-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathex37.cpp
466 lines (426 loc) · 16.4 KB
/
ex37.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
// MFEM Example 37
//
// Compile with: make ex37
//
// Sample runs:
// ex37 -alpha 10
// ex37 -alpha 10 -pv
// ex37 -lambda 0.1 -mu 0.1
// ex37 -o 2 -alpha 5.0 -mi 50 -vf 0.4 -ntol 1e-5
// ex37 -r 6 -o 1 -alpha 25.0 -epsilon 0.02 -mi 50 -ntol 1e-5
//
// Description: This example code demonstrates the use of MFEM to solve a
// density-filtered [3] topology optimization problem. The
// objective is to minimize the compliance
//
// minimize ∫_Ω f⋅u dx over u ∈ [H¹(Ω)]² and ρ ∈ L¹(Ω)
//
// subject to
//
// -Div(r(ρ̃)Cε(u)) = f in Ω + BCs
// -ϵ²Δρ̃ + ρ̃ = ρ in Ω + Neumann BCs
// 0 ≤ ρ ≤ 1 in Ω
// ∫_Ω ρ dx = θ vol(Ω)
//
// Here, r(ρ̃) = ρ₀ + ρ̃³ (1-ρ₀) is the solid isotropic material
// penalization (SIMP) law, C is the elasticity tensor for an
// isotropic linearly elastic material, ϵ > 0 is the design
// length scale, and 0 < θ < 1 is the volume fraction.
//
// The problem is discretized and gradients are computing using
// finite elements [1]. The design is optimized using an entropic
// mirror descent algorithm introduced by Keith and Surowiec [2]
// that is tailored to the bound constraint 0 ≤ ρ ≤ 1.
//
// This example highlights the ability of MFEM to deliver high-
// order solutions to inverse design problems and showcases how
// to set up and solve PDE-constrained optimization problems
// using the so-called reduced space approach.
//
// [1] Andreassen, E., Clausen, A., Schevenels, M., Lazarov, B. S., & Sigmund, O.
// (2011). Efficient topology optimization in MATLAB using 88 lines of
// code. Structural and Multidisciplinary Optimization, 43(1), 1-16.
// [2] Keith, B. and Surowiec, T. (2023) Proximal Galerkin: A structure-
// preserving finite element method for pointwise bound constraints.
// arXiv:2307.12444 [math.NA]
// [3] Lazarov, B. S., & Sigmund, O. (2011). Filters in topology optimization
// based on Helmholtz‐type differential equations. International Journal
// for Numerical Methods in Engineering, 86(6), 765-781.
#include "mfem.hpp"
#include <iostream>
#include <fstream>
#include "ex37.hpp"
using namespace std;
using namespace mfem;
/**
* @brief Bregman projection of ρ = sigmoid(ψ) onto the subspace
* ∫_Ω ρ dx = θ vol(Ω) as follows:
*
* 1. Compute the root of the R → R function
* f(c) = ∫_Ω sigmoid(ψ + c) dx - θ vol(Ω)
* 2. Set ψ ← ψ + c.
*
* @param psi a GridFunction to be updated
* @param target_volume θ vol(Ω)
* @param tol Newton iteration tolerance
* @param max_its Newton maximum iteration number
* @return real_t Final volume, ∫_Ω sigmoid(ψ)
*/
real_t proj(GridFunction &psi, real_t target_volume, real_t tol=1e-12,
int max_its=10)
{
MappedGridFunctionCoefficient sigmoid_psi(&psi, sigmoid);
MappedGridFunctionCoefficient der_sigmoid_psi(&psi, der_sigmoid);
LinearForm int_sigmoid_psi(psi.FESpace());
int_sigmoid_psi.AddDomainIntegrator(new DomainLFIntegrator(sigmoid_psi));
LinearForm int_der_sigmoid_psi(psi.FESpace());
int_der_sigmoid_psi.AddDomainIntegrator(new DomainLFIntegrator(
der_sigmoid_psi));
bool done = false;
for (int k=0; k<max_its; k++) // Newton iteration
{
int_sigmoid_psi.Assemble(); // Recompute f(c) with updated ψ
const real_t f = int_sigmoid_psi.Sum() - target_volume;
int_der_sigmoid_psi.Assemble(); // Recompute df(c) with updated ψ
const real_t df = int_der_sigmoid_psi.Sum();
const real_t dc = -f/df;
psi += dc;
if (abs(dc) < tol) { done = true; break; }
}
if (!done)
{
mfem_warning("Projection reached maximum iteration without converging. "
"Result may not be accurate.");
}
int_sigmoid_psi.Assemble();
return int_sigmoid_psi.Sum();
}
/*
* ---------------------------------------------------------------
* ALGORITHM PREAMBLE
* ---------------------------------------------------------------
*
* The Lagrangian for this problem is
*
* L(u,ρ,ρ̃,w,w̃) = (f,u) - (r(ρ̃) C ε(u),ε(w)) + (f,w)
* - (ϵ² ∇ρ̃,∇w̃) - (ρ̃,w̃) + (ρ,w̃)
*
* where
*
* r(ρ̃) = ρ₀ + ρ̃³ (1 - ρ₀) (SIMP rule)
*
* ε(u) = (∇u + ∇uᵀ)/2 (symmetric gradient)
*
* C e = λtr(e)I + 2μe (isotropic material)
*
* NOTE: The Lame parameters can be computed from Young's modulus E
* and Poisson's ratio ν as follows:
*
* λ = E ν/((1+ν)(1-2ν)), μ = E/(2(1+ν))
*
* ---------------------------------------------------------------
*
* Discretization choices:
*
* u ∈ V ⊂ (H¹)ᵈ (order p)
* ψ ∈ L² (order p - 1), ρ = sigmoid(ψ)
* ρ̃ ∈ H¹ (order p)
* w ∈ V (order p)
* w̃ ∈ H¹ (order p)
*
* ---------------------------------------------------------------
* ALGORITHM
* ---------------------------------------------------------------
*
* Update ρ with projected mirror descent via the following algorithm.
