-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathex18p.cpp
352 lines (318 loc) · 13 KB
/
ex18p.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
// MFEM Example 18 - Parallel Version
//
// Compile with: make ex18p
//
// Sample runs:
//
// mpirun -np 4 ex18p -p 1 -rs 2 -rp 1 -o 1 -s 3
// mpirun -np 4 ex18p -p 1 -rs 1 -rp 1 -o 3 -s 4
// mpirun -np 4 ex18p -p 1 -rs 1 -rp 1 -o 5 -s 6
// mpirun -np 4 ex18p -p 2 -rs 1 -rp 1 -o 1 -s 3 -mf
// mpirun -np 4 ex18p -p 2 -rs 1 -rp 1 -o 3 -s 3 -mf
//
// Description: This example code solves the compressible Euler system of
// equations, a model nonlinear hyperbolic PDE, with a
// discontinuous Galerkin (DG) formulation in parallel.
//
// (u_t, v)_T - (F(u), ∇ v)_T + <F̂(u,n), [[v]]>_F = 0
//
// where (⋅,⋅)_T is volume integration, and <⋅,⋅>_F is face
// integration, F is the Euler flux function, and F̂ is the
// numerical flux.
//
// Specifically, it solves for an exact solution of the equations
// whereby a vortex is transported by a uniform flow. Since all
// boundaries are periodic here, the method's accuracy can be
// assessed by measuring the difference between the solution and
// the initial condition at a later time when the vortex returns
// to its initial location.
//
// Note that as the order of the spatial discretization increases,
// the timestep must become smaller. This example currently uses a
// simple estimate derived by Cockburn and Shu for the 1D RKDG
// method. An additional factor can be tuned by passing the --cfl
// (or -c shorter) flag.
//
// The example demonstrates usage of DGHyperbolicConservationLaws
// that wraps NonlinearFormIntegrators containing element and face
// integration schemes. In this case the system also involves an
// external approximate Riemann solver for the DG interface flux.
// By default, weak-divergence is pre-assembled in element-wise
// manner, which corresponds to (I_h(F(u_h)), ∇ v). This yields
// better performance and similar accuracy for the included test
// problems. This can be turned off and use nonlinear assembly
// similar to matrix-free assembly when -mf flag is provided.
// It also demonstrates how to use GLVis for in-situ visualization
// of vector grid function and how to set top-view.
//
// We recommend viewing examples 9, 14 and 17 before viewing this
// example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
#include <sstream>
#include "ex18.hpp"
using namespace std;
using namespace mfem;
int main(int argc, char *argv[])
{
// 0. Parallel setup
Mpi::Init(argc, argv);
const int numProcs = Mpi::WorldSize();
const int myRank = Mpi::WorldRank();
Hypre::Init();
// 1. Parse command-line options.
int problem = 1;
const real_t specific_heat_ratio = 1.4;
const real_t gas_constant = 1.0;
string mesh_file = "";
int IntOrderOffset = 1;
int ser_ref_levels = 0;
int par_ref_levels = 1;
int order = 3;
int ode_solver_type = 4;
real_t t_final = 2.0;
real_t dt = -0.01;
real_t cfl = 0.3;
bool visualization = true;
bool preassembleWeakDiv = true;
int vis_steps = 50;
int precision = 8;
cout.precision(precision);
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use. If not provided, then a periodic square"
" mesh will be used.");
args.AddOption(&problem, "-p", "--problem",
"Problem setup to use. See EulerInitialCondition().");
args.AddOption(&ser_ref_levels, "-rs", "--serial-refine",
"Number of times to refine the serial mesh uniformly.");
args.AddOption(&par_ref_levels, "-rp", "--parallel-refine",
"Number of times to refine the parallel mesh uniformly.");
args.AddOption(&order, "-o", "--order",
"Order (degree) of the finite elements.");
args.AddOption(&ode_solver_type, "-s", "--ode-solver",
ODESolver::ExplicitTypes.c_str());
args.AddOption(&t_final, "-tf", "--t-final", "Final time; start time is 0.");
args.AddOption(&dt, "-dt", "--time-step",
"Time step. Positive number skips CFL timestep calculation.");
args.AddOption(&cfl, "-c", "--cfl-number",
"CFL number for timestep calculation.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&preassembleWeakDiv, "-ea", "--element-assembly-divergence",
"-mf", "--matrix-free-divergence",
"Weak divergence assembly level\n"
" ea - Element assembly with interpolated F\n"
" mf - Nonlinear assembly in matrix-free manner");
args.AddOption(&vis_steps, "-vs", "--visualization-steps",
"Visualize every n-th timestep.");
args.ParseCheck();
// 2. Read the mesh from the given mesh file. When the user does not provide
// mesh file, use the default mesh file for the problem.
