-
Notifications
You must be signed in to change notification settings - Fork 5
/
ex35p.cpp
815 lines (726 loc) · 26.9 KB
/
ex35p.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
// MFEM Example 35 - Parallel Version
//
// Compile with: make ex35p
//
// Sample runs: mpirun -np 4 ex35p -p 0 -o 2
// mpirun -np 4 ex35p -p 0 -o 2 -pbc '22 23 24' -em 0
// mpirun -np 4 ex35p -p 1 -o 1 -rp 2
// mpirun -np 4 ex35p -p 1 -o 2
// mpirun -np 4 ex35p -p 2 -o 1 -rp 2 -c 15
//
// Device sample runs:
//
// Description: This example code demonstrates the use of MFEM to define and
// solve simple complex-valued linear systems. It implements three
// variants of a damped harmonic oscillator:
//
// 1) A scalar H1 field
// -Div(a Grad u) - omega^2 b u + i omega c u = 0
//
// 2) A vector H(Curl) field
// Curl(a Curl u) - omega^2 b u + i omega c u = 0
//
// 3) A vector H(Div) field
// -Grad(a Div u) - omega^2 b u + i omega c u = 0
//
// In each case the field is driven by a forced oscillation, with
// angular frequency omega, imposed at the boundary or a portion
// of the boundary. The spatial variation of the boundary
// condition is computed as an eigenmode of an appropriate
// operator defined on a portion of the boundary i.e. a port
// boundary condition.
//
// In electromagnetics the coefficients are typically named the
// permeability, mu = 1/a, permittivity, epsilon = b, and
// conductivity, sigma = c. The user can specify these constants
// using either set of names.
//
// This example demonstrates how to transfer fields computed on a
// boundary generated SubMesh to the full mesh and apply them as
// boundary conditions. The default mesh and corresponding
// boundary attributes were chosen to verify proper behavior on
// both triangular and quadrilateral faces of tetrahedral,
// wedge-shaped, and hexahedral elements.
//
// The example also demonstrates how to display a time-varying
// solution as a sequence of fields sent to a single GLVis socket.
//
// We recommend viewing examples 11, 13, and 22 before viewing
// this example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
static real_t mu_ = 1.0;
static real_t epsilon_ = 1.0;
static real_t sigma_ = 2.0;
void SetPortBC(int prob, int dim, int mode, ParGridFunction &port_bc);
int main(int argc, char *argv[])
{
// 1. Initialize MPI and HYPRE.
Mpi::Init(argc, argv);
int num_procs = Mpi::WorldSize();
int myid = Mpi::WorldRank();
Hypre::Init();
// 2. Parse command-line options.
const char *mesh_file = "../data/fichera-mixed.mesh";
int ser_ref_levels = 1;
int par_ref_levels = 1;
int order = 1;
Array<int> port_bc_attr;
int prob = 0;
int mode = 1;
real_t freq = -1.0;
real_t omega = 2.0 * M_PI;
real_t a_coef = 0.0;
bool herm_conv = true;
bool slu_solver = false;
bool visualization = 1;
bool mixed = true;
bool pa = false;
const char *device_config = "cpu";
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&ser_ref_levels, "-rs", "--refine-serial",
"Number of times to refine the mesh uniformly in serial.");
args.AddOption(&par_ref_levels, "-rp", "--refine-parallel",
"Number of times to refine the mesh uniformly in parallel.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&prob, "-p", "--problem-type",
"Choose between 0: H_1, 1: H(Curl), or 2: H(Div) "
"damped harmonic oscillator.");
args.AddOption(&mode, "-em", "--eigenmode",
"Choose the index of the port eigenmode.");
args.AddOption(&a_coef, "-a", "--stiffness-coef",
"Stiffness coefficient (spring constant or 1/mu).");
args.AddOption(&epsilon_, "-b", "--mass-coef",
"Mass coefficient (or epsilon).");
args.AddOption(&sigma_, "-c", "--damping-coef",
"Damping coefficient (or sigma).");
args.AddOption(&mu_, "-mu", "--permeability",
"Permeability of free space (or 1/(spring constant)).");