*
* 1. Initialize ψ = inv_sigmoid(vol_fraction) so that ∫ sigmoid(ψ) = θ vol(Ω)
*
* While not converged:
*
* 2. Solve filter equation ∂_w̃ L = 0; i.e.,
*
* (ϵ² ∇ ρ̃, ∇ v ) + (ρ̃,v) = (ρ,v) ∀ v ∈ H¹.
*
* 3. Solve primal problem ∂_w L = 0; i.e.,
*
* (λ r(ρ̃) ∇⋅u, ∇⋅v) + (2 μ r(ρ̃) ε(u), ε(v)) = (f,v) ∀ v ∈ V.
*
* NB. The dual problem ∂_u L = 0 is the negative of the primal problem due to symmetry.
*
* 4. Solve for filtered gradient ∂_ρ̃ L = 0; i.e.,
*
* (ϵ² ∇ w̃ , ∇ v ) + (w̃ ,v) = (-r'(ρ̃) ( λ |∇⋅u|² + 2 μ |ε(u)|²),v) ∀ v ∈ H¹.
*
* 5. Project the gradient onto the discrete latent space; i.e., solve
*
* (G,v) = (w̃,v) ∀ v ∈ L².
*
* 6. Bregman proximal gradient update; i.e.,
*
* ψ ← ψ - αG + c,
*
* where α > 0 is a step size parameter and c ∈ R is a constant ensuring
*
* ∫_Ω sigmoid(ψ - αG + c) dx = θ vol(Ω).
*
* end
*/
int main(int argc, char *argv[])
{
// 1. Parse command-line options.
int ref_levels = 5;
int order = 2;
real_t alpha = 1.0;
real_t epsilon = 0.01;
real_t vol_fraction = 0.5;
int max_it = 1e3;
real_t itol = 1e-1;
real_t ntol = 1e-4;
real_t rho_min = 1e-6;
real_t lambda = 1.0;
real_t mu = 1.0;
bool glvis_visualization = true;
bool paraview_output = false;
OptionsParser args(argc, argv);
args.AddOption(&ref_levels, "-r", "--refine",
"Number of times to refine the mesh uniformly.");
args.AddOption(&order, "-o", "--order",
"Order (degree) of the finite elements.");
args.AddOption(&alpha, "-alpha", "--alpha-step-length",
"Step length for gradient descent.");
args.AddOption(&epsilon, "-epsilon", "--epsilon-thickness",
"Length scale for ρ.");
args.AddOption(&max_it, "-mi", "--max-it",
"Maximum number of gradient descent iterations.");
args.AddOption(&ntol, "-ntol", "--rel-tol",
"Normalized exit tolerance.");
args.AddOption(&itol, "-itol", "--abs-tol",
"Increment exit tolerance.");
args.AddOption(&vol_fraction, "-vf", "--volume-fraction",
"Volume fraction for the material density.");
args.AddOption(&lambda, "-lambda", "--lambda",
"Lamé constant λ.");
args.AddOption(&mu, "-mu", "--mu",
"Lamé constant μ.");
args.AddOption(&rho_min, "-rmin", "--psi-min",
"Minimum of density coefficient.");
args.AddOption(&glvis_visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.AddOption(¶view_output, "-pv", "--paraview", "-no-pv",
"--no-paraview",
"Enable or disable ParaView output.");
args.Parse();
if (!args.Good())
{
args.PrintUsage(mfem::out);
return 1;
}
args.PrintOptions(mfem::out);
Mesh mesh = Mesh::MakeCartesian2D(3, 1, mfem::Element::Type::QUADRILATERAL,
true, 3.0, 1.0);
int dim = mesh.Dimension();
// 2. Set BCs.
