-
Notifications
You must be signed in to change notification settings - Fork 5
/
ex8.cpp
288 lines (254 loc) · 10 KB
/
ex8.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
// MFEM Example 8
//
// Compile with: make ex8
//
// Sample runs: ex8 -m ../data/square-disc.mesh
// ex8 -m ../data/star.mesh
// ex8 -m ../data/star-mixed.mesh
// ex8 -m ../data/escher.mesh
// ex8 -m ../data/fichera.mesh
// ex8 -m ../data/fichera-mixed.mesh
// ex8 -m ../data/square-disc-p2.vtk
// ex8 -m ../data/square-disc-p3.mesh
// ex8 -m ../data/star-surf.mesh -o 2
// ex8 -m ../data/mobius-strip.mesh
//
// Description: This example code demonstrates the use of the Discontinuous
// Petrov-Galerkin (DPG) method in its primal 2x2 block form as a
// simple finite element discretization of the Laplace problem
// -Delta u = f with homogeneous Dirichlet boundary conditions. We
// use high-order continuous trial space, a high-order interfacial
// (trace) space, and a high-order discontinuous test space
// defining a local dual (H^{-1}) norm.
//
// We use the primal form of DPG, see "A primal DPG method without
// a first-order reformulation", Demkowicz and Gopalakrishnan, CAM
// 2013, DOI:10.1016/j.camwa.2013.06.029.
//
// The example highlights the use of interfacial (trace) finite
// elements and spaces, trace face integrators and the definition
// of block operators and preconditioners.
//
// We recommend viewing examples 1-5 before viewing this example.
#include "mfem.hpp"
#include <fstream>
#include <iostream>
using namespace std;
using namespace mfem;
int main(int argc, char *argv[])
{
// 1. Parse command-line options.
const char *mesh_file = "../data/star.mesh";
int order = 1;
bool visualization = 1;
OptionsParser args(argc, argv);
args.AddOption(&mesh_file, "-m", "--mesh",
"Mesh file to use.");
args.AddOption(&order, "-o", "--order",
"Finite element order (polynomial degree).");
args.AddOption(&visualization, "-vis", "--visualization", "-no-vis",
"--no-visualization",
"Enable or disable GLVis visualization.");
args.Parse();
if (!args.Good())
{
args.PrintUsage(cout);
return 1;
}
args.PrintOptions(cout);
// 2. Read the mesh from the given mesh file. We can handle triangular,
// quadrilateral, tetrahedral, hexahedral, surface and volume meshes with
// the same code.
Mesh *mesh = new Mesh(mesh_file, 1, 1);
int dim = mesh->Dimension();
// 3. Refine the mesh to increase the resolution. In this example we do
// 'ref_levels' of uniform refinement. We choose 'ref_levels' to be the
// largest number that gives a final mesh with no more than 10,000
// elements.
{
int ref_levels =
(int)floor(log(10000./mesh->GetNE())/log(2.)/dim);
for (int l = 0; l < ref_levels; l++)
{
mesh->UniformRefinement();
}
}
// 4. Define the trial, interfacial (trace) and test DPG spaces:
// - The trial space, x0_space, contains the non-interfacial unknowns and
// has the essential BC.
// - The interfacial space, xhat_space, contains the interfacial unknowns
// and does not have essential BC.
// - The test space, test_space, is an enriched space where the enrichment
// degree may depend on the spatial dimension of the domain, the type of
// the mesh and the trial space order.
unsigned int trial_order = order;
unsigned int trace_order = order - 1;
unsigned int test_order = order; /* reduced order, full order is
(order + dim - 1) */
if (dim == 2 && (order%2 == 0 || (mesh->MeshGenerator() & 2 && order > 1)))
{
test_order++;
}
if (test_order < trial_order)
cerr << "Warning, test space not enriched enough to handle primal"
<< " trial space\n";
FiniteElementCollection *x0_fec, *xhat_fec, *test_fec;
x0_fec = new H1_FECollection(trial_order, dim);
xhat_fec = new RT_Trace_FECollection(trace_order, dim);
test_fec = new L2_FECollection(test_order, dim);
FiniteElementSpace *x0_space = new FiniteElementSpace(mesh, x0_fec);
FiniteElementSpace *xhat_space = new FiniteElementSpace(mesh, xhat_fec);
FiniteElementSpace *test_space = new FiniteElementSpace(mesh, test_fec);
// 5. Define the block structure of the problem, by creating the offset
// variables. Also allocate two BlockVector objects to store the solution
// and rhs.
enum {x0_var, xhat_var, NVAR};
int s0 = x0_space->GetVSize();
int s1 = xhat_space->GetVSize();
int s_test = test_space->GetVSize();
Array<int> offsets(NVAR+1);
offsets[0] = 0;
offsets[1] = s0;
offsets[2] = s0+s1;
Array<int> offsets_test(2);
offsets_test[0] = 0;
offsets_test[1] = s_test;
std::cout << "\nNumber of Unknowns:\n"
<< " Trial space, X0 : " << s0
<< " (order " << trial_order << ")\n"
<< " Interface space, Xhat : " << s1
<< " (order " << trace_order << ")\n"
<< " Test space, Y : " << s_test
<< " (order " << test_order << ")\n\n";
BlockVector x(offsets), b(offsets);
x = 0.;
// 6. Set up the linear form F(.) which corresponds to the right-hand side of
// the FEM linear system, which in this case is (f,phi_i) where f=1.0 and
// phi_i are the basis functions in the test finite element fespace.
