-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_tests_ST.R
179 lines (141 loc) · 5.89 KB
/
run_tests_ST.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
library(tidyr)
library(reshape2)
library(VoltRon)
library(dplyr)
library(igraph)
library(GSEABase)
library(pROC)
#load package (if not installed)
setwd("~/spatialNetSmooth/")
devtools::load_all()
#Set input and output directories
filepath_data= "~/Documents/data/"
filepath_output = "~/BA/images ST/"
#select name of dataset
letter <- "C1"
#read count matrix
datax <- read.table(paste(filepath_data, "/ST-cnts/", letter,".tsv.gz", sep=""), header = TRUE, sep = "\t")
entities <- datax$X
datax <- datax[,-1]
datax <- t(as.matrix(datax))
#datax <- LogNormalize(datax, scale.factor = 10000, verbose = TRUE)
# coords
#read coordinates
coords <- read.table(paste(filepath_data, "/ST-spotfiles/",letter ,"_selection.tsv.gz", sep=""), header = TRUE, sep = "\t")
rownames(coords) <- paste(coords$x, coords$y, sep = "x")
#get true labels
coords2 <- read.table(
file = paste(filepath_data, "/meta/",letter, "_labeled_coordinates.tsv", sep=""),
sep = "\t",
header = TRUE,
row.names = 1
)
coords2 <- coords2[order(coords2[,1],decreasing=FALSE),]
coords3 <- coords[order(coords[,3],decreasing=FALSE),]
truth <- array(coords2$label)
fun <- function(x){
if(x=="invasive cancer"){x <- 1}
else if(x=="cancer in situ"){x <- 1}
else{x <- 0}
}
truth <- apply(truth, 1, fun)
truth <- as.matrix(truth, ncol=1)
#filtered_vec <- truth[rownames(truth) %in% entities]
rownames(truth) <- rownames(coords3)
truth <- as.matrix(truth[match(entities, rownames(truth))])
rownames(truth) <- entities
coords <- coords[entities,]
coords <- coords[,c("pixel_x", "pixel_y")]
colnames(coords) <- c("x", "y")
rownames(coords) <- paste("spot", (1:nrow(coords)), sep="_")
rownames(truth) <- rownames(coords)
colnames(datax) <- rownames(coords)
#coords <- read.csv("~/BA/D1_coords.csv", row.names=1)
# images
img <- magick::image_read(paste(filepath_data,"/ST-imgs/HE/", letter,".jpg", sep=""))
img_info <- magick::image_info(img)
# get ST parameters
scale_param <- img_info$width/6200
params <- list(
nearestpost.distance = (200*sqrt(2) + 50)*scale_param, # distance to nearest spot
spot.radius = 50*(scale_param),
vis.spot.radius = 100*(scale_param))
# make voltron object
temp <- formVoltRon(data = datax, image = img, coords = coords, assay.type = "spot", params = params)
setwd(paste(filepath_output, letter, sep=""))
write.csv(truth, "truth.csv", row.names=T)
#caclulate GSEA
seu <- gseaCalc(temp, assay="Custom_spot")
coordinates <- coords
gsea_raw <- as.matrix(Metadata(seu)$gsea_rat_norm)
rownames(gsea_raw) <- rownames(Metadata(seu))
#gsea_raw <- cbind(truth, gsea_raw)
#colnames(gsea_raw) <- c("truth", "gsea")
#write.csv(gsea_raw, paste("~/BA/images ST/", letter, "/gsea_raw.csv", sep=""), row.names=T)
alphas <- c(0.2, 0.4, 0.6, 0.8)
#spatial smoothing
gsea_spatial <- vector(mode = "list", length = 4)
for (i in 1:4) {
gsea_spatial[[i]] <- spatial_smooth(seu, a = alphas[i])
}
spatial <- as.data.frame(gsea_spatial)
colnames(spatial) <- c("alpha=0.2", "alpha=0.4", "alpha=0.6", "alpha=0.8")
write.csv(spatial, paste("spatial_scores_", letter, ".csv", sep=""), row.names = T)
#NN smoothing
gsea_nn <- vector(mode = "list", length = 4)
for (i in 1:4) {
gsea_nn[[i]] <- nn_smooth(seu, a = alphas[i])
}
nn <- as.data.frame(gsea_nn)
colnames(nn) <- c("alpha=0.2", "alpha=0.4", "alpha=0.6", "alpha=0.8")
write.csv(nn, paste("nn_scores_", letter, ".csv", sep=""), row.names = T)
#SNN spatial smoothing
gsea_nn_spatial <- vector(mode = "list", length = 4)
for (i in 1:4) { # [0.2, 0.2], [0.2,0.4], [0.2, 0.6], ...[0.4, 0.2], [0.4, 0.4]....