args.AddOption(&epsilon_, "-eps", "--permittivity",
"Permittivity of free space (or mass constant).");
args.AddOption(&sigma_, "-sigma", "--conductivity",
"Conductivity (or damping constant).");
args.AddOption(&freq, "-f", "--frequency",
"Frequency (in Hz).");
args.AddOption(&port_bc_attr, "-pbc", "--port-bc-attr",
"Attributes of port boundary condition");
args.AddOption(&herm_conv, "-herm", "--hermitian", "-no-herm",
"--no-hermitian", "Use convention for Hermitian operators.");
#ifdef MFEM_USE_SUPERLU
args.AddOption(&slu_solver, "-slu", "--superlu", "-no-slu",
"--no-superlu", "Use the SuperLU Solver.");
#endif
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(&mixed, "-mixed", "--mixed-mesh", "-hex",
"--hex-mesh", "Mixed mesh of hexahedral mesh.");
args.AddOption(&pa, "-pa", "--partial-assembly", "-no-pa",
"--no-partial-assembly", "Enable Partial Assembly.");
args.AddOption(&device_config, "-d", "--device",
"Device configuration string, see Device::Configure().");
args.Parse();
if (!args.Good())
{
if (myid == 0)
{
args.PrintUsage(cout);
}
return 1;
}
if (!mixed || pa)
{
mesh_file = "../data/fichera.mesh";
}
if ( a_coef != 0.0 )
{
mu_ = 1.0 / a_coef;
}
if ( freq > 0.0 )
{
omega = 2.0 * M_PI * freq;
}
if (port_bc_attr.Size() == 0 &&
(strcmp(mesh_file, "../data/fichera-mixed.mesh") == 0 ||
strcmp(mesh_file, "../data/fichera.mesh") == 0))
{
port_bc_attr.SetSize(4);
port_bc_attr[0] = 7;
port_bc_attr[1] = 8;
port_bc_attr[2] = 11;
port_bc_attr[3] = 12;
}
if (myid == 0)
{
args.PrintOptions(cout);
}
MFEM_VERIFY(prob >= 0 && prob <=2,
"Unrecognized problem type: " << prob);
ComplexOperator::Convention conv =
herm_conv ? ComplexOperator::HERMITIAN : ComplexOperator::BLOCK_SYMMETRIC;
// 3. Enable hardware devices such as GPUs, and programming models such as
// CUDA, OCCA, RAJA and OpenMP based on command line options.
Device device(device_config);
if (myid == 0) { device.Print(); }
// 4. Read the (serial) mesh from the given mesh file on all processors. We
// can handle triangular, quadrilateral, tetrahedral, hexahedral, surface
// and volume meshes with the same code.
Mesh *mesh = new Mesh(mesh_file, 1, 1);
int dim = mesh->Dimension();
// 5. Refine the serial mesh on all processors to increase the resolution.
for (int l = 0; l < ser_ref_levels; l++)
{
mesh->UniformRefinement();
}
// 6a. Define a parallel mesh by a partitioning of the serial mesh. Refine
// this mesh further in parallel to increase the resolution. Once the
// parallel mesh is defined, the serial mesh can be deleted.
ParMesh pmesh(MPI_COMM_WORLD, *mesh);
delete mesh;
for (int l = 0; l < par_ref_levels; l++)
{
pmesh.UniformRefinement();
}
// 6b. Extract a submesh covering a portion of the boundary
ParSubMesh pmesh_port(ParSubMesh::CreateFromBoundary(pmesh, port_bc_attr));
// 7a. Define a parallel finite element space on the parallel mesh. Here we
// use continuous Lagrange, Nedelec, or Raviart-Thomas finite elements
// of the specified order.
if (dim == 1 && prob != 0 )
{
if (myid == 0)
{
cout << "Switching to problem type 0, H1 basis functions, "
<< "for 1 dimensional mesh." << endl;
}
prob = 0;
}
FiniteElementCollection *fec = NULL;
switch (prob)
{
case 0: fec = new H1_FECollection(order, dim); break;
case 1: fec = new ND_FECollection(order, dim); break;
case 2: fec = new RT_FECollection(order - 1, dim); break;
default: break; // This should be unreachable
}
ParFiniteElementSpace fespace(&pmesh, fec);
HYPRE_BigInt size = fespace.GlobalTrueVSize();
if (myid == 0)
{
cout << "Number of finite element unknowns: " << size << endl;
}
// 7b. Define a parallel finite element space on the sub-mesh. Here we
// use continuous Lagrange, Nedelec, or L2 finite elements of
// the specified order.
