-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathex37.hpp
748 lines (673 loc) · 17.4 KB
/
ex37.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
// MFEM Example 37 - Serial/Parallel Shared Code
#include "mfem.hpp"
#include <fstream>
#include <iostream>
#include <functional>
namespace mfem
{
/// @brief Inverse sigmoid function
real_t inv_sigmoid(real_t x)
{
real_t tol = 1e-12;
x = std::min(std::max(tol,x), real_t(1.0)-tol);
return std::log(x/(1.0-x));
}
/// @brief Sigmoid function
real_t sigmoid(real_t x)
{
if (x >= 0)
{
return 1.0/(1.0+std::exp(-x));
}
else
{
return std::exp(x)/(1.0+std::exp(x));
}
}
/// @brief Derivative of sigmoid function
real_t der_sigmoid(real_t x)
{
real_t tmp = sigmoid(-x);
return tmp - std::pow(tmp,2);
}
/// @brief Returns f(u(x)) where u is a scalar GridFunction and f:R → R
class MappedGridFunctionCoefficient : public GridFunctionCoefficient
{
protected:
std::function<real_t(const real_t)> fun; // f:R → R
public:
MappedGridFunctionCoefficient()
:GridFunctionCoefficient(),
fun([](real_t x) {return x;}) {}
MappedGridFunctionCoefficient(const GridFunction *gf,
std::function<real_t(const real_t)> fun_,
int comp=1)
:GridFunctionCoefficient(gf, comp),
fun(fun_) {}
real_t Eval(ElementTransformation &T,
const IntegrationPoint &ip) override
{
return fun(GridFunctionCoefficient::Eval(T, ip));
}
void SetFunction(std::function<real_t(const real_t)> fun_) { fun = fun_; }
};
/// @brief Returns f(u(x)) - f(v(x)) where u, v are scalar GridFunctions and f:R → R
class DiffMappedGridFunctionCoefficient : public GridFunctionCoefficient
{
protected:
const GridFunction *OtherGridF;
GridFunctionCoefficient OtherGridF_cf;
std::function<real_t(const real_t)> fun; // f:R → R
public:
DiffMappedGridFunctionCoefficient()
:GridFunctionCoefficient(),
OtherGridF(nullptr),
OtherGridF_cf(),
fun([](real_t x) {return x;}) {}
DiffMappedGridFunctionCoefficient(const GridFunction *gf,
const GridFunction *other_gf,
std::function<real_t(const real_t)> fun_,
int comp=1)
:GridFunctionCoefficient(gf, comp),
OtherGridF(other_gf),
OtherGridF_cf(OtherGridF),
fun(fun_) {}
real_t Eval(ElementTransformation &T,
const IntegrationPoint &ip) override
{
const real_t value1 = fun(GridFunctionCoefficient::Eval(T, ip));
const real_t value2 = fun(OtherGridF_cf.Eval(T, ip));
return value1 - value2;
}
void SetFunction(std::function<real_t(const real_t)> fun_) { fun = fun_; }
};
/// @brief Solid isotropic material penalization (SIMP) coefficient
class SIMPInterpolationCoefficient : public Coefficient
{
protected:
GridFunction *rho_filter;
real_t min_val;
real_t max_val;
real_t exponent;
public:
SIMPInterpolationCoefficient(GridFunction *rho_filter_, real_t min_val_= 1e-6,
real_t max_val_ = 1.0, real_t exponent_ = 3)
: rho_filter(rho_filter_), min_val(min_val_), max_val(max_val_),
exponent(exponent_) { }
real_t Eval(ElementTransformation &T, const IntegrationPoint &ip) override
{
real_t val = rho_filter->GetValue(T, ip);
real_t coeff = min_val + pow(val,exponent)*(max_val-min_val);
return coeff;
}
};
