-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathex14.cpp
217 lines (202 loc) · 8.07 KB
/
ex14.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
// MFEM Example 14
//
// Compile with: make ex14
//
// Sample runs: ex14 -m ../data/inline-quad.mesh -o 0
// ex14 -m ../data/star.mesh -r 4 -o 2
// ex14 -m ../data/star-mixed.mesh -r 4 -o 2
// ex14 -m ../data/star-mixed.mesh -r 2 -o 2 -k 0 -e 1
// ex14 -m ../data/escher.mesh -s 1
// ex14 -m ../data/fichera.mesh -s 1 -k 1
// ex14 -m ../data/fichera-mixed.mesh -s 1 -k 1
// ex14 -m ../data/square-disc-p2.vtk -r 3 -o 2
// ex14 -m ../data/square-disc-p3.mesh -r 2 -o 3
// ex14 -m ../data/square-disc-nurbs.mesh -o 1
// ex14 -m ../data/disc-nurbs.mesh -r 3 -o 2 -s 1 -k 0
// ex14 -m ../data/pipe-nurbs.mesh -o 1
// ex14 -m ../data/inline-segment.mesh -r 5
// ex14 -m ../data/amr-quad.mesh -r 3
// ex14 -m ../data/amr-hex.mesh
// ex14 -m ../data/fichera-amr.mesh
// ex14 -pa -r 1 -o 3
// ex14 -pa -r 1 -o 3 -m ../data/fichera.mesh
//
// Device sample runs:
// ex14 -pa -r 2 -d cuda -o 3
// ex14 -pa -r 2 -d cuda -o 3 -m ../data/fichera.mesh
//
// Description: This example code demonstrates the use of MFEM to define a
// discontinuous Galerkin (DG) finite element discretization of
// the Laplace problem -Delta u = 1 with homogeneous Dirichlet
// boundary conditions. Finite element spaces of any order,
// including zero on regular grids, are supported. The example
// highlights the use of discontinuous spaces and DG-specific face
// integrators.
//
// We recommend viewing examples 1 and 9 before viewing this
// example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
int main(int argc, char *argv[])
{
// 1. Parse command-line options.
const char *mesh_file = "../data/star.mesh";
int ref_levels = -1;
int order = 1;
real_t sigma = -1.0;
real_t kappa = -1.0;
real_t eta = 0.0;
bool pa = false;
bool visualization = 1;
const char *device_config = "cpu";
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&ref_levels, "-r", "--refine",
"Number of times to refine the mesh uniformly, -1 for auto.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree) >= 0.");
args.AddOption(&sigma, "-s", "--sigma",
"One of the three DG penalty parameters, typically +1/-1."
" See the documentation of class DGDiffusionIntegrator.");
args.AddOption(&kappa, "-k", "--kappa",
"One of the three DG penalty parameters, should be positive."
" Negative values are replaced with (order+1)^2.");
args.AddOption(&eta, "-e", "--eta", "BR2 penalty parameter.");
args.AddOption(&pa, "-pa", "--partial-assembly", "-no-pa",
"--no-partial-assembly", "Enable Partial Assembly.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&device_config, "-d", "--device",
"Device configuration string, see Device::Configure().");
args.Parse();
if (!args.Good())
{
args.PrintUsage(cout);
return 1;
}
if (kappa < 0)
{
kappa = (order+1)*(order+1);
}
args.PrintOptions(cout);
// 2. Enable hardware devices such as GPUs, and programming models such as
// CUDA, OCCA, RAJA and OpenMP based on command line options.
Device device(device_config);
device.Print();
// 3. Read the mesh from the given mesh file. We can handle triangular,
// quadrilateral, tetrahedral and hexahedral meshes with the same code.
// NURBS meshes are projected to second order meshes.
Mesh mesh(mesh_file);
const int dim = mesh.Dimension();
// 4. Refine the mesh to increase the resolution. In this example we do
// 'ref_levels' of uniform refinement. By default, or if ref_levels < 0,
// we choose it to be the largest number that gives a final mesh with no
// more than 50,000 elements.