FiniteElementCollection *fec_port = NULL;
switch (prob)
{
case 0: fec_port = new H1_FECollection(order, dim-1); break;
case 1:
if (dim == 3)
{
fec_port = new ND_FECollection(order, dim-1);
}
else
{
fec_port = new L2_FECollection(order - 1, dim-1,
BasisType::GaussLegendre,
FiniteElement::INTEGRAL);
}
break;
case 2: fec_port = new L2_FECollection(order - 1, dim-1,
BasisType::GaussLegendre,
FiniteElement::INTEGRAL); break;
default: break; // This should be unreachable
}
ParFiniteElementSpace fespace_port(&pmesh_port, fec_port);
HYPRE_BigInt size_port = fespace_port.GlobalTrueVSize();
if (myid == 0)
{
cout << "Number of finite element port BC unknowns: " << size_port
<< endl;
}
// 8a. Define a parallel grid function on the SubMesh which will contain
// the field to be applied as a port boundary condition.
ParGridFunction port_bc(&fespace_port);
port_bc = 0.0;
SetPortBC(prob, dim, mode, port_bc);
// 8b. Save the SubMesh and associated port boundary condition in parallel.
// This output can be viewed later using GLVis:
// "glvis -np <np> -m port_mesh -g port_mode"
{
ostringstream mesh_name, port_name;
mesh_name << "port_mesh." << setfill('0') << setw(6) << myid;
port_name << "port_mode." << setfill('0') << setw(6) << myid;
ofstream mesh_ofs(mesh_name.str().c_str());
mesh_ofs.precision(8);
pmesh_port.Print(mesh_ofs);
ofstream port_ofs(port_name.str().c_str());
port_ofs.precision(8);
port_bc.Save(port_ofs);
}
// 8c. Send the port bc, computed on the SubMesh, to a GLVis server.
if (visualization && dim == 3)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream port_sock(vishost, visport);
port_sock << "parallel " << num_procs << " " << myid << "\n";
port_sock.precision(8);
port_sock << "solution\n" << pmesh_port << port_bc
<< "window_title 'Port BC'"
<< "window_geometry 0 0 400 350" << flush;
}
// 9. Determine the list of true (i.e. parallel conforming) essential
// boundary dofs. In this example, the boundary conditions are defined
// using an eigenmode of the appropriate type computed on the SubMesh.
Array<int> ess_tdof_list;
Array<int> ess_bdr;
if (pmesh.bdr_attributes.Size())
{
ess_bdr.SetSize(pmesh.bdr_attributes.Max());
ess_bdr = 1;
fespace.GetEssentialTrueDofs(ess_bdr, ess_tdof_list);
}
// 10. Set up the parallel linear form b(.) which corresponds to the
// right-hand side of the FEM linear system.
ParComplexLinearForm b(&fespace, conv);
b = 0.0;
// 11a. Define the solution vector u as a parallel complex finite element
// grid function corresponding to fespace. Initialize u to equal zero.
ParComplexGridFunction u(&fespace);
u = 0.0;
pmesh_port.Transfer(port_bc, u.real());
// 11b. Send the transferred port bc field to a GLVis server.
