y_pred, y)
train_loss += loss.item()
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
train_loss /= len(dl_train)
return train_loss
def val_epoch(self, dl_val):
self.model.eval()
val_loss = 0
for x, y in dl_val:
x = x.to(self.device)
y = y.to(self.device)
y_pred = self.step(x)
loss = self.criterion(y_pred, y)
val_loss += loss.item()
val_loss /= len(dl_val)
return val_loss
def train(self, dl_train, dl_val, epochs):
val_loss = 0
val_losses = []
for epoch in range(epochs):
train_loss = self.train_epoch(dl_train)
val_loss = self.val_epoch(dl_val)
val_losses.append(val_loss)
# Early stopping if loss becomes NaN
if math.isnan(train_loss) or math.isnan(val_loss):
print("Early stopping due to NaN loss")
val_loss = math.inf
break
# Early stopping check
if self.early_stopping is not None:
if self.early_stopping(val_loss):
print(f"Early stopping triggered at epoch {epoch}")
break
log_dict = {
"train_loss": train_loss,
"val_loss": val_loss,
"lr": self.optimizer.param_groups[0]["lr"],
}
if epoch >= 10:
log_dict["predicted_final_loss"] = predict_final_loss(
val_losses, epochs
)
# Pruning check
if (
self.pruner is not None
and self.trial is not None
and self.seed is not None
):
self.pruner.report(
trial_id=self.trial.number,
seed=self.seed,
epoch=epoch,
value=val_loss,
)
if self.pruner.should_prune():
raise optuna.TrialPruned()
self.scheduler.step()
wandb.log(log_dict)
if epoch % 10 == 0 or epoch == epochs - 1:
print_str = f"epoch: {epoch}"
for key, value in log_dict.items():
print_str += f", {key}: {value:.4e}"
print(print_str)
return val_loss
def run(
run_config: RunConfig, dl_train, dl_val, group_name=None, trial=None, pruner=None
):
project = run_config.project
device = run_config.device
seeds = run_config.seeds
if not group_name:
group_name = run_config.gen_group_name()
tags = run_config.gen_tags()
group_path = f"runs/{run_config.project}/{group_name}"
if not os.path.exists(group_path):
os.makedirs(group_path)
run_config.to_yaml(f"{group_path}/config.yaml")
# Register trial at the beginning if pruner exists
if pruner is not None and trial is not None and hasattr(pruner, "register_trial"):
pruner.register_trial(trial.number)
total_loss = 0
complete_seeds = 0
try:
for seed in seeds:
set_seed(seed)
model = run_config.create_model().to(device)
optimizer = run_config.create_optimizer(model)
scheduler = run_config.create_scheduler(optimizer)
run_name = f"{seed}"
wandb.init(
project=project,
name=run_name,
group=group_name,
tags=tags,
config=run_config.gen_config(),
)
trainer = Trainer(
model,
optimizer,
scheduler,
criterion=F.mse_loss,
early_stopping_config=run_config.early_stopping_config,
device=device,
trial=trial,
seed=seed,
pruner=pruner,
)
val_loss = trainer.train(dl_train, dl_val, epochs=run_config.epochs)
total_loss += val_loss
complete_seeds += 1
# Save model & configs
run_path = f"{group_path}/{run_name}"
if not os.path.exists(run_path):
os.makedirs(run_path)
torch.save(model.state_dict(), f"{run_path}/model.pt")
wandb.finish()
# Early stopping if loss becomes inf
if math.isinf(val_loss):
break
except optuna.TrialPruned:
wandb.finish()
raise
finally:
# Call trial_finished only once after all seeds are done
if (
pruner is not None
and trial is not None
and hasattr(pruner, "complete_trial")
):
pruner.complete_trial(trial.number)
return total_loss / (complete_seeds if complete_seeds > 0 else 1)
# ┌──────────────────────────────────────────────────────────┐
# For Analyze
# └──────────────────────────────────────────────────────────┘
def select_project():
runs_path = "runs/"
projects = [
d for d in os.listdir(runs_path) if os.path.isdir(os.path.join(runs_path, d))
]
if not projects:
raise ValueError(f"No projects found in {runs_path}")
selected_index = survey.routines.select("Select a project:", options=projects)
return projects[selected_index] # pyright: ignore
def select_group(project):
runs_path = f"runs/{project}"
groups = [
d for d in os.listdir(runs_path) if os.path.isdir(os.path.join(runs_path, d))
]
if not groups:
raise ValueError(f"No run groups found in {runs_path}")
selected_index = survey.routines.select("Select a run group:", options=groups)
return groups[selected_index] # pyright: ignore
def select_seed(project, group_name):
group_path = f"runs/{project}/{group_name}"
seeds = [
d for d in os.listdir(group_path) if os.path.isdir(os.path.join(group_path, d))
]
if not seeds:
raise ValueError(f"No seeds found in {group_path}")
selected_index = survey.routines.select("Select a seed:", options=seeds)
return seeds[selected_index] # pyright: ignore
def select_device():
devices = ["cpu"] + [f"cuda:{i}" for i in range(torch.cuda.device_count())]
selected_index = survey.routines.select("Select a device:", options=devices)
return devices[selected_index] # pyright: ignore
def load_model(project, group_name, seed, weights_only=True):
"""
Load a trained model and its configuration.
Args:
project (str): The name of the project.
group_name (str): The name of the run group.
seed (str): The seed of the specific run.
weights_only (bool, optional): If True, only load the model weights without loading the entire pickle file.
This can be faster and use less memory. Defaults to True.
Returns:
tuple: A tuple containing the loaded model and its configuration.
Raises:
FileNotFoundError: If the config or model file is not found.
Example usage:
# Load full model
model, config = load_model("MyProject", "experiment1", "seed42")
# Load only weights (faster and uses less memory)
model, config = load_model("MyProject", "experiment1", "seed42", weights_only=True)
"""
config_path = f"runs/{project}/{group_name}/config.yaml"
model_path = f"runs/{project}/{group_name}/{seed}/model.pt"
if not os.path.exists(config_path):
raise FileNotFoundError(f"Config file not found for {project}/{group_name}")
if not os.path.exists(model_path):
raise FileNotFoundError(
f"Model file not found for {project}/{group_name}/{seed}"
)
config = RunConfig.from_yaml(config_path)
model = config.create_model()
# Use weights_only option in torch.load
state_dict = torch.load(model_path, map_location="cpu", weights_only=weights_only)
model.load_state_dict(state_dict)
return model, config
def load_study(project, study_name):
"""
Load the best study from an optimization run.
Args:
project (str): The name of the project.
study_name (str): The name of the study.
Returns:
optuna.Study: The loaded study object.
"""
study = optuna.load_study(study_name=study_name, storage=f"sqlite:///{project}.db")
return study
def load_best_model(project, study_name, weights_only=True):
"""
Load the best model and its configuration from an optimization study.
Args:
project (str): The name of the project.
study_name (str): The name of the study.
Returns:
tuple: A tuple containing the loaded model, its configuration, and the best trial number.
"""
study = load_study(project, study_name)
best_trial = study.best_trial
project_name = project
group_name = best_trial.user_attrs["group_name"]
# Select Seed
seed = select_seed(project_name, group_name)
best_model, best_config = load_model(
project_name, group_name, seed, weights_only=weights_only
)
return best_model, best_config