{
if (ref_levels < 0)
{
ref_levels = (int)floor(log(50000./mesh.GetNE())/log(2.)/dim);
}
for (int l = 0; l < ref_levels; l++)
{
mesh.UniformRefinement();
}
}
if (mesh.NURBSext)
{
mesh.SetCurvature(max(order, 1));
}
// 5. Define a finite element space on the mesh. Here we use discontinuous
// finite elements of the specified order >= 0.
const auto bt = pa ? BasisType::GaussLobatto : BasisType::GaussLegendre;
DG_FECollection fec(order, dim, bt);
FiniteElementSpace fespace(&mesh, &fec);
cout << "Number of unknowns: " << fespace.GetVSize() << endl;
// 6. Set up the linear form b(.) which corresponds to the right-hand side of
// the FEM linear system.
LinearForm b(&fespace);
ConstantCoefficient one(1.0);
ConstantCoefficient zero(0.0);
b.AddDomainIntegrator(new DomainLFIntegrator(one));
b.AddBdrFaceIntegrator(
new DGDirichletLFIntegrator(zero, one, sigma, kappa));
b.Assemble();
// 7. Define the solution vector x as a finite element grid function
// corresponding to fespace. Initialize x with initial guess of zero.
GridFunction x(&fespace);
x = 0.0;
// 8. Set up the bilinear form a(.,.) on the finite element space
// corresponding to the Laplacian operator -Delta, by adding the Diffusion
// domain integrator and the interior and boundary DG face integrators.
// Note that boundary conditions are imposed weakly in the form, so there
// is no need for dof elimination. After assembly and finalizing we
// extract the corresponding sparse matrix A.
BilinearForm a(&fespace);
a.AddDomainIntegrator(new DiffusionIntegrator(one));
a.AddInteriorFaceIntegrator(new DGDiffusionIntegrator(one, sigma, kappa));
a.AddBdrFaceIntegrator(new DGDiffusionIntegrator(one, sigma, kappa));
if (eta > 0)
{
MFEM_VERIFY(!pa, "BR2 not yet compatible with partial assembly.");
a.AddInteriorFaceIntegrator(new DGDiffusionBR2Integrator(fespace, eta));
a.AddBdrFaceIntegrator(new DGDiffusionBR2Integrator(fespace, eta));
}
if (pa) { a.SetAssemblyLevel(AssemblyLevel::PARTIAL); }
a.Assemble();
a.Finalize();
// 9. Define a simple symmetric Gauss-Seidel preconditioner and use it to
// solve the system Ax=b with PCG in the symmetric case, and GMRES in the
// non-symmetric one. (Note that tolerances are squared: 1e-12 corresponds
// to a relative tolerance of 1e-6).
//
// If MFEM was compiled with SuiteSparse, use UMFPACK to solve the system.
if (pa)
{
MFEM_VERIFY(sigma == -1.0,
"The case of PA with sigma != -1 is not yet supported.");
CG(a, b, x, 1, 500, 1e-12, 0.0);
}
else
{
const SparseMatrix &A = a.SpMat();
#ifndef MFEM_USE_SUITESPARSE
GSSmoother M(A);
if (sigma == -1.0)
{
PCG(A, M, b, x, 1, 500, 1e-12, 0.0);
}
else
{
GMRES(A, M, b, x, 1, 500, 10, 1e-12, 0.0);
}
#else
UMFPackSolver umf_solver;
umf_solver.Control[UMFPACK_ORDERING] = UMFPACK_ORDERING_METIS;
umf_solver.SetOperator(A);
umf_solver.Mult(b, x);
#endif
}
// 10. Save the refined mesh and the solution. This output can be viewed
// later using GLVis: "glvis -m refined.mesh -g sol.gf".
ofstream mesh_ofs("refined.mesh");
mesh_ofs.precision(8);
mesh.Print(mesh_ofs);
ofstream sol_ofs("sol.gf");
sol_ofs.precision(8);
x.Save(sol_ofs);
// 11. Send the solution by socket to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock(vishost, visport);
sol_sock.precision(8);
sol_sock << "solution\n" << mesh << x << flush;
}
return 0;
}