for (int i = 0; i<mesh.GetNBE(); i++)
{
Element * be = mesh.GetBdrElement(i);
Array<int> vertices;
be->GetVertices(vertices);
real_t * coords1 = mesh.GetVertex(vertices[0]);
real_t * coords2 = mesh.GetVertex(vertices[1]);
Vector center(2);
center(0) = 0.5*(coords1[0] + coords2[0]);
center(1) = 0.5*(coords1[1] + coords2[1]);
if (abs(center(0) - 0.0) < 1e-10)
{
// the left edge
be->SetAttribute(1);
}
else
{
// all other boundaries
be->SetAttribute(2);
}
}
mesh.SetAttributes();
// 3. Refine the mesh.
for (int lev = 0; lev < ref_levels; lev++)
{
mesh.UniformRefinement();
}
// 4. Define the necessary finite element spaces on the mesh.
H1_FECollection state_fec(order, dim); // space for u
H1_FECollection filter_fec(order, dim); // space for ρ̃
L2_FECollection control_fec(order-1, dim,
BasisType::GaussLobatto); // space for ψ
FiniteElementSpace state_fes(&mesh, &state_fec,dim);
FiniteElementSpace filter_fes(&mesh, &filter_fec);
FiniteElementSpace control_fes(&mesh, &control_fec);
int state_size = state_fes.GetTrueVSize();
int control_size = control_fes.GetTrueVSize();
int filter_size = filter_fes.GetTrueVSize();
mfem::out << "Number of state unknowns: " << state_size << std::endl;
mfem::out << "Number of filter unknowns: " << filter_size << std::endl;
mfem::out << "Number of control unknowns: " << control_size << std::endl;
// 5. Set the initial guess for ρ.
GridFunction u(&state_fes);
GridFunction psi(&control_fes);
GridFunction psi_old(&control_fes);
GridFunction rho_filter(&filter_fes);
u = 0.0;
rho_filter = vol_fraction;
psi = inv_sigmoid(vol_fraction);
psi_old = inv_sigmoid(vol_fraction);
// ρ = sigmoid(ψ)
MappedGridFunctionCoefficient rho(&psi, sigmoid);
// Interpolation of ρ = sigmoid(ψ) in control fes (for ParaView output)
GridFunction rho_gf(&control_fes);
// ρ - ρ_old = sigmoid(ψ) - sigmoid(ψ_old)
DiffMappedGridFunctionCoefficient succ_diff_rho(&psi, &psi_old, sigmoid);
// 6. Set-up the physics solver.
int maxat = mesh.bdr_attributes.Max();
Array<int> ess_bdr(maxat);
ess_bdr = 0;
ess_bdr[0] = 1;
ConstantCoefficient one(1.0);
ConstantCoefficient lambda_cf(lambda);
ConstantCoefficient mu_cf(mu);
LinearElasticitySolver * ElasticitySolver = new LinearElasticitySolver();
ElasticitySolver->SetMesh(&mesh);
ElasticitySolver->SetOrder(state_fec.GetOrder());
ElasticitySolver->SetupFEM();
Vector center(2); center(0) = 2.9; center(1) = 0.5;
Vector force(2); force(0) = 0.0; force(1) = -1.0;
real_t r = 0.05;
VolumeForceCoefficient vforce_cf(r,center,force);
ElasticitySolver->SetRHSCoefficient(&vforce_cf);
ElasticitySolver->SetEssentialBoundary(ess_bdr);
// 7. Set-up the filter solver.
ConstantCoefficient eps2_cf(epsilon*epsilon);
DiffusionSolver * FilterSolver = new DiffusionSolver();
FilterSolver->SetMesh(&mesh);
FilterSolver->SetOrder(filter_fec.GetOrder());
FilterSolver->SetDiffusionCoefficient(&eps2_cf);
FilterSolver->SetMassCoefficient(&one);
Array<int> ess_bdr_filter;
if (mesh.bdr_attributes.Size())
{
ess_bdr_filter.SetSize(mesh.bdr_attributes.Max());
ess_bdr_filter = 0;
}
FilterSolver->SetEssentialBoundary(ess_bdr_filter);
FilterSolver->SetupFEM();
BilinearForm mass(&control_fes);
mass.AddDomainIntegrator(new InverseIntegrator(new MassIntegrator(one)));
mass.Assemble();
SparseMatrix M;
Array<int> empty;
mass.FormSystemMatrix(empty,M);
// 8. Define the Lagrange multiplier and gradient functions.
GridFunction grad(&control_fes);
GridFunction w_filter(&filter_fes);
// 9. Define some tools for later.