item <- vector(mode = "list", length = 4)
for (j in 1:4) {
item[[j]] <- nn_spatial_smooth(seu, a1 = alphas[i],a2 = alphas[j])
}
gsea_nn_spatial[[i]] <- item
}
nn_spatial<- as.data.frame(gsea_nn_spatial)
colnames(nn_spatial) <- c("a1 = 0.2, a2=0.2","a1 = 0.2, a2=0.4", "a1 = 0.2, a2=0.6", "a1 = 0.2, a2=0.8", "a1 = 0.4, a2=0.2", "a1 = 0.4, a2=0.4", "a1 = 0.4, a2=0.6", "a1 = 0.4, a2=0.8", "a1 = 0.6, a2=0.2", "a1 = 0.6, a2=0.4", "a1 = 0.6, a2=0.6", "a1 = 0.6, a2=0.8", "a1 = 0.8, a2=0.2", "a1 = 0.8, a2=0.4", "a1 = 0.8, a2=0.6", "a1 = 0.8, a2=0.8")
write.csv(nn_spatial, paste("nn_spatial_scores_", letter, ".csv", sep=""), row.names = T)
#union smoothing
gsea_union <- vector(mode = "list", length = 4)
for (i in 1:4) {
gsea_union[[i]] <- union_smooth(seu, a = alphas[i])
}
union <- as.data.frame(gsea_union)
colnames(union) <- c("a=0.2", "a=0.4", "a=0.6", "a=0.8")
write.csv(union, paste("union_scores_", letter, ".csv", sep=""), row.names = T)
#linear combination smoothing
gsea_alpha <- vector(mode = "list", length = 4)
for (i in 1:4) {
item <- vector(mode = "list", length = 4)
for (j in 1:4) {
item[[j]] <- alpha_nn_spatial_smooth(seu, a = alphas[i], alpha = alphas[j])
}
gsea_alpha[[i]] <- item
}
alpha <- as.data.frame(gsea_alpha)
colnames(alpha) <- c("a = 0.2, alpha=0.2", "a = 0.2, alpha=0.4", "a = 0.2, alpha=0.6", "a = 0.2, alpha=0.8", "a = 0.4, alpha=0.2", "a = 0.4, alpha=0.4", "a = 0.4, alpha=0.6", "a = 0.4, alpha=0.8", "a = 0.6, alpha=0.2", "a = 0.6, alpha=0.4", "a = 0.6, alpha=0.6", "a = 0.6, alpha=0.8", "a = 0.8, alpha=0.2", "a = 0.8, alpha=0.4", "a = 0.8, alpha=0.6", "a = 0.8, alpha=0.8")
write.csv(alpha, paste("alpha_scores_", letter, ".csv", sep=""), row.names = T)
#select best parameters for each method by selecting the column in dataframe
#make spatial plots
truth <- as.vector(truth)
pdf(paste("plot_snn_", letter, ".pdf", sep=""))
plot_quant(as.vector(gsea_nn[[4]]), coordinates, truth)
dev.off()
pdf(paste("plot_spatial_", letter, ".pdf", sep=""))
plot_quant(as.vector(gsea_spatial[[4]]), coordinates, truth)
dev.off()
pdf(paste("plot_union_", letter, ".pdf", sep=""))
plot_quant(as.vector(gsea_union[[4]]), coordinates, truth)
dev.off()
pdf(paste("plot_alpha_", letter, ".pdf", sep=""))
plot_quant(as.vector(alpha[,16]), coordinates, truth)
dev.off()
pdf(paste("plot_snn_spatial", letter, ".pdf", sep=""))
plot_quant(as.vector(nn_spatial[,16]), coordinates, truth)
dev.off()