ConstantCoefficient one(1.0);
LinearForm F(test_space);
F.AddDomainIntegrator(new DomainLFIntegrator(one));
F.Assemble();
// 7. Set up the mixed bilinear form for the primal trial unknowns, B0,
// the mixed bilinear form for the interfacial unknowns, Bhat,
// the inverse stiffness matrix on the discontinuous test space, Sinv,
// and the stiffness matrix on the continuous trial space, S0.
Array<int> ess_bdr(mesh->bdr_attributes.Max());
ess_bdr = 1;
MixedBilinearForm *B0 = new MixedBilinearForm(x0_space,test_space);
B0->AddDomainIntegrator(new DiffusionIntegrator(one));
B0->Assemble();
B0->EliminateTrialEssentialBC(ess_bdr, x.GetBlock(x0_var), F);
B0->Finalize();
MixedBilinearForm *Bhat = new MixedBilinearForm(xhat_space,test_space);
Bhat->AddTraceFaceIntegrator(new TraceJumpIntegrator());
Bhat->Assemble();
Bhat->Finalize();
BilinearForm *Sinv = new BilinearForm(test_space);
SumIntegrator *Sum = new SumIntegrator;
Sum->AddIntegrator(new DiffusionIntegrator(one));
Sum->AddIntegrator(new MassIntegrator(one));
Sinv->AddDomainIntegrator(new InverseIntegrator(Sum));
Sinv->Assemble();
Sinv->Finalize();
BilinearForm *S0 = new BilinearForm(x0_space);
S0->AddDomainIntegrator(new DiffusionIntegrator(one));
S0->Assemble();
S0->EliminateEssentialBC(ess_bdr);
S0->Finalize();
SparseMatrix &matB0 = B0->SpMat();
SparseMatrix &matBhat = Bhat->SpMat();
SparseMatrix &matSinv = Sinv->SpMat();
SparseMatrix &matS0 = S0->SpMat();
// 8. Set up the 1x2 block Least Squares DPG operator, B = [B0 Bhat],
// the normal equation operator, A = B^t Sinv B, and
// the normal equation right-hand-size, b = B^t Sinv F.
BlockOperator B(offsets_test, offsets);
B.SetBlock(0,0,&matB0);
B.SetBlock(0,1,&matBhat);
RAPOperator A(B, matSinv, B);
{
Vector SinvF(s_test);
matSinv.Mult(F,SinvF);
B.MultTranspose(SinvF, b);
}
// 9. Set up a block-diagonal preconditioner for the 2x2 normal equation
//
// [ S0^{-1} 0 ]
// [ 0 Shat^{-1} ] Shat = (Bhat^T Sinv Bhat)
//
// corresponding to the primal (x0) and interfacial (xhat) unknowns.
SparseMatrix * Shat = RAP(matBhat, matSinv, matBhat);
#ifndef MFEM_USE_SUITESPARSE
const real_t prec_rtol = 1e-3;
const int prec_maxit = 200;
CGSolver *S0inv = new CGSolver;
S0inv->SetOperator(matS0);
S0inv->SetPrintLevel(-1);
S0inv->SetRelTol(prec_rtol);
S0inv->SetMaxIter(prec_maxit);
CGSolver *Shatinv = new CGSolver;
Shatinv->SetOperator(*Shat);
Shatinv->SetPrintLevel(-1);
Shatinv->SetRelTol(prec_rtol);
Shatinv->SetMaxIter(prec_maxit);
// Disable 'iterative_mode' when using CGSolver (or any IterativeSolver) as
// a preconditioner:
S0inv->iterative_mode = false;
Shatinv->iterative_mode = false;
#else
Operator *S0inv = new UMFPackSolver(matS0);
Operator *Shatinv = new UMFPackSolver(*Shat);
#endif
BlockDiagonalPreconditioner P(offsets);
P.SetDiagonalBlock(0, S0inv);
P.SetDiagonalBlock(1, Shatinv);
// 10. Solve the normal equation system using the PCG iterative solver.
// Check the weighted norm of residual for the DPG least square problem.
// Wrap the primal variable in a GridFunction for visualization purposes.
PCG(A, P, b, x, 1, 200, 1e-12, 0.0);
{
Vector LSres(s_test);
B.Mult(x, LSres);
LSres -= F;
real_t res = sqrt(matSinv.InnerProduct(LSres, LSres));
cout << "\n|| B0*x0 + Bhat*xhat - F ||_{S^-1} = " << res << endl;
}
GridFunction x0;
x0.MakeRef(x0_space, x.GetBlock(x0_var), 0);
// 11. Save the refined mesh and the solution. This output can be viewed
// later using GLVis: "glvis -m refined.mesh -g sol.gf".
{
ofstream mesh_ofs("refined.mesh");
mesh_ofs.precision(8);
mesh->Print(mesh_ofs);
ofstream sol_ofs("sol.gf");
sol_ofs.precision(8);
x0.Save(sol_ofs);
}
// 12. Send the solution by socket to a GLVis server.
if (visualization)
{
char vishost[] = "localhost";
int visport = 19916;
socketstream sol_sock(vishost, visport);
sol_sock.precision(8);
sol_sock << "solution\n" << *mesh << x0 << flush;
}
// 13. Free the used memory.
delete S0inv;
delete Shatinv;
delete Shat;
delete Bhat;
delete B0;
delete S0;
delete Sinv;
delete test_space;
delete test_fec;
delete xhat_space;
delete xhat_fec;
delete x0_space;
delete x0_fec;
delete mesh;
return 0;
}