-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPytorchTutorialRevised.py
491 lines (442 loc) · 20.3 KB
/
PytorchTutorialRevised.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
# -*- coding: utf-8 -*-
"""
Created on Sun Apr 28 17:12:08 2019
@author: u8815
"""
"""
Original code is from chatbot tutorial on pytorch:https://pytorch.org/tutorials/beginner/chatbot_tutorial.html
"""
import torch
import torch.nn as nn
from torch import optim
import torch.nn.functional as F
import random
import os
import numpy as np
MAX_LENGTH = 20
USE_CUDA = torch.cuda.is_available()
device = torch.device( "cuda")
word2idx=np.load("word2idx.npy")
idx2word=np.load("idx2word.npy")
train_x=np.load("train_x.npy").astype(np.int)
train_y=np.load("train_y.npy").astype(np.int)
class Voc:
def __init__(self,name,word2index,index2word):
self.name = name
self.word2index = word2index
self.index2word = index2word
self.num_words=71475
voc=Voc("chatbot",word2idx,idx2word)
def binaryMatrix(l, value=0):
m = []
for i, seq in enumerate(l):
m.append([])
for token in seq:
if token == 0:
m[i].append(0)
else:
m[i].append(1)
return m
def inputVar(l, voc):
indexes_batch = [x for x in l]
lengths = torch.tensor([len(indexes) for indexes in indexes_batch])
#padList = zeroPadding(indexes_batch)
padVar = torch.LongTensor(indexes_batch)
return torch.transpose(padVar,0,1), lengths
# Returns padded target sequence tensor, padding mask, and max target length
def outputVar(l, voc):
indexes_batch = [s for s in l]
indexes_batch2=np.array(indexes_batch).T
max_target_len=0
for i in range(0,len(indexes_batch2)):
if np.sum(indexes_batch2[i]!=0):
max_target_len+=1
else:
break
#padList = zeroPadding(indexes_batch)
mask = binaryMatrix(indexes_batch)
mask = torch.ByteTensor(mask)
padVar = torch.LongTensor(indexes_batch)
return torch.transpose(padVar,0,1), torch.transpose(mask,0,1), max_target_len
def batch2TrainData(voc, train_x,train_y):
#pair_batch.sort(key=lambda x: len(x[0].split(" ")), reverse=True)
input_batch, output_batch = [], []
for i in range(len(train_x)):
input_batch.append(train_x[i])
output_batch.append(train_y[i])
inp, lengths = inputVar(input_batch, voc)
output,mask, max_target_len = outputVar(output_batch, voc)
return inp, lengths, output, mask, max_target_len
# Example for validation
small_batch_size = 5
selected=[]
for k in range(small_batch_size):
selected.append(random.randint(0,len(train_x)-1))
batches = batch2TrainData(voc, [train_x[c] for c in selected],[train_y[c] for c in selected])
input_variable, lengths, target_variable, mask, max_target_len = batches
"""
print("input_variable:", input_variable)
print("lengths:", lengths)
print("target_variable:", target_variable)
print("mask:", mask)
print("max_target_len:", max_target_len)
"""
class EncoderRNN(nn.Module):
def __init__(self, hidden_size, embedding, n_layers=1, dropout=0):
super(EncoderRNN, self).__init__()
self.n_layers = n_layers
self.hidden_size = hidden_size
self.embedding = embedding
# Initialize GRU; the input_size and hidden_size params are both set to 'hidden_size'
# because our input size is a word embedding with number of features == hidden_size
self.gru = nn.GRU(hidden_size, hidden_size, n_layers,
dropout=(0 if n_layers == 1 else dropout), bidirectional=True)
def forward(self, input_seq, input_lengths, hidden=None):
# Convert word indexes to embeddings
embedded = self.embedding(input_seq)
embedded=embedded.type(torch.cuda.FloatTensor)
# Pack padded batch of sequences for RNN module
packed = nn.utils.rnn.pack_padded_sequence(embedded, input_lengths)
# Forward pass through GRU
outputs, hidden = self.gru(packed, hidden)
# Unpack padding
outputs, _ = nn.utils.rnn.pad_packed_sequence(outputs)
# Sum bidirectional GRU outputs
outputs = outputs[:, :, :self.hidden_size] + outputs[:, : ,self.hidden_size:]
# Return output and final hidden state
return outputs, hidden
# Luong attention layer
class Attn(nn.Module):
def __init__(self, method, hidden_size):
super(Attn, self).__init__()
self.method = method
if self.method not in ['dot', 'general', 'concat']:
raise ValueError(self.method, "is not an appropriate attention method.")