/// @brief Strain energy density coefficient
class StrainEnergyDensityCoefficient : public Coefficient
{
protected:
Coefficient * lambda=nullptr;
Coefficient * mu=nullptr;
GridFunction *u = nullptr; // displacement
GridFunction *rho_filter = nullptr; // filter density
DenseMatrix grad; // auxiliary matrix, used in Eval
real_t exponent;
real_t rho_min;
public:
StrainEnergyDensityCoefficient(Coefficient *lambda_, Coefficient *mu_,
GridFunction * u_, GridFunction * rho_filter_, real_t rho_min_=1e-6,
real_t exponent_ = 3.0)
: lambda(lambda_), mu(mu_), u(u_), rho_filter(rho_filter_),
exponent(exponent_), rho_min(rho_min_)
{
MFEM_ASSERT(rho_min_ >= 0.0, "rho_min must be >= 0");
MFEM_ASSERT(rho_min_ < 1.0, "rho_min must be > 1");
MFEM_ASSERT(u, "displacement field is not set");
MFEM_ASSERT(rho_filter, "density field is not set");
}
real_t Eval(ElementTransformation &T, const IntegrationPoint &ip) override
{
real_t L = lambda->Eval(T, ip);
real_t M = mu->Eval(T, ip);
u->GetVectorGradient(T, grad);
real_t div_u = grad.Trace();
real_t density = L*div_u*div_u;
int dim = T.GetSpaceDim();
for (int i=0; i<dim; i++)
{
for (int j=0; j<dim; j++)
{
density += M*grad(i,j)*(grad(i,j)+grad(j,i));
}
}
real_t val = rho_filter->GetValue(T,ip);
return -exponent * pow(val, exponent-1.0) * (1-rho_min) * density;
}
};
/// @brief Volumetric force for linear elasticity
class VolumeForceCoefficient : public VectorCoefficient
{
private:
real_t r;
Vector center;
Vector force;
public:
VolumeForceCoefficient(real_t r_,Vector & center_, Vector & force_) :
VectorCoefficient(center_.Size()), r(r_), center(center_), force(force_) { }
using VectorCoefficient::Eval;
void Eval(Vector &V, ElementTransformation &T,
const IntegrationPoint &ip) override
{
Vector xx; xx.SetSize(T.GetDimension());
T.Transform(ip,xx);
for (int i=0; i<xx.Size(); i++)
{
xx[i]=xx[i]-center[i];
}
real_t cr=xx.Norml2();
V.SetSize(T.GetDimension());
if (cr <= r)
{
V = force;
}
else
{
V = 0.0;
}
}
void Set(real_t r_,Vector & center_, Vector & force_)
{
r=r_;
center = center_;
force = force_;
}
};
/**
* @brief Class for solving Poisson's equation:
*
* - ∇ ⋅(κ ∇ u) = f in Ω
*
*/
class DiffusionSolver
{
private:
Mesh * mesh = nullptr;
int order = 1;
// diffusion coefficient
Coefficient * diffcf = nullptr;
// mass coefficient
Coefficient * masscf = nullptr;
Coefficient * rhscf = nullptr;
Coefficient * essbdr_cf = nullptr;
Coefficient * neumann_cf = nullptr;
VectorCoefficient * gradient_cf = nullptr;
// FEM solver
int dim;
FiniteElementCollection * fec = nullptr;
FiniteElementSpace * fes = nullptr;
Array<int> ess_bdr;
Array<int> neumann_bdr;
GridFunction * u = nullptr;
LinearForm * b = nullptr;
bool parallel;
#ifdef MFEM_USE_MPI
ParMesh * pmesh = nullptr;
ParFiniteElementSpace * pfes = nullptr;
#endif
public:
DiffusionSolver() { }
DiffusionSolver(Mesh * mesh_, int order_, Coefficient * diffcf_,
Coefficient * cf_);
void SetMesh(Mesh * mesh_)
{
mesh = mesh_;
parallel = false;
#ifdef MFEM_USE_MPI
pmesh = dynamic_cast<ParMesh *>(mesh);
if (pmesh) { parallel = true; }
#endif
}
