-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtst_cifa.c
201 lines (170 loc) · 4.47 KB
/
tst_cifa.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
#ifndef ARDUINO
// tst_cifa.c - test gammatone-filterbank analysis
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <time.h>
#include <ctype.h>
#include <sigpro.h>
#include "chapro.h"
typedef struct {
char *ifn, *ofn, cs, mat;
double rate;
float *iwav, *owav;
int32_t *siz;
int32_t iod, nwav, nsmp, mseg, nseg, oseg, pseg;
void **out;
} I_O;
static double target_delay = 4;
/***********************************************************/
// initialize io
static void
init_wav(I_O *io)
{
/* impulse input */
io->nwav = round(io->rate);
io->iwav = (float *) calloc(io->nwav, sizeof(float));
fprintf(stdout, "impulse response: \n");
io->ofn = "test/tst_cifa.mat";
io->iwav[0] = 1;
io->nsmp = io->nwav;
io->mseg = 1;
io->nseg = 1;
}
static void
write_waves(I_O *io, CHA_PTR cp, int c)
{
char *ft;
float r[1], d[1], *x, *y;
int n;
static VAR *vl;
ft = "MAT";
fprintf(stdout, "%s output: %s\n", ft, io->ofn);
remove(io->ofn);
n = io->nwav;
x = io->iwav;
y = io->owav;
r[0] = (float) io->rate;
d[0] = (float) target_delay;
vl = sp_var_alloc(4);
sp_var_add(vl, "rate", r, 1, 1, "f4");
sp_var_add(vl, "x", x, n, 1, "f4");
sp_var_add(vl, "y", y, n, c, "f4c");
sp_var_add(vl, "td", d, 1, 1, "f4");
sp_mat_save(io->ofn, vl);
sp_var_clear(vl);
}
/***********************************************************/
// specify filterbank center frequecies and bandwidths
static double
cgtfb_init(CHA_CLS *cls, double sr, int nm, int cpo)
{
float lfbw, fmid = 1000;
int i, nh, nc;
lfbw = fmid / nm;
nh = (int) floor(log2((float)sr / 2000) * cpo);
nc = nh + nm;
cls->nc = nc;
for (i = 0; i < (nm - 1); i++) {
cls->fc[i] = lfbw * (i + 1);
cls->bw[i] = lfbw;
}
cls->fc[nm - 1] = fmid;
cls->bw[nm - 1] = fmid * (pow(2.0, 0.5 / cpo) - (nm - 0.5) / nm);
for (i = nm; i < nc; i++) {
cls->fc[i] = fmid * pow(2.0, (i - nm + 1.0) / cpo);
cls->bw[i] = fmid * (pow(2.0, (i - nm + 1.5) / cpo) - pow(2.0, (i - nm + 0.5) / cpo));
}
return (400 / lfbw);
}
/***********************************************************/
// prepare CIIR filterbank
static void
prepare_filterbank(CHA_PTR cp)
{
double gd, *fc, *bw;
float z[256], p[256], g[64];
int nc, d[32];
CHA_CLS cls;
static double sr = 24000; // sampling rate (Hz)
static int cs = 32; // chunk size
static int nm = 5; // number of frequency bands below 1 kHz
static int po = 3; // number of bands per octave above 1 kHz
static int no = 4; // gammatone filter order
gd = target_delay = cgtfb_init(&cls, sr, nm, po);
// prepare filterbank
nc = cls.nc;
fc = cls.fc;
bw = cls.bw;
cha_ciirfb_design(z, p, g, d, nc, fc, bw, sr, gd);
cha_ciirfb_prepare(cp, z, p, g, d, nc, no, sr, cs);
}
// prepare signal processing
static void
prepare(I_O *io, CHA_PTR cp)
{
double fs, gd;
int nc, ns;
prepare_filterbank(cp);
fs = CHA_DVAR[_fs];
gd = target_delay;
// initialize waveform
io->rate = fs * 1000;
init_wav(io);
nc = CHA_IVAR[_nc];
ns = io->nsmp;
// output buffer
io->owav = (float *) calloc(nc * ns * 2, sizeof(float));
// report
fprintf(stdout, "CHA filterbank analysis: sampling rate=%.0f kHz, ", fs);
fprintf(stdout, "filterbank gd=%.1f ms\n", gd);
}
// unscramble channel outputs
static void
unscramble_out(float *y, float *z, int nc, int ns, int cs, int j)
{
int k;
for (k = 0; k < nc; k++) {
fcopy(y + j * cs + k * ns, z + k * cs, cs);
}
}
// process signal
static void
process(I_O *io, CHA_PTR cp)
{
float *x, *y, *z;
int j, nc, cs, ns, nk;
// initialize i/o pointers
x = io->iwav;
y = io->owav;
z = CHA_CB;
ns = io->nsmp;
nc = CHA_IVAR[_nc];
// process gammatone filterbank
cs = CHA_IVAR[_cs]; // chunk size
nk = ns / cs; // number of chunks
for (j = 0; j < nk; j++) {
cha_ciirfb_analyze(cp, x + j * cs, z, cs);
unscramble_out(y, z, nc, ns * 2, cs * 2, j);
}
}
// clean up io
static void
cleanup(I_O *io, CHA_PTR cp)
{
write_waves(io, cp, CHA_IVAR[_nc]);
cha_cleanup(cp);
}
/***********************************************************/
int
main(int ac, char *av[])
{
static I_O io;
static void *cp[NPTR] = {0};
prepare(&io, cp);
process(&io, cp);
cleanup(&io, cp);
return (0);
}
#endif