self.hidden_size = hidden_size
if self.method == 'general':
self.attn = nn.Linear(self.hidden_size, hidden_size)
elif self.method == 'concat':
self.attn = nn.Linear(self.hidden_size * 2, hidden_size)
self.v = nn.Parameter(torch.FloatTensor(hidden_size))
def dot_score(self, hidden, encoder_output):
return torch.sum(hidden * encoder_output, dim=2)
def general_score(self, hidden, encoder_output):
energy = self.attn(encoder_output)
return torch.sum(hidden * energy, dim=2)
def concat_score(self, hidden, encoder_output):
energy = self.attn(torch.cat((hidden.expand(encoder_output.size(0), -1, -1), encoder_output), 2)).tanh()
return torch.sum(self.v * energy, dim=2)
def forward(self, hidden, encoder_outputs):
# Calculate the attention weights (energies) based on the given method
if self.method == 'general':
attn_energies = self.general_score(hidden, encoder_outputs)
elif self.method == 'concat':
attn_energies = self.concat_score(hidden, encoder_outputs)
elif self.method == 'dot':
attn_energies = self.dot_score(hidden, encoder_outputs)
# Transpose max_length and batch_size dimensions
attn_energies = attn_energies.t()
# Return the softmax normalized probability scores (with added dimension)
return F.softmax(attn_energies, dim=1).unsqueeze(1)
class LuongAttnDecoderRNN(nn.Module):
def __init__(self, attn_model, embedding, hidden_size, output_size, n_layers=1, dropout=0.1):
super(LuongAttnDecoderRNN, self).__init__()
# Keep for reference
self.attn_model = attn_model
self.hidden_size = hidden_size
self.output_size = output_size
self.n_layers = n_layers
self.dropout = dropout
# Define layers
self.embedding = embedding
self.embedding_dropout = nn.Dropout(dropout)
self.gru = nn.GRU(hidden_size, hidden_size, n_layers, dropout=(0 if n_layers == 1 else dropout))
self.concat = nn.Linear(hidden_size * 2, hidden_size)
self.out = nn.Linear(hidden_size, output_size)
self.attn = Attn(attn_model, hidden_size)
def forward(self, input_step, last_hidden, encoder_outputs):
# Note: we run this one step (word) at a time
# Get embedding of current input word
#print(last_hidden.shape)
embedded = self.embedding(input_step)
embedded = self.embedding_dropout(embedded)
embedded=embedded.type(torch.cuda.FloatTensor)
#print (embedded.shape)
# Forward through unidirectional GRU
rnn_output, hidden = self.gru(embedded, last_hidden)
# Calculate attention weights from the current GRU output
attn_weights = self.attn(rnn_output, encoder_outputs)
# Multiply attention weights to encoder outputs to get new "weighted sum" context vector
context = attn_weights.bmm(encoder_outputs.transpose(0, 1))
# Concatenate weighted context vector and GRU output using Luong eq. 5
rnn_output = rnn_output.squeeze(0)
context = context.squeeze(1)
concat_input = torch.cat((rnn_output, context), 1)
concat_output = torch.tanh(self.concat(concat_input))
# Predict next word using Luong eq. 6
output = self.out(concat_output)
output = F.softmax(output, dim=1)
#print (output.shape)
# Return output and final hidden state
return output, hidden
def maskNLLLoss(inp, target, mask):
nTotal = mask.sum()
crossEntropy = -torch.log(torch.gather(inp, 1, target.view(-1, 1)).squeeze(1))
loss = crossEntropy.masked_select(mask).mean()
loss = loss.to(device)
return loss, nTotal.item()
def inverse_sigmoid(x,k=1):