void SetOrder(int order_) { order = order_ ; }
void SetDiffusionCoefficient(Coefficient * diffcf_) { diffcf = diffcf_; }
void SetMassCoefficient(Coefficient * masscf_) { masscf = masscf_; }
void SetRHSCoefficient(Coefficient * rhscf_) { rhscf = rhscf_; }
void SetEssentialBoundary(const Array<int> & ess_bdr_) { ess_bdr = ess_bdr_;};
void SetNeumannBoundary(const Array<int> & neumann_bdr_) { neumann_bdr = neumann_bdr_;};
void SetNeumannData(Coefficient * neumann_cf_) {neumann_cf = neumann_cf_;}
void SetEssBdrData(Coefficient * essbdr_cf_) {essbdr_cf = essbdr_cf_;}
void SetGradientData(VectorCoefficient * gradient_cf_) {gradient_cf = gradient_cf_;}
void ResetFEM();
void SetupFEM();
void Solve();
GridFunction * GetFEMSolution();
LinearForm * GetLinearForm() {return b;}
#ifdef MFEM_USE_MPI
ParGridFunction * GetParFEMSolution();
ParLinearForm * GetParLinearForm()
{
if (parallel)
{
return dynamic_cast<ParLinearForm *>(b);
}
else
{
MFEM_ABORT("Wrong code path. Call GetLinearForm");
return nullptr;
}
}
#endif
~DiffusionSolver();
};
/**
* @brief Class for solving linear elasticity:
*
* -∇ ⋅ σ(u) = f in Ω + BCs
*
* where
*
* σ(u) = λ ∇⋅u I + μ (∇ u + ∇uᵀ)
*
*/
class LinearElasticitySolver
{
private:
Mesh * mesh = nullptr;
int order = 1;
Coefficient * lambda_cf = nullptr;
Coefficient * mu_cf = nullptr;
VectorCoefficient * essbdr_cf = nullptr;
VectorCoefficient * rhs_cf = nullptr;
// FEM solver
int dim;
FiniteElementCollection * fec = nullptr;
FiniteElementSpace * fes = nullptr;
Array<int> ess_bdr;
Array<int> neumann_bdr;
GridFunction * u = nullptr;
LinearForm * b = nullptr;
bool parallel;
#ifdef MFEM_USE_MPI
ParMesh * pmesh = nullptr;
ParFiniteElementSpace * pfes = nullptr;
#endif
public:
LinearElasticitySolver() { }
LinearElasticitySolver(Mesh * mesh_, int order_,
Coefficient * lambda_cf_, Coefficient * mu_cf_);
void SetMesh(Mesh * mesh_)
{
mesh = mesh_;
parallel = false;
#ifdef MFEM_USE_MPI
pmesh = dynamic_cast<ParMesh *>(mesh);
if (pmesh) { parallel = true; }
#endif
}
void SetOrder(int order_) { order = order_ ; }
void SetLameCoefficients(Coefficient * lambda_cf_, Coefficient * mu_cf_) { lambda_cf = lambda_cf_; mu_cf = mu_cf_; }
void SetRHSCoefficient(VectorCoefficient * rhs_cf_) { rhs_cf = rhs_cf_; }
void SetEssentialBoundary(const Array<int> & ess_bdr_) { ess_bdr = ess_bdr_;};
void SetNeumannBoundary(const Array<int> & neumann_bdr_) { neumann_bdr = neumann_bdr_;};
void SetEssBdrData(VectorCoefficient * essbdr_cf_) {essbdr_cf = essbdr_cf_;}
void ResetFEM();
void SetupFEM();
void Solve();
GridFunction * GetFEMSolution();
LinearForm * GetLinearForm() {return b;}
#ifdef MFEM_USE_MPI
ParGridFunction * GetParFEMSolution();
ParLinearForm * GetParLinearForm()
{
if (parallel)
{
return dynamic_cast<ParLinearForm *>(b);
}
else
{
MFEM_ABORT("Wrong code path. Call GetLinearForm");
return nullptr;
}
}
#endif
~LinearElasticitySolver();
};
// Poisson solver
DiffusionSolver::DiffusionSolver(Mesh * mesh_, int order_,
Coefficient * diffcf_, Coefficient * rhscf_)
: mesh(mesh_), order(order_), diffcf(diffcf_), rhscf(rhscf_)
{
#ifdef MFEM_USE_MPI