Mesh mesh = mesh_file.empty() ? EulerMesh(problem) : Mesh(mesh_file);
const int dim = mesh.Dimension();
const int num_equations = dim + 2;
// Refine the mesh to increase the resolution. In this example we do
// 'ser_ref_levels' of uniform refinement, where 'ser_ref_levels' is a
// command-line parameter.
for (int lev = 0; lev < ser_ref_levels; lev++)
{
mesh.UniformRefinement();
}
// Define a parallel mesh by a partitioning of the serial mesh. Refine this
// mesh further in parallel to increase the resolution. Once the parallel
// mesh is defined, the serial mesh can be deleted.
ParMesh pmesh = ParMesh(MPI_COMM_WORLD, mesh);
mesh.Clear();
// Refine the mesh to increase the resolution. In this example we do
// 'par_ref_levels' of uniform refinement, where 'par_ref_levels' is a
// command-line parameter.
for (int lev = 0; lev < par_ref_levels; lev++)
{
pmesh.UniformRefinement();
}
// 3. Define the ODE solver used for time integration. Several explicit
// Runge-Kutta methods are available.
unique_ptr<ODESolver> ode_solver = ODESolver::SelectExplicit(ode_solver_type);
// 4. Define the discontinuous DG finite element space of the given
// polynomial order on the refined mesh.
DG_FECollection fec(order, dim);
// Finite element space for a scalar (thermodynamic quantity)
ParFiniteElementSpace fes(&pmesh, &fec);
// Finite element space for a mesh-dim vector quantity (momentum)
ParFiniteElementSpace dfes(&pmesh, &fec, dim, Ordering::byNODES);
// Finite element space for all variables together (total thermodynamic state)
ParFiniteElementSpace vfes(&pmesh, &fec, num_equations, Ordering::byNODES);
// This example depends on this ordering of the space.
MFEM_ASSERT(fes.GetOrdering() == Ordering::byNODES, "");
HYPRE_BigInt glob_size = vfes.GlobalTrueVSize();
if (Mpi::Root())
{
cout << "Number of unknowns: " << glob_size << endl;
}
// 5. Define the initial conditions, save the corresponding mesh and grid
// functions to files. These can be opened with GLVis using:
// "glvis -np 4 -m euler-mesh -g euler-1-init" (for x-momentum).
// Initialize the state.
VectorFunctionCoefficient u0 = EulerInitialCondition(problem,
specific_heat_ratio,
gas_constant);
ParGridFunction sol(&vfes);
sol.ProjectCoefficient(u0);
ParGridFunction mom(&dfes, sol.GetData() + fes.GetNDofs());
// Output the initial solution.
{
ostringstream mesh_name;
mesh_name << "euler-mesh." << setfill('0') << setw(6) << Mpi::WorldRank();
ofstream mesh_ofs(mesh_name.str().c_str());
mesh_ofs.precision(precision);
mesh_ofs << pmesh;
for (int k = 0; k < num_equations; k++)
{
ParGridFunction uk(&fes, sol.GetData() + k * fes.GetNDofs());
ostringstream sol_name;
sol_name << "euler-" << k << "-init." << setfill('0') << setw(6)
<< Mpi::WorldRank();
ofstream sol_ofs(sol_name.str().c_str());
sol_ofs.precision(precision);
sol_ofs << uk;
}
}
// 6. Set up the nonlinear form with euler flux and numerical flux
EulerFlux flux(dim, specific_heat_ratio);
RusanovFlux numericalFlux(flux);
DGHyperbolicConservationLaws euler(
vfes, std::unique_ptr<HyperbolicFormIntegrator>(
new HyperbolicFormIntegrator(numericalFlux, IntOrderOffset)),
preassembleWeakDiv);
// 7. Visualize momentum with its magnitude
socketstream sout;
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
sout.open(vishost, visport);
if (!sout)
{
visualization = false;
if (Mpi::Root())
{
cout << "Unable to connect to GLVis server at " << vishost << ':'
<< visport << endl;
cout << "GLVis visualization disabled.\n";
}
}
else
{
sout.precision(precision);
// Plot magnitude of vector-valued momentum
sout << "parallel " << numProcs << " " << myRank << "\n";
sout << "solution\n" << pmesh << mom;
sout << "window_title 'momentum, t = 0'\n";
sout << "view 0 0\n"; // view from top
sout << "keys jlm\n"; // turn off perspective and light, show mesh
sout << "pause\n";
sout << flush;
if (Mpi::Root())
{
cout << "GLVis visualization paused."