return 1-1/(1+np.exp(x/k))
def train(input_variable, lengths, target_variable, mask, max_target_len, encoder, decoder, embedding,
encoder_optimizer, decoder_optimizer, batch_size, clip,epoch,check,c,batch,BOS_length=0,max_length=MAX_LENGTH):
# Zero gradients
encoder_optimizer.zero_grad()
decoder_optimizer.zero_grad()
# Set device options
input_variable = input_variable.to(device)
lengths = lengths.to(device)
target_variable = target_variable.to(device)
mask = mask.to(device)
# Initialize variables
loss = 0
print_losses = []
n_totals = 0
# Forward pass through encoder
encoder_outputs, encoder_hidden = encoder(input_variable, lengths)
# Create initial decoder input (start with SOS tokens for each sentence)
if not check:
decoder_input = torch.LongTensor([[1 for _ in range(batch_size)]])
else:
decoder_input = torch.LongTensor([[1 for _ in range(BOS_length)]])
decoder_input = decoder_input.to(device)
# Set initial decoder hidden state to the encoder's final hidden state
decoder_hidden = encoder_hidden[:decoder.n_layers]
#print(encoder_hidden.shape)
# Determine if we are using teacher forcing this iteration
#Schedule Sampling with inverse sigmoid
# Forward batch of sequences through decoder one time step at a time
threshold=1-1/(1+np.exp((epoch-90)/5))
for t in range(max_target_len):
if epoch<=79:
use_teacher_forcing = True
else:
use_teacher_forcing = True if np.random.rand()>threshold else False
if use_teacher_forcing:
decoder_output, decoder_hidden = decoder(
decoder_input, decoder_hidden, encoder_outputs
)
# Teacher forcing: next input is current target
decoder_input = target_variable[t].view(1, -1)
# Calculate and accumulate loss
#print (mask[t].shape)
mask_loss, nTotal = maskNLLLoss(decoder_output, target_variable[t], mask[t])
loss += mask_loss
print_losses.append(mask_loss.item() * nTotal)
n_totals += nTotal
else:
decoder_output, decoder_hidden = decoder(
decoder_input, decoder_hidden, encoder_outputs
)
# No teacher forcing: next input is decoder's own current output
_, topi = decoder_output.topk(1)
decoder_input = torch.LongTensor([[topi[i][0] for i in range(len(topi))]])
decoder_input = decoder_input.to(device)
# Calculate and accumulate loss
mask_loss, nTotal = maskNLLLoss(decoder_output, target_variable[t], mask[t])
loss += mask_loss
print_losses.append(mask_loss.item() * nTotal)
n_totals += nTotal
# Perform backpropatation
loss.backward()
# Clip gradients: gradients are modified in place
_ = nn.utils.clip_grad_norm_(encoder.parameters(), clip)
_ = nn.utils.clip_grad_norm_(decoder.parameters(), clip)
# Adjust model weights
encoder_optimizer.step()
decoder_optimizer.step()
return sum(print_losses) / n_totals
def trainIters(model_name, voc, train_x, train_y, encoder, decoder, encoder_optimizer, decoder_optimizer, embedding, encoder_n_layers, decoder_n_layers, save_dir, epochs, batch_size, print_every, save_every, clip, corpus_name, loadFilename,c):
# Load batches for each iteration
# Initializations
print('Initializing...')
training_batch=[]
for k in range(0,train_x.shape[0]//batch_size+1):
a=batch_size*k
b=a+batch_size
if b>train_x.shape[0]:
b=train_x.shape[0]
training_batch.append(batch2TrainData(voc, [train_x[i] for i in range(a,b)],[train_y[i] for i in range(a,b)]))
#print (training_batch[0].shape)
print('Training ...')