{
ParGridFunction full_bc(&fespace);
ParTransferMap port_to_full(port_bc, full_bc);
full_bc = 0.0;
port_to_full.Transfer(port_bc, full_bc);
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream full_sock(vishost, visport);
full_sock << "parallel " << num_procs << " " << myid << "\n";
full_sock.precision(8);
full_sock << "solution\n" << pmesh << full_bc
<< "window_title 'Transferred BC'"
<< "window_geometry 400 0 400 350"<< flush;
}
}
// 12. Set up the parallel sesquilinear form a(.,.) on the finite element
// space corresponding to the damped harmonic oscillator operator of the
// appropriate type:
//
// 0) A scalar H1 field
// -Div(a Grad) - omega^2 b + i omega c
//
// 1) A vector H(Curl) field
// Curl(a Curl) - omega^2 b + i omega c
//
// 2) A vector H(Div) field
// -Grad(a Div) - omega^2 b + i omega c
//
ConstantCoefficient stiffnessCoef(1.0/mu_);
ConstantCoefficient massCoef(-omega * omega * epsilon_);
ConstantCoefficient lossCoef(omega * sigma_);
ConstantCoefficient negMassCoef(omega * omega * epsilon_);
ParSesquilinearForm a(&fespace, conv);
if (pa) { a.SetAssemblyLevel(AssemblyLevel::PARTIAL); }
switch (prob)
{
case 0:
a.AddDomainIntegrator(new DiffusionIntegrator(stiffnessCoef),
NULL);
a.AddDomainIntegrator(new MassIntegrator(massCoef),
new MassIntegrator(lossCoef));
break;
case 1:
a.AddDomainIntegrator(new CurlCurlIntegrator(stiffnessCoef),
NULL);
a.AddDomainIntegrator(new VectorFEMassIntegrator(massCoef),
new VectorFEMassIntegrator(lossCoef));
break;
case 2:
a.AddDomainIntegrator(new DivDivIntegrator(stiffnessCoef),
NULL);
a.AddDomainIntegrator(new VectorFEMassIntegrator(massCoef),
new VectorFEMassIntegrator(lossCoef));
break;
default: break; // This should be unreachable
}
// 13. Assemble the parallel bilinear form and the corresponding linear
// system, applying any necessary transformations such as: parallel
// assembly, eliminating boundary conditions, applying conforming
// constraints for non-conforming AMR, etc.
a.Assemble();
OperatorHandle A;
Vector B, U;
a.FormLinearSystem(ess_tdof_list, u, b, A, U, B);
if (myid == 0)
{
cout << "Size of linear system: "
<< 2 * size << endl << endl;
}
if (!slu_solver)
{
// 14a. Set up the parallel bilinear form for the preconditioner
// corresponding to the appropriate operator
//
// 0) A scalar H1 field
// -Div(a Grad) - omega^2 b + i omega c
//
// 1) A vector H(Curl) field
// Curl(a Curl) + omega^2 b + i omega c
//
// 2) A vector H(Div) field
// -Grad(a Div) - omega^2 b + i omega c
ParBilinearForm pcOp(&fespace);
if (pa) { pcOp.SetAssemblyLevel(AssemblyLevel::PARTIAL); }
switch (prob)
{
case 0:
pcOp.AddDomainIntegrator(new DiffusionIntegrator(stiffnessCoef));
pcOp.AddDomainIntegrator(new MassIntegrator(massCoef));
pcOp.AddDomainIntegrator(new MassIntegrator(lossCoef));
break;
case 1:
pcOp.AddDomainIntegrator(new CurlCurlIntegrator(stiffnessCoef));
pcOp.AddDomainIntegrator(new VectorFEMassIntegrator(negMassCoef));
pcOp.AddDomainIntegrator(new VectorFEMassIntegrator(lossCoef));
break;
case 2:
pcOp.AddDomainIntegrator(new DivDivIntegrator(stiffnessCoef));
pcOp.AddDomainIntegrator(new VectorFEMassIntegrator(massCoef));
pcOp.AddDomainIntegrator(new VectorFEMassIntegrator(lossCoef));
break;
default: break; // This should be unreachable
}
pcOp.Assemble();
// 14b. Define and apply a parallel FGMRES solver for AU=B with a block
// diagonal preconditioner based on the appropriate multigrid
// preconditioner from hypre.