<< " Press space (in the GLVis window) to resume it.\n";
}
MPI_Barrier(pmesh.GetComm());
}
}
// 8. Time integration
// When dt is not specified, use CFL condition.
// Compute h_min and initial maximum characteristic speed
real_t hmin = infinity();
if (cfl > 0)
{
for (int i = 0; i < pmesh.GetNE(); i++)
{
hmin = min(pmesh.GetElementSize(i, 1), hmin);
}
MPI_Allreduce(MPI_IN_PLACE, &hmin, 1, MPITypeMap<real_t>::mpi_type, MPI_MIN,
pmesh.GetComm());
// Find a safe dt, using a temporary vector. Calling Mult() computes the
// maximum char speed at all quadrature points on all faces (and all
// elements with -mf).
Vector z(sol.Size());
euler.Mult(sol, z);
real_t max_char_speed = euler.GetMaxCharSpeed();
MPI_Allreduce(MPI_IN_PLACE, &max_char_speed, 1, MPITypeMap<real_t>::mpi_type,
MPI_MAX,
pmesh.GetComm());
dt = cfl * hmin / max_char_speed / (2 * order + 1);
}
// Start the timer.
tic_toc.Clear();
tic_toc.Start();
// Init time integration
real_t t = 0.0;
euler.SetTime(t);
ode_solver->Init(euler);
// Integrate in time.
bool done = false;
for (int ti = 0; !done;)
{
real_t dt_real = min(dt, t_final - t);
ode_solver->Step(sol, t, dt_real);
if (cfl > 0) // update time step size with CFL
{
real_t max_char_speed = euler.GetMaxCharSpeed();
MPI_Allreduce(MPI_IN_PLACE, &max_char_speed, 1, MPITypeMap<real_t>::mpi_type,
MPI_MAX,
pmesh.GetComm());
dt = cfl * hmin / max_char_speed / (2 * order + 1);
}
ti++;
done = (t >= t_final - 1e-8 * dt);
if (done || ti % vis_steps == 0)
{
if (Mpi::Root())
{
cout << "time step: " << ti << ", time: " << t << endl;
}
if (visualization)
{
sout << "window_title 'momentum, t = " << t << "'\n";
sout << "parallel " << numProcs << " " << myRank << "\n";
sout << "solution\n" << pmesh << mom << flush;
}
}
}
tic_toc.Stop();
if (Mpi::Root())
{
cout << " done, " << tic_toc.RealTime() << "s." << endl;
}
// 9. Save the final solution. This output can be viewed later using GLVis:
// "glvis -np 4 -m euler-mesh-final -g euler-1-final" (for x-momentum).
{
ostringstream mesh_name;
mesh_name << "euler-mesh-final." << setfill('0') << setw(6)
<< Mpi::WorldRank();
ofstream mesh_ofs(mesh_name.str().c_str());
mesh_ofs.precision(precision);
mesh_ofs << pmesh;
for (int k = 0; k < num_equations; k++)
{
ParGridFunction uk(&fes, sol.GetData() + k * fes.GetNDofs());
ostringstream sol_name;
sol_name << "euler-" << k << "-final." << setfill('0') << setw(6)
<< Mpi::WorldRank();
ofstream sol_ofs(sol_name.str().c_str());
sol_ofs.precision(precision);
sol_ofs << uk;
}
}
// 10. Compute the L2 solution error summed for all components.
const real_t error = sol.ComputeLpError(2, u0);
if (Mpi::Root())
{
cout << "Solution error: " << error << endl;
}
return 0;
}