if loadFilename:
start = checkpoint['epoch'] +1
for epoch in range(start,epochs):
print_loss = 0
for l in range(0,train_x.shape[0]//batch_size+1):
check=0
# Training loop
# Extract fields from batch
input_variable, lengths, target_variable, mask, max_target_len = training_batch[l]
BOS_length=batch_size
if (l==train_x.shape[0]//batch_size):
check=1
BOS_length= input_variable.shape[1]
# Run a training iteration with batch
loss = train(input_variable, lengths, target_variable, mask, max_target_len, encoder,
decoder, embedding, encoder_optimizer, decoder_optimizer, batch_size, clip,epoch,check,c,l,BOS_length)
print_loss += loss
# Print progress
if (l+1) % print_every == 0:
print_loss_avg = print_loss / print_every
print("Epoch: {};Batch: {} Average loss: {:.4f}".format(epoch+1,l+1, print_loss_avg))
print_loss = 0
# Save checkpoint
if ((epoch+1) % save_every == 0 ):
directory = os.path.join(save_dir, model_name, corpus_name, '{}-{}_{}'.format(encoder_n_layers, decoder_n_layers, hidden_size))
if not os.path.exists(directory):
os.makedirs(directory)
torch.save({
'epoch': epoch,
'en': encoder.state_dict(),
'de': decoder.state_dict(),
'en_opt': encoder_optimizer.state_dict(),
'de_opt': decoder_optimizer.state_dict(),
'loss': loss,
'voc_dict': voc.__dict__,
'embedding': embedding.state_dict()
}, os.path.join(directory, '{}_{}.tar'.format(epoch, 'checkpoint')))
model_name = 'cb_model'
#attn_model = 'dot'
#attn_model = 'general'
attn_model = 'concat'
hidden_size = 250
encoder_n_layers = 2
decoder_n_layers = 2
dropout = 0
batch_size = 384
# Set checkpoint to load from; set to None if starting from scratch
loadFilename = "C:\\Users\\u8815\\Desktop\\MLDS2019Spring\\hw2\\hw2-2\\model\\cb_model\\chat_bot\\2-2_250\\79_checkpoint.tar"
#checkpoint_iter =
#loadFilename = os.path.join(save_dir, model_name, corpus_name,
# '{}-{}_{}'.format(encoder_n_layers, decoder_n_layers, hidden_size),
# '{}_checkpoint.tar'.format(checkpoint_iter))
# Load model if a loadFilename is provided
if loadFilename:
# If loading on same machine the model was trained on
checkpoint = torch.load(loadFilename)
# If loading a model trained on GPU to CPU
#checkpoint = torch.load(loadFilename, map_location=torch.device('cpu'))
encoder_sd = checkpoint['en']
decoder_sd = checkpoint['de']
encoder_optimizer_sd = checkpoint['en_opt']
decoder_optimizer_sd = checkpoint['de_opt']
embedding_sd = checkpoint['embedding']
voc.__dict__ = checkpoint['voc_dict']
print('Building encoder and decoder ...')
# Initialize word embeddings
temp=np.load("embedding_matrix_normalized.npy")
embedding = nn.Embedding.from_pretrained(torch.from_numpy(temp))
if loadFilename:
embedding.load_state_dict(embedding_sd)
# Initialize encoder & decoder models
encoder = EncoderRNN(hidden_size, embedding, encoder_n_layers, dropout)
decoder = LuongAttnDecoderRNN(attn_model, embedding, hidden_size, voc.num_words, decoder_n_layers, dropout)
if loadFilename:
encoder.load_state_dict(encoder_sd)
decoder.load_state_dict(decoder_sd)
# Use appropriate device
encoder = encoder.to(device)
decoder = decoder.to(device)
print('Models built and ready to go!')
clip = 50.0
learning_rate = 0.001
decoder_learning_ratio = 1.0
epoch=100
print_every = 100
save_every = 1
save_dir="./model"
corpus_name="chat_bot"
# Ensure dropout layers are in train mode
encoder.train()
decoder.train()
# Initialize optimizers
print('Building optimizers ...')