Array<int> blockTrueOffsets;
blockTrueOffsets.SetSize(3);
blockTrueOffsets[0] = 0;
blockTrueOffsets[1] = A->Height() / 2;
blockTrueOffsets[2] = A->Height() / 2;
blockTrueOffsets.PartialSum();
BlockDiagonalPreconditioner BDP(blockTrueOffsets);
Operator * pc_r = NULL;
Operator * pc_i = NULL;
if (pa)
{
pc_r = new OperatorJacobiSmoother(pcOp, ess_tdof_list);
}
else
{
OperatorHandle PCOp;
pcOp.FormSystemMatrix(ess_tdof_list, PCOp);
switch (prob)
{
case 0:
pc_r = new HypreBoomerAMG(*PCOp.As<HypreParMatrix>());
break;
case 1:
pc_r = new HypreAMS(*PCOp.As<HypreParMatrix>(), &fespace);
break;
case 2:
if (dim == 2 )
{
pc_r = new HypreAMS(*PCOp.As<HypreParMatrix>(), &fespace);
}
else
{
pc_r = new HypreADS(*PCOp.As<HypreParMatrix>(), &fespace);
}
break;
default: break; // This should be unreachable
}
}
pc_i = new ScaledOperator(pc_r,
(conv == ComplexOperator::HERMITIAN) ?
-1.0:1.0);
BDP.SetDiagonalBlock(0, pc_r);
BDP.SetDiagonalBlock(1, pc_i);
BDP.owns_blocks = 1;
FGMRESSolver fgmres(MPI_COMM_WORLD);
fgmres.SetPreconditioner(BDP);
fgmres.SetOperator(*A.Ptr());
fgmres.SetRelTol(1e-6);
fgmres.SetMaxIter(1000);
fgmres.SetPrintLevel(1);
fgmres.Mult(B, U);
}
#ifdef MFEM_USE_SUPERLU
else
{
// 14. Solve using a direct solver
// Transform to monolithic HypreParMatrix
HypreParMatrix *A_hyp = A.As<ComplexHypreParMatrix>()->GetSystemMatrix();
SuperLURowLocMatrix SA(*A_hyp);
SuperLUSolver superlu(MPI_COMM_WORLD);
superlu.SetPrintStatistics(true);
superlu.SetSymmetricPattern(false);
superlu.SetColumnPermutation(superlu::PARMETIS);
superlu.SetOperator(SA);
superlu.Mult(B, U);
delete A_hyp;
}
#endif
// 15. Recover the parallel grid function corresponding to U. This is the
// local finite element solution on each processor.
a.RecoverFEMSolution(U, b, u);
// 16. Save the refined mesh and the solution in parallel. This output can be
// viewed later using GLVis: "glvis -np <np> -m mesh -g sol_r" or
// "glvis -np <np> -m mesh -g sol_i".
{
ostringstream mesh_name, sol_r_name, sol_i_name;
mesh_name << "mesh." << setfill('0') << setw(6) << myid;
sol_r_name << "sol_r." << setfill('0') << setw(6) << myid;
sol_i_name << "sol_i." << setfill('0') << setw(6) << myid;
ofstream mesh_ofs(mesh_name.str().c_str());
mesh_ofs.precision(8);
pmesh.Print(mesh_ofs);
ofstream sol_r_ofs(sol_r_name.str().c_str());
ofstream sol_i_ofs(sol_i_name.str().c_str());
sol_r_ofs.precision(8);
sol_i_ofs.precision(8);
u.real().Save(sol_r_ofs);
u.imag().Save(sol_i_ofs);
}
// 17. Send the solution by socket to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock_r(vishost, visport);
sol_sock_r << "parallel " << num_procs << " " << myid << "\n";
sol_sock_r.precision(8);
sol_sock_r << "solution\n" << pmesh << u.real()
<< "window_title 'Solution: Real Part'"
<< "window_geometry 800 0 400 350" << flush;
MPI_Barrier(MPI_COMM_WORLD);
socketstream sol_sock_i(vishost, visport);
sol_sock_i << "parallel " << num_procs << " " << myid << "\n";
sol_sock_i.precision(8);
sol_sock_i << "solution\n" << pmesh << u.imag()
<< "window_title 'Solution: Imaginary Part'"
<< "window_geometry 1200 0 400 350" << flush;
}
if (visualization)
{
ParGridFunction u_t(&fespace);
u_t = u.real();
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock(vishost, visport);
sol_sock << "parallel " << num_procs << " " << myid << "\n";
sol_sock.precision(8);
sol_sock << "solution\n" << pmesh << u_t
<< "window_title 'Harmonic Solution (t = 0.0 T)'"
<< "window_geometry 0 432 600 450"
<< "pause\n" << flush;
if (myid == 0)
cout << "GLVis visualization paused."
