-
Notifications
You must be signed in to change notification settings - Fork 5
/
ex39.cpp
285 lines (246 loc) · 11.9 KB
/
ex39.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
// MFEM Example 39
//
// Compile with: make ex39
//
// Sample runs: ex39
// ex39 -ess "Southern Boundary"
// ex39 -src Base
//
// Description: This example code demonstrates the use of named attribute
// sets in MFEM to specify material regions, boundary regions,
// or source regions by name rather than attribute numbers. It
// also demonstrates how new named attribute sets may be created
// from arbitrary groupings of attribute numbers and used as a
// convenient shorthand to refer to those groupings in other
// portions of the application or through the command line.
//
// The particular problem being solved here is nearly the same
// as that in example 1 i.e. a simple finite element
// discretization of the Laplace problem -Delta u = 1 with
// homogeneous Dirichlet boundary conditions and, in this case,
// an inhomogeneous diffusion coefficient. The diffusion
// coefficient is given a small default value throughout the
// domain which is increased by two separate amounts in two named
// regions.
//
// This example makes use of a specific input mesh, "compass.msh",
// containing named domain and boundary regions generated by Gmsh
// and stored in their "msh" format (version 2.2). This file
// defines eight boundary regions corresponding to eight compass
// headings; "ENE", "NNE", "NNW", "WSW", "SSW", "SSE", and "ESE".
// It also defines nine domain regions; "Base", "N Even", "N Odd",
// "W Even", "W Odd", "S Even", "S Odd", "E Even", and "E Odd".
// These regions split the four compass pointers into two halves
// each and also label the remaining elements as "Base". Starting
// with these named regions we test the construction of named
// sets as well as reading and writing these named groupings from
// and to mesh files.
//
// The example highlights the use of named attribute sets for
// both subdomains and boundaries in different contexts as well
// as basic methods to create named sets from existing attributes.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
int main(int argc, char *argv[])
{
// 1. Parse command-line options.
const char *mesh_file = "../data/compass.msh";
int order = 1;
string source_name = "Rose Even";
string ess_name = "Boundary";
bool visualization = true;
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree) or -1 for"
" isoparametric space.");
args.AddOption(&source_name,"-src","--source-attr-name",
"Name of attribute set containing source.");
args.AddOption(&ess_name,"-ess","--ess-attr-name",
"Name of attribute set containing essential BC.");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.ParseCheck();
// 2. Read the mesh from the given mesh file. We can handle triangular,
// quadrilateral, tetrahedral, hexahedral, surface and volume meshes with
// the same code.
Mesh mesh(mesh_file, 1, 1);
int dim = mesh.Dimension();
// 3. Refine the mesh to increase the resolution. In this example we do
// 'ref_levels' of uniform refinement. We choose 'ref_levels' to be the
// largest number that gives a final mesh with no more than 50,000
// elements.
{
int ref_levels =
(int)floor(log(50000./mesh.GetNE())/log(2.)/dim);
for (int l = 0; l < ref_levels; l++)
{
mesh.UniformRefinement();
}
}
// 4a. Display attribute set names contained in the initial mesh
AttributeSets &attr_sets = mesh.attribute_sets;
AttributeSets &bdr_attr_sets = mesh.bdr_attribute_sets;
{
std::set<string> names = attr_sets.GetAttributeSetNames();
cout << "Element Attribute Set Names: ";
for (auto const &set_name : names)
{
cout << " \"" << set_name << "\"";
}
cout << endl;
std::set<string> bdr_names = bdr_attr_sets.GetAttributeSetNames();
cout << "Boundary Attribute Set Names: ";
for (auto const &bdr_set_name : bdr_names)
{
cout << " \"" << bdr_set_name << "\"";
}
cout << endl;
}
// 4b. Define new regions based on existing attribute sets
{
Array<int> & Na = attr_sets.GetAttributeSet("N Even");
Array<int> & Nb = attr_sets.GetAttributeSet("N Odd");
Array<int> & Sa = attr_sets.GetAttributeSet("S Even");
Array<int> & Sb = attr_sets.GetAttributeSet("S Odd");
Array<int> & Ea = attr_sets.GetAttributeSet("E Even");
Array<int> & Eb = attr_sets.GetAttributeSet("E Odd");
Array<int> & Wa = attr_sets.GetAttributeSet("W Even");
Array<int> & Wb = attr_sets.GetAttributeSet("W Odd");
// Create a new set spanning the North point
attr_sets.SetAttributeSet("North", Na);
attr_sets.AddToAttributeSet("North", Nb);
// Create a new set spanning the South point
attr_sets.SetAttributeSet("South", Sa);
attr_sets.AddToAttributeSet("South", Sb);
// Create a new set spanning the East point
attr_sets.SetAttributeSet("East", Ea);
attr_sets.AddToAttributeSet("East", Eb);
// Create a new set spanning the West point
attr_sets.SetAttributeSet("West", Wa);
attr_sets.AddToAttributeSet("West", Wb);
// Create a new set consisting of the "a" sides of the compass rose
attr_sets.SetAttributeSet("Rose Even", Na);
attr_sets.AddToAttributeSet("Rose Even", Sa);
attr_sets.AddToAttributeSet("Rose Even", Ea);