encoder_optimizer = optim.Adam(encoder.parameters(), lr=learning_rate)
decoder_optimizer = optim.Adam(decoder.parameters(), lr=learning_rate * decoder_learning_ratio)
if loadFilename:
encoder_optimizer.load_state_dict(encoder_optimizer_sd)
decoder_optimizer.load_state_dict(decoder_optimizer_sd)
# Run training iterations
print("Starting Training!")
c=torch.zeros(50,train_x.shape[0]//batch_size+1,dtype=torch.int8).to(device)
"""
table(c,50,train_x.shape[0]//batch_size+1)
trainIters(model_name, voc, train_x,train_y, encoder, decoder, encoder_optimizer, decoder_optimizer,
embedding, encoder_n_layers, decoder_n_layers, save_dir, epoch, batch_size,
print_every, save_every, clip, corpus_name, loadFilename,c)
"""
class GreedySearchDecoder(nn.Module):
def __init__(self, encoder, decoder):
super(GreedySearchDecoder, self).__init__()
self.encoder = encoder
self.decoder = decoder
def forward(self, input_seq, input_length, max_length):
# Forward input through encoder model
encoder_outputs, encoder_hidden = self.encoder(input_seq, input_length)
# Prepare encoder's final hidden layer to be first hidden input to the decoder
decoder_hidden = encoder_hidden[:decoder.n_layers]
# Initialize decoder input with SOS_token
decoder_input = torch.ones(1, 1, device=device, dtype=torch.long) * 1
# Initialize tensors to append decoded words to
all_tokens = torch.zeros([0], device=device, dtype=torch.long)
all_scores = torch.zeros([0], device=device)
# Iteratively decode one word token at a time
for _ in range(max_length):
# Forward pass through decoder
decoder_output, decoder_hidden = self.decoder(decoder_input, decoder_hidden, encoder_outputs)
# Obtain most likely word token and its softmax score
decoder_scores, decoder_input = torch.max(decoder_output, dim=1)
# Record token and score
all_tokens = torch.cat((all_tokens, decoder_input), dim=0)
all_scores = torch.cat((all_scores, decoder_scores), dim=0)
# Prepare current token to be next decoder input (add a dimension)
decoder_input = torch.unsqueeze(decoder_input, 0)
# Return collections of word tokens and scores
return all_tokens, all_scores
def evaluate(encoder, decoder, searcher, voc, sentence, max_length=MAX_LENGTH):
### Format input sentence as a batch
# words -> indexes
indexes_batch = torch.unsqueeze(torch.tensor(sentence),0)
# Create lengths tensor
lengths = torch.tensor([len(indexes) for indexes in indexes_batch ])
#print(lengths)
# Transpose dimensions of batch to match models' expectations
input_batch = torch.LongTensor(indexes_batch).transpose(0,1)
# Use appropriate device
input_batch = input_batch.to(device)
lengths = lengths.to(device)
# Decode sentence with searcher
tokens, scores = searcher(input_batch, lengths, max_length)
# indexes -> words
dictionary=voc.index2word.item()
decoded_words = [dictionary[token.item()] for token in tokens]
return decoded_words
def evaluateInput(encoder, decoder, searcher, voc,sentence):
output_words = evaluate(encoder, decoder, searcher, voc, sentence)
# Format and print response sentence
output_words[:] = [x for x in output_words if not (x == 'EOS' or x == 'PAD'or x == 'UNK')]
return output_words
test_x=np.load("test_x.npy")
test_x=np.ndarray.tolist(test_x)
def test():
global test_x
encoder.eval()
decoder.eval()
searcher=GreedySearchDecoder(encoder,decoder)
f=open("output.txt",'w')
for i in range(350,360):
output=evaluateInput(encoder,decoder,searcher,voc, test_x[i])
output.append("\n")
print(output)
f.writelines(output)
f.close()