<< " Press space (in the GLVis window) to resume it.\n";
int num_frames = 32;
int i = 0;
while (sol_sock)
{
real_t t = (real_t)(i % num_frames) / num_frames;
ostringstream oss;
oss << "Harmonic Solution (t = " << t << " T)";
add(cos( 2.0 * M_PI * t), u.real(),
sin(-2.0 * M_PI * t), u.imag(), u_t);
sol_sock << "parallel " << num_procs << " " << myid << "\n";
sol_sock << "solution\n" << pmesh << u_t
<< "window_title '" << oss.str() << "'" << flush;
i++;
}
}
// 18. Free the used memory.
delete fec_port;
delete fec;
return 0;
}
/**
Solves the eigenvalue problem -Div(Grad x) = lambda x with homogeneous
Dirichlet boundary conditions on the boundary of the domain. Returns mode
number "mode" (counting from zero) in the ParGridFunction "x".
*/
void ScalarWaveGuide(int mode, ParGridFunction &x)
{
int nev = std::max(mode + 2, 5);
int seed = 75;
ParFiniteElementSpace &fespace = *x.ParFESpace();
ParMesh &pmesh = *fespace.GetParMesh();
Array<int> ess_bdr;
if (pmesh.bdr_attributes.Size())
{
ess_bdr.SetSize(pmesh.bdr_attributes.Max());
ess_bdr = 1;
}
ParBilinearForm a(&fespace);
a.AddDomainIntegrator(new DiffusionIntegrator);
a.Assemble();
a.EliminateEssentialBCDiag(ess_bdr, 1.0);
a.Finalize();
ParBilinearForm m(&fespace);
m.AddDomainIntegrator(new MassIntegrator);
m.Assemble();
// shift the eigenvalue corresponding to eliminated dofs to a large value
m.EliminateEssentialBCDiag(ess_bdr, numeric_limits<real_t>::min());
m.Finalize();
HypreParMatrix *A = a.ParallelAssemble();
HypreParMatrix *M = m.ParallelAssemble();
HypreBoomerAMG amg(*A);
amg.SetPrintLevel(0);
HypreLOBPCG lobpcg(MPI_COMM_WORLD);
lobpcg.SetNumModes(nev);
lobpcg.SetRandomSeed(seed);
lobpcg.SetPreconditioner(amg);
lobpcg.SetMaxIter(200);
lobpcg.SetTol(1e-8);
lobpcg.SetPrecondUsageMode(1);
lobpcg.SetPrintLevel(1);
lobpcg.SetMassMatrix(*M);
lobpcg.SetOperator(*A);
lobpcg.Solve();
x = lobpcg.GetEigenvector(mode);
delete A;
delete M;
}
/**
Solves the eigenvalue problem -Curl(Curl x) = lambda x with homogeneous
Dirichlet boundary conditions, on the tangential component of x, on the
boundary of the domain. Returns mode number "mode" (counting from zero) in
the ParGridFunction "x".
