-
Notifications
You must be signed in to change notification settings - Fork 148
/
Copy pathmain_GUI.py
112 lines (84 loc) · 4.47 KB
/
main_GUI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import tkinter as tk
from tkinter import ttk
from openhgnn.experiment import Experiment
import threading
import sys
# 定义一个类来捕获stdout并输出到tkinter的Text控件
class OutputRedirector:
def __init__(self, widget):
self.widget = widget
def write(self, text):
self.widget.insert(tk.END, text)
self.widget.update_idletasks() # 强制刷新GUI界面
def flush(self):
pass # 如果需要刷新缓冲区,可以在这里实现
def run_experiment_in_thread():
# 在新线程中运行 Experiment,这样在模型训练过程中,GUI窗口也可以同时更新输出内容
threading.Thread(target=run_experiment, daemon=True).start()
def run_experiment():
model = model_var.get()
task = task_var.get()
dataset = dataset_var.get()
gpu = int(gpu_var.get()) # 将字符串转换为整数
use_distributed = use_distributed_var.get()
use_best_config = use_best_config_var.get()
load_from_pretrained = load_from_pretrained_var.get()
use_database = use_database_var.get()
mini_batch_flag = mini_batch_flag_var.get()
graphbolt = graphbolt_var.get()
# 清空输出框内容,
output_widget.delete(1.0, tk.END)
output_widget.insert(tk.END, "OpenHGNN main.py 开始运行 \n")
output_widget.update_idletasks()
# 重定向 stdout
sys.stdout = OutputRedirector(output_widget)
# 把 GUI界面中的10个参数,传入 experiment对象
experiment = Experiment(model=model, dataset=dataset, task=task, gpu=gpu,
use_best_config=use_best_config, load_from_pretrained=load_from_pretrained,
mini_batch_flag=mini_batch_flag, use_distributed=use_distributed,
graphbolt=graphbolt,
output_widget=output_widget)
experiment.run()
print("pipeline finished")
# 创建主窗口
root_main_window = tk.Tk()
root_main_window.title("Experiment Configuration")
# 创建控件变量
model_var = tk.StringVar(value='RGCN')
task_var = tk.StringVar(value='node_classification')
dataset_var = tk.StringVar(value='acm4GTN')
gpu_var = tk.StringVar(value='0') # GPU 参数仍是字符串输入,但会在运行时转换为整数
use_distributed_var = tk.BooleanVar()
use_best_config_var = tk.BooleanVar()
load_from_pretrained_var = tk.BooleanVar()
use_database_var = tk.BooleanVar()
mini_batch_flag_var = tk.BooleanVar()
graphbolt_var = tk.BooleanVar()
# 4个用于输入文本的控件
tk.Label(root_main_window, text="Model").grid(row=0, column=0, padx=10, pady=5)
model_entry = ttk.Entry(root_main_window, textvariable=model_var)
model_entry.grid(row=0, column=1, padx=10, pady=5)
tk.Label(root_main_window, text="Task").grid(row=1, column=0, padx=10, pady=5)
task_entry = ttk.Entry(root_main_window, textvariable=task_var)
task_entry.grid(row=1, column=1, padx=10, pady=5)
tk.Label(root_main_window, text="Dataset").grid(row=2, column=0, padx=10, pady=5)
dataset_entry = ttk.Entry(root_main_window, textvariable=dataset_var)
dataset_entry.grid(row=2, column=1, padx=10, pady=5)
tk.Label(root_main_window, text="GPU").grid(row=3, column=0, padx=10, pady=5)
gpu_entry = ttk.Entry(root_main_window, textvariable=gpu_var)
gpu_entry.grid(row=3, column=1, padx=10, pady=5)
# 6个用于勾选的 bool型控件
tk.Checkbutton(root_main_window, text="Use Distributed Training", variable=use_distributed_var).grid(row=4, column=0, columnspan=2, pady=5)
tk.Checkbutton(root_main_window, text="Use Best Config", variable=use_best_config_var).grid(row=5, column=0, columnspan=2, pady=5)
tk.Checkbutton(root_main_window, text="Load from Pretrained", variable=load_from_pretrained_var).grid(row=6, column=0, columnspan=2, pady=5)
tk.Checkbutton(root_main_window, text="Use Database", variable=use_database_var).grid(row=7, column=0, columnspan=2, pady=5)
tk.Checkbutton(root_main_window, text="Mini Batch Mode", variable=mini_batch_flag_var).grid(row=8, column=0, columnspan=2, pady=5)
tk.Checkbutton(root_main_window, text="Use Graphbolt", variable=graphbolt_var).grid(row=9, column=0, columnspan=2, pady=5)
# 创建输出窗口
output_widget = tk.Text(root_main_window, height=15, width=70, wrap='word')
output_widget.grid(row=11, column=0, columnspan=2, padx=10, pady=10)
# 创建运行按钮,直接调用 run_experiment
run_button = ttk.Button(root_main_window, text="Run Experiment", command=run_experiment_in_thread)
run_button.grid(row=10, column=0, columnspan=2, pady=10)
# 运行主循环
root_main_window.mainloop()