pmesh = dynamic_cast<ParMesh *>(mesh);
if (pmesh) { parallel = true; }
#endif
SetupFEM();
}
void DiffusionSolver::SetupFEM()
{
dim = mesh->Dimension();
fec = new H1_FECollection(order, dim);
#ifdef MFEM_USE_MPI
if (parallel)
{
pfes = new ParFiniteElementSpace(pmesh, fec);
u = new ParGridFunction(pfes);
b = new ParLinearForm(pfes);
}
else
{
fes = new FiniteElementSpace(mesh, fec);
u = new GridFunction(fes);
b = new LinearForm(fes);
}
#else
fes = new FiniteElementSpace(mesh, fec);
u = new GridFunction(fes);
b = new LinearForm(fes);
#endif
*u=0.0;
if (!ess_bdr.Size())
{
if (mesh->bdr_attributes.Size())
{
ess_bdr.SetSize(mesh->bdr_attributes.Max());
ess_bdr = 1;
}
}
}
void DiffusionSolver::Solve()
{
OperatorPtr A;
Vector B, X;
Array<int> ess_tdof_list;
#ifdef MFEM_USE_MPI
if (parallel)
{
pfes->GetEssentialTrueDofs(ess_bdr,ess_tdof_list);
}
else
{
fes->GetEssentialTrueDofs(ess_bdr,ess_tdof_list);
}
#else
fes->GetEssentialTrueDofs(ess_bdr,ess_tdof_list);
#endif
*u=0.0;
if (b)
{
delete b;
#ifdef MFEM_USE_MPI
if (parallel)
{
b = new ParLinearForm(pfes);
}
else
{
b = new LinearForm(fes);
}
#else
b = new LinearForm(fes);
#endif
}
if (rhscf)
{
b->AddDomainIntegrator(new DomainLFIntegrator(*rhscf));
}
if (neumann_cf)
{
MFEM_VERIFY(neumann_bdr.Size(), "neumann_bdr attributes not provided");
b->AddBoundaryIntegrator(new BoundaryLFIntegrator(*neumann_cf),neumann_bdr);
}
else if (gradient_cf)
{
MFEM_VERIFY(neumann_bdr.Size(), "neumann_bdr attributes not provided");
b->AddBoundaryIntegrator(new BoundaryNormalLFIntegrator(*gradient_cf),
neumann_bdr);
}
b->Assemble();
BilinearForm * a = nullptr;
#ifdef MFEM_USE_MPI
if (parallel)
{
a = new ParBilinearForm(pfes);
}
else
{
a = new BilinearForm(fes);
}
#else
a = new BilinearForm(fes);
#endif
a->AddDomainIntegrator(new DiffusionIntegrator(*diffcf));
if (masscf)
{
a->AddDomainIntegrator(new MassIntegrator(*masscf));
}
a->Assemble();
if (essbdr_cf)
{
u->ProjectBdrCoefficient(*essbdr_cf,ess_bdr);
}
a->FormLinearSystem(ess_tdof_list, *u, *b, A, X, B);
CGSolver * cg = nullptr;
Solver * M = nullptr;
#ifdef MFEM_USE_MPI
if (parallel)
{
M = new HypreBoomerAMG;
dynamic_cast<HypreBoomerAMG*>(M)->SetPrintLevel(0);
cg = new CGSolver(pmesh->GetComm());
}
else
{
M = new GSSmoother((SparseMatrix&)(*A));
cg = new CGSolver;
}
#else
M = new GSSmoother((SparseMatrix&)(*A));
cg = new CGSolver;
#endif
cg->SetRelTol(1e-12);
cg->SetMaxIter(10000);
cg->SetPrintLevel(0);
cg->SetPreconditioner(*M);
cg->SetOperator(*A);
cg->Mult(B, X);
delete M;
delete cg;
a->RecoverFEMSolution(X, *b, *u);
delete a;
}
GridFunction * DiffusionSolver::GetFEMSolution()
{
return u;
}
#ifdef MFEM_USE_MPI
ParGridFunction * DiffusionSolver::GetParFEMSolution()
{
if (parallel)
{
return dynamic_cast<ParGridFunction*>(u);
}
else
{
MFEM_ABORT("Wrong code path. Call GetFEMSolution");
return nullptr;
}
}
#endif
DiffusionSolver::~DiffusionSolver()
{
delete u; u = nullptr;
delete fes; fes = nullptr;
#ifdef MFEM_USE_MPI
delete pfes; pfes=nullptr;
#endif
delete fec; fec = nullptr;
delete b;
}
// Elasticity solver