*/
void VectorWaveGuide(int mode, ParGridFunction &x)
{
int nev = std::max(mode + 2, 5);
ParFiniteElementSpace &fespace = *x.ParFESpace();
ParMesh &pmesh = *fespace.GetParMesh();
Array<int> ess_bdr;
if (pmesh.bdr_attributes.Size())
{
ess_bdr.SetSize(pmesh.bdr_attributes.Max());
ess_bdr = 1;
}
ParBilinearForm a(&fespace);
a.AddDomainIntegrator(new CurlCurlIntegrator);
a.Assemble();
a.EliminateEssentialBCDiag(ess_bdr, 1.0);
a.Finalize();
ParBilinearForm m(&fespace);
m.AddDomainIntegrator(new VectorFEMassIntegrator);
m.Assemble();
// shift the eigenvalue corresponding to eliminated dofs to a large value
m.EliminateEssentialBCDiag(ess_bdr, numeric_limits<real_t>::min());
m.Finalize();
HypreParMatrix *A = a.ParallelAssemble();
HypreParMatrix *M = m.ParallelAssemble();
HypreAMS ams(*A,&fespace);
ams.SetPrintLevel(0);
ams.SetSingularProblem();
HypreAME ame(MPI_COMM_WORLD);
ame.SetNumModes(nev);
ame.SetPreconditioner(ams);
ame.SetMaxIter(100);
ame.SetTol(1e-8);
ame.SetPrintLevel(1);
ame.SetMassMatrix(*M);
ame.SetOperator(*A);
ame.Solve();
x = ame.GetEigenvector(mode);
delete A;
delete M;
}
/**
Solves the eigenvalue problem -Div(Grad x) = lambda x with homogeneous
Neumann boundary conditions on the boundary of the domain. Returns mode
number "mode" (counting from zero) in the ParGridFunction "x_l2". Note that
mode 0 is a constant field so higher mode numbers are often more
interesting. The eigenmode is solved using continuous H1 basis of the
appropriate order and then projected onto the L2 basis and returned.
*/
void PseudoScalarWaveGuide(int mode, ParGridFunction &x_l2)
{
int nev = std::max(mode + 2, 5);
int seed = 75;
ParFiniteElementSpace &fespace_l2 = *x_l2.ParFESpace();
ParMesh &pmesh = *fespace_l2.GetParMesh();
int order_l2 = fespace_l2.FEColl()->GetOrder();
H1_FECollection fec(order_l2+1, pmesh.Dimension());
ParFiniteElementSpace fespace(&pmesh, &fec);
ParGridFunction x(&fespace);
x = 0.0;
GridFunctionCoefficient xCoef(&x);
if (mode == 0)
{
x = 1.0;
x_l2.ProjectCoefficient(xCoef);
return;
}
ParBilinearForm a(&fespace);
a.AddDomainIntegrator(new DiffusionIntegrator);
a.AddDomainIntegrator(new MassIntegrator); // Shift eigenvalues by 1
a.Assemble();
a.Finalize();
ParBilinearForm m(&fespace);
m.AddDomainIntegrator(new MassIntegrator);
m.Assemble();
m.Finalize();
HypreParMatrix *A = a.ParallelAssemble();
HypreParMatrix *M = m.ParallelAssemble();
HypreBoomerAMG amg(*A);
amg.SetPrintLevel(0);
HypreLOBPCG lobpcg(MPI_COMM_WORLD);
lobpcg.SetNumModes(nev);
lobpcg.SetRandomSeed(seed);
lobpcg.SetPreconditioner(amg);
lobpcg.SetMaxIter(200);
lobpcg.SetTol(1e-8);
lobpcg.SetPrecondUsageMode(1);
lobpcg.SetPrintLevel(1);
lobpcg.SetMassMatrix(*M);
lobpcg.SetOperator(*A);
lobpcg.Solve();
x = lobpcg.GetEigenvector(mode);
x_l2.ProjectCoefficient(xCoef);
delete A;
delete M;
}
// Compute eigenmode "mode" of either a Dirichlet or Neumann Laplacian or of a
// Dirichlet curl curl operator based on the problem type and dimension of the
// domain.
void SetPortBC(int prob, int dim, int mode, ParGridFunction &port_bc)
{
switch (prob)
{
case 0:
ScalarWaveGuide(mode, port_bc);
break;
case 1:
if (dim == 3)
{
VectorWaveGuide(mode, port_bc);
}
else
{
PseudoScalarWaveGuide(mode, port_bc);
}
break;
case 2:
PseudoScalarWaveGuide(mode, port_bc);
break;
}
}