attr_sets.AddToAttributeSet("Rose Even", Wa);
// Create a new set consisting of the "b" sides of the compass rose
attr_sets.SetAttributeSet("Rose Odd", Nb);
attr_sets.AddToAttributeSet("Rose Odd", Sb);
attr_sets.AddToAttributeSet("Rose Odd", Eb);
attr_sets.AddToAttributeSet("Rose Odd", Wb);
// Create a new set consisting of the full compass rose
Array<int> & Ra = attr_sets.GetAttributeSet("Rose Even");
Array<int> & Rb = attr_sets.GetAttributeSet("Rose Odd");
attr_sets.SetAttributeSet("Rose", Ra);
attr_sets.AddToAttributeSet("Rose", Rb);
}
// 4c. Define new boundary regions based on existing boundary attribute sets
{
Array<int> & NNE = bdr_attr_sets.GetAttributeSet("NNE");
Array<int> & NNW = bdr_attr_sets.GetAttributeSet("NNW");
Array<int> & ENE = bdr_attr_sets.GetAttributeSet("ENE");
Array<int> & ESE = bdr_attr_sets.GetAttributeSet("ESE");
Array<int> & SSE = bdr_attr_sets.GetAttributeSet("SSE");
Array<int> & SSW = bdr_attr_sets.GetAttributeSet("SSW");
Array<int> & WNW = bdr_attr_sets.GetAttributeSet("WNW");
Array<int> & WSW = bdr_attr_sets.GetAttributeSet("WSW");
bdr_attr_sets.SetAttributeSet("Northern Boundary", NNE);
bdr_attr_sets.AddToAttributeSet("Northern Boundary", NNW);
bdr_attr_sets.SetAttributeSet("Southern Boundary", SSE);
bdr_attr_sets.AddToAttributeSet("Southern Boundary", SSW);
bdr_attr_sets.SetAttributeSet("Eastern Boundary", ENE);
bdr_attr_sets.AddToAttributeSet("Eastern Boundary", ESE);
bdr_attr_sets.SetAttributeSet("Western Boundary", WNW);
bdr_attr_sets.AddToAttributeSet("Western Boundary", WSW);
bdr_attr_sets.SetAttributeSet("Boundary",
bdr_attr_sets.GetAttributeSet
("Northern Boundary"));
bdr_attr_sets.AddToAttributeSet("Boundary",
bdr_attr_sets.GetAttributeSet
("Southern Boundary"));
bdr_attr_sets.AddToAttributeSet("Boundary",
bdr_attr_sets.GetAttributeSet
("Eastern Boundary"));
bdr_attr_sets.AddToAttributeSet("Boundary",
bdr_attr_sets.GetAttributeSet
("Western Boundary"));
}
// 5. Define a finite element space on the mesh. Here we use continuous
// Lagrange finite elements of the specified order.
H1_FECollection fec(order, mesh.Dimension());
FiniteElementSpace fespace(&mesh, &fec);
cout << "Number of finite element unknowns: "
<< fespace.GetTrueVSize() << endl;
// 6. Determine the list of true (i.e. conforming) essential boundary dofs.
// In this example, the boundary conditions are defined by marking all
// the boundary regions corresponding to the boundary attributes
// contained in the set named "ess_name" as essential (Dirichlet) and
// converting them to a list of true dofs.
Array<int> ess_tdof_list;
if (bdr_attr_sets.AttributeSetExists(ess_name))
{
Array<int> ess_bdr_marker = bdr_attr_sets.GetAttributeSetMarker(ess_name);
fespace.GetEssentialTrueDofs(ess_bdr_marker, ess_tdof_list);
}
// 7. Set up the linear form b(.) which corresponds to the right-hand side of
// the FEM linear system, which in this case is (1_s,phi_i) where phi_i
// are the basis functions in fespace and 1_s is an indicator function
// equal to 1 on the region defined by the named set "source_name" and
// zero elsewhere.
Array<int> source_marker = attr_sets.GetAttributeSetMarker(source_name);
LinearForm b(&fespace);
ConstantCoefficient one(1.0);
b.AddDomainIntegrator(new DomainLFIntegrator(one), source_marker);
b.Assemble();
// 8. Define the solution vector x as a finite element grid function
// corresponding to fespace. Initialize x with initial guess of zero,
// which satisfies the boundary conditions.
GridFunction x(&fespace);
x = 0.0;
// 9. Set up the bilinear form a(.,.) on the finite element space
// corresponding to the Laplacian operator -Delta, by adding the
// Diffusion domain integrator.
BilinearForm a(&fespace);
ConstantCoefficient defaultCoef(1.0e-6);
ConstantCoefficient baseCoef(1.0);
ConstantCoefficient roseCoef(2.0);
Array<int> base_marker = attr_sets.GetAttributeSetMarker("Base");
Array<int> rose_marker = attr_sets.GetAttributeSetMarker("Rose Even");
// Impose a very small diffusion coefficient across the entire mesh
a.AddDomainIntegrator(new DiffusionIntegrator(defaultCoef));
// Impose an additional, stronger diffusion coefficient in select regions
a.AddDomainIntegrator(new DiffusionIntegrator(baseCoef), base_marker);
a.AddDomainIntegrator(new DiffusionIntegrator(roseCoef), rose_marker);
// 10. Assemble the bilinear form and the corresponding linear system,
// applying any necessary transformations.
a.Assemble();
SparseMatrix A;
Vector B, X;
a.FormLinearSystem(ess_tdof_list, x, b, A, X, B);
cout << "Size of linear system: " << A.Height() << endl;
// 11. Solve the system using PCG with symmetric Gauss-Seidel preconditioner.
GSSmoother M(A);
PCG(A, M, B, X, 1, 800, 1e-12, 0.0);
// 12. Recover the solution as a finite element grid function.
a.RecoverFEMSolution(X, b, x);
// 13. Save the refined mesh and the solution. This output can be viewed
// later using GLVis: "glvis -m refined.mesh -g sol.gf".
mesh.Save("refined.mesh");
x.Save("sol.gf");
// 14. Send the solution by socket to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock(vishost, visport);
sol_sock.precision(8);
sol_sock << "solution\n" << mesh << x << "keys Rjmm" << flush;
}
return 0;
}