LinearElasticitySolver::LinearElasticitySolver(Mesh * mesh_, int order_,
Coefficient * lambda_cf_, Coefficient * mu_cf_)
: mesh(mesh_), order(order_), lambda_cf(lambda_cf_), mu_cf(mu_cf_)
{
#ifdef MFEM_USE_MPI
pmesh = dynamic_cast<ParMesh *>(mesh);
if (pmesh) { parallel = true; }
#endif
SetupFEM();
}
void LinearElasticitySolver::SetupFEM()
{
dim = mesh->Dimension();
fec = new H1_FECollection(order, dim,BasisType::Positive);
#ifdef MFEM_USE_MPI
if (parallel)
{
pfes = new ParFiniteElementSpace(pmesh, fec, dim);
u = new ParGridFunction(pfes);
b = new ParLinearForm(pfes);
}
else
{
fes = new FiniteElementSpace(mesh, fec,dim);
u = new GridFunction(fes);
b = new LinearForm(fes);
}
#else
fes = new FiniteElementSpace(mesh, fec, dim);
u = new GridFunction(fes);
b = new LinearForm(fes);
#endif
*u=0.0;
if (!ess_bdr.Size())
{
if (mesh->bdr_attributes.Size())
{
ess_bdr.SetSize(mesh->bdr_attributes.Max());
ess_bdr = 1;
}
}
}
void LinearElasticitySolver::Solve()
{
GridFunction * x = nullptr;
OperatorPtr A;
Vector B, X;
Array<int> ess_tdof_list;
#ifdef MFEM_USE_MPI
if (parallel)
{
x = new ParGridFunction(pfes);
pfes->GetEssentialTrueDofs(ess_bdr,ess_tdof_list);
}
else
{
x = new GridFunction(fes);
fes->GetEssentialTrueDofs(ess_bdr,ess_tdof_list);
}
#else
x = new GridFunction(fes);
fes->GetEssentialTrueDofs(ess_bdr,ess_tdof_list);
#endif
*u=0.0;
if (b)
{
delete b;
#ifdef MFEM_USE_MPI
if (parallel)
{
b = new ParLinearForm(pfes);
}
else
{
b = new LinearForm(fes);
}
#else
b = new LinearForm(fes);
#endif
}
if (rhs_cf)
{
b->AddDomainIntegrator(new VectorDomainLFIntegrator(*rhs_cf));
}
b->Assemble();
*x = 0.0;
BilinearForm * a = nullptr;
#ifdef MFEM_USE_MPI
if (parallel)
{
a = new ParBilinearForm(pfes);
}
else
{
a = new BilinearForm(fes);
}
#else
a = new BilinearForm(fes);
#endif
a->AddDomainIntegrator(new ElasticityIntegrator(*lambda_cf, *mu_cf));
a->Assemble();
if (essbdr_cf)
{
u->ProjectBdrCoefficient(*essbdr_cf,ess_bdr);
}
a->FormLinearSystem(ess_tdof_list, *x, *b, A, X, B);
CGSolver * cg = nullptr;
Solver * M = nullptr;
#ifdef MFEM_USE_MPI
if (parallel)
{
M = new HypreBoomerAMG;
dynamic_cast<HypreBoomerAMG*>(M)->SetPrintLevel(0);
cg = new CGSolver(pmesh->GetComm());
}
else
{
M = new GSSmoother((SparseMatrix&)(*A));
cg = new CGSolver;
}
#else
M = new GSSmoother((SparseMatrix&)(*A));
cg = new CGSolver;
#endif
cg->SetRelTol(1e-10);
cg->SetMaxIter(10000);
cg->SetPrintLevel(0);
cg->SetPreconditioner(*M);
cg->SetOperator(*A);
cg->Mult(B, X);
delete M;
delete cg;
a->RecoverFEMSolution(X, *b, *x);
*u+=*x;
delete a;
delete x;
}
GridFunction * LinearElasticitySolver::GetFEMSolution()
{
return u;
}
#ifdef MFEM_USE_MPI
ParGridFunction * LinearElasticitySolver::GetParFEMSolution()
{
if (parallel)
{
return dynamic_cast<ParGridFunction*>(u);
}
else
{
MFEM_ABORT("Wrong code path. Call GetFEMSolution");
return nullptr;
}
}
#endif
LinearElasticitySolver::~LinearElasticitySolver()
{
delete u; u = nullptr;
delete fes; fes = nullptr;
#ifdef MFEM_USE_MPI
delete pfes; pfes=nullptr;
#endif
delete fec; fec = nullptr;
delete b;
}
} // namespace mfem