ConstantCoefficient zero(0.0);
GridFunction onegf(&control_fes);
onegf = 1.0;
GridFunction zerogf(&control_fes);
zerogf = 0.0;
LinearForm vol_form(&control_fes);
vol_form.AddDomainIntegrator(new DomainLFIntegrator(one));
vol_form.Assemble();
real_t domain_volume = vol_form(onegf);
const real_t target_volume = domain_volume * vol_fraction;
// 10. Connect to GLVis. Prepare for VisIt output.
char vishost[] = "localhost";
int visport = 19916;
socketstream sout_r;
if (glvis_visualization)
{
sout_r.open(vishost, visport);
sout_r.precision(8);
}
mfem::ParaViewDataCollection paraview_dc("ex37", &mesh);
if (paraview_output)
{
rho_gf.ProjectCoefficient(rho);
paraview_dc.SetPrefixPath("ParaView");
paraview_dc.SetLevelsOfDetail(order);
paraview_dc.SetDataFormat(VTKFormat::BINARY);
paraview_dc.SetHighOrderOutput(true);
paraview_dc.SetCycle(0);
paraview_dc.SetTime(0.0);
paraview_dc.RegisterField("displacement",&u);
paraview_dc.RegisterField("density",&rho_gf);
paraview_dc.RegisterField("filtered_density",&rho_filter);
paraview_dc.Save();
}
// 11. Iterate:
for (int k = 1; k <= max_it; k++)
{
if (k > 1) { alpha *= ((real_t) k) / ((real_t) k-1); }
mfem::out << "\nStep = " << k << std::endl;
// Step 1 - Filter solve
// Solve (ϵ^2 ∇ ρ̃, ∇ v ) + (ρ̃,v) = (ρ,v)
FilterSolver->SetRHSCoefficient(&rho);
FilterSolver->Solve();
rho_filter = *FilterSolver->GetFEMSolution();
// Step 2 - State solve
// Solve (λ r(ρ̃) ∇⋅u, ∇⋅v) + (2 μ r(ρ̃) ε(u), ε(v)) = (f,v)
SIMPInterpolationCoefficient SIMP_cf(&rho_filter,rho_min, 1.0);
ProductCoefficient lambda_SIMP_cf(lambda_cf,SIMP_cf);
ProductCoefficient mu_SIMP_cf(mu_cf,SIMP_cf);
ElasticitySolver->SetLameCoefficients(&lambda_SIMP_cf,&mu_SIMP_cf);
ElasticitySolver->Solve();
u = *ElasticitySolver->GetFEMSolution();
// Step 3 - Adjoint filter solve
// Solve (ϵ² ∇ w̃, ∇ v) + (w̃ ,v) = (-r'(ρ̃) ( λ |∇⋅u|² + 2 μ |ε(u)|²),v)
StrainEnergyDensityCoefficient rhs_cf(&lambda_cf,&mu_cf,&u, &rho_filter,
rho_min);
FilterSolver->SetRHSCoefficient(&rhs_cf);
FilterSolver->Solve();
w_filter = *FilterSolver->GetFEMSolution();
// Step 4 - Compute gradient
// Solve G = M⁻¹w̃
GridFunctionCoefficient w_cf(&w_filter);
LinearForm w_rhs(&control_fes);
w_rhs.AddDomainIntegrator(new DomainLFIntegrator(w_cf));
w_rhs.Assemble();
M.Mult(w_rhs,grad);
// Step 5 - Update design variable ψ ← proj(ψ - αG)
psi.Add(-alpha, grad);
const real_t material_volume = proj(psi, target_volume);
// Compute ||ρ - ρ_old|| in control fes.
real_t norm_increment = zerogf.ComputeL1Error(succ_diff_rho);
real_t norm_reduced_gradient = norm_increment/alpha;
psi_old = psi;
real_t compliance = (*(ElasticitySolver->GetLinearForm()))(u);
mfem::out << "norm of the reduced gradient = " << norm_reduced_gradient <<
std::endl;
mfem::out << "norm of the increment = " << norm_increment << endl;
mfem::out << "compliance = " << compliance << std::endl;
mfem::out << "volume fraction = " << material_volume / domain_volume <<
std::endl;
if (glvis_visualization)
{
GridFunction r_gf(&filter_fes);
r_gf.ProjectCoefficient(SIMP_cf);
sout_r << "solution\n" << mesh << r_gf
<< "window_title 'Design density r(ρ̃)'" << flush;
}
if (paraview_output)
{
rho_gf.ProjectCoefficient(rho);
paraview_dc.SetCycle(k);
paraview_dc.SetTime((real_t)k);
paraview_dc.Save();
}
if (norm_reduced_gradient < ntol && norm_increment < itol)
{
break;
}
}
delete ElasticitySolver;
delete FilterSolver;
return 0;
}