forked from scale-lab/DRiLLS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
217 lines (173 loc) · 8.81 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#!/usr/bin/python3
# Copyright (c) 2019, SCALE Lab, Brown University
# All rights reserved.
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
import tensorflow as tf
import numpy as np
import datetime
import time
from .scl_session import SCLSession as SCLGame
from .fpga_session import FPGASession as FPGAGame
def log(message):
print('[DRiLLS {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now()) + "] " + message)
class Normalizer():
def __init__(self, num_inputs):
self.num_inputs = num_inputs
self.n = tf.zeros(num_inputs)
self.mean = tf.zeros(num_inputs)
self.mean_diff = tf.zeros(num_inputs)
self.var = tf.zeros(num_inputs)
def observe(self, x):
self.n += 1.
last_mean = tf.identity(self.mean)
self.mean += (x-self.mean)/self.n
self.mean_diff += (x-last_mean)*(x-self.mean)
self.var = tf.clip_by_value(self.mean_diff/self.n, clip_value_min=1e-2, clip_value_max=1000000000)
def normalize(self, inputs):
obs_std = tf.sqrt(self.var)
return (inputs - self.mean)/obs_std
def reset(self):
self.n = tf.zeros(self.num_inputs)
self.mean = tf.zeros(self.num_inputs)
self.mean_diff = tf.zeros(self.num_inputs)
self.var = tf.zeros(self.num_inputs)
class A2C:
def __init__(self, options, load_model=False, fpga_mapping=False):
if fpga_mapping:
self.game = FPGAGame(options)
else:
self.game = SCLGame(options)
self.num_actions = self.game.action_space_length
self.state_size = self.game.observation_space_size
self.normalizer = Normalizer(self.state_size)
self.state_input = tf.placeholder(tf.float32, [None, self.state_size])
# Define any additional placeholders needed for training your agent here:
self.actions = tf.placeholder(tf.float32, [None, self.num_actions])
self.discounted_episode_rewards_ = tf.placeholder(tf.float32, [None, ])
self.state_value = self.critic()
self.actor_probs = self.actor()
self.loss_val = self.loss()
self.train_op = self.optimizer()
self.session = tf.Session()
# model saving/restoring
self.model_dir = options['model_dir']
self.saver = tf.train.Saver()
if load_model:
self.saver.restore(self.session, self.model_dir)
log("Model restored.")
else:
self.session.run(tf.global_variables_initializer())
self.gamma = 0.99
self.learning_rate = 0.01
def optimizer(self):
"""
:return: Optimizer for your loss function
"""
return tf.train.AdamOptimizer(0.01).minimize(self.loss_val)
def critic(self):
"""
Calculates the estimated value for every state in self.state_input. The critic should not depend on
any other tensors besides self.state_input.
:return: A tensor of shape [num_states] representing the estimated value of each state in the trajectory.
"""
c_fc1 = tf.contrib.layers.fully_connected(inputs=self.state_input,
num_outputs=10,
activation_fn=tf.nn.relu,
weights_initializer=tf.contrib.layers.xavier_initializer())
c_fc2 = tf.contrib.layers.fully_connected(inputs=c_fc1,
num_outputs=1,
activation_fn=None,
weights_initializer=tf.contrib.layers.xavier_initializer())
return c_fc2
def actor(self):
"""
Calculates the action probabilities for every state in self.state_input. The actor should not depend on
any other tensors besides self.state_input.
:return: A tensor of shape [num_states, num_actions] representing the probability distribution
over actions that is generated by your actor.
"""
a_fc1 = tf.contrib.layers.fully_connected(inputs=self.state_input,
num_outputs=20,
activation_fn=tf.nn.relu,
weights_initializer=tf.contrib.layers.xavier_initializer())
a_fc2 = tf.contrib.layers.fully_connected(inputs=a_fc1,
num_outputs=20,
activation_fn=tf.nn.relu,
weights_initializer=tf.contrib.layers.xavier_initializer())
a_fc3 = tf.contrib.layers.fully_connected(inputs=a_fc2,
num_outputs=self.num_actions,
activation_fn=None,
weights_initializer=tf.contrib.layers.xavier_initializer())
return tf.nn.softmax(a_fc3)
def loss(self):
"""
:return: A scalar tensor representing the combined actor and critic loss.
"""
# critic loss
advantage = self.discounted_episode_rewards_ - self.state_value
critic_loss = tf.reduce_sum(tf.square(advantage))
# actor loss
neg_log_prob = tf.nn.softmax_cross_entropy_with_logits_v2(logits=tf.log(self.actor_probs),
labels=self.actions)
actor_loss = tf.reduce_sum(neg_log_prob * advantage)
neg_log_prob = tf.nn.softmax_cross_entropy_with_logits_v2(logits=self.actor_probs,
labels=self.actions)
policy_gradient_loss = tf.reduce_mean(neg_log_prob * self.discounted_episode_rewards_)
# return policy_gradient_loss
return critic_loss + actor_loss
def save_model(self):
save_path = self.saver.save(self.session, self.model_dir)
log("Model saved in path: %s" % str(save_path))
def train_episode(self):
"""
train_episode will be called several times by the drills.py to train the agent. In this method,
we run the agent for a single episode, then use that data to train the agent.
"""
state = self.game.reset()
self.normalizer.reset()
self.normalizer.observe(state)
state = self.normalizer.normalize(state).eval(session=self.session)
done = False
episode_states = []
episode_actions = []
episode_rewards = []
while not done:
log(' iteration: ' + str(self.game.iteration))
action_probability_distribution = self.session.run(self.actor_probs, \
feed_dict={self.state_input: state.reshape([1, self.state_size])})
action = np.random.choice(range(action_probability_distribution.shape[1]), \
p=action_probability_distribution.ravel())
new_state, reward, done, _ = self.game.step(action)
# append this step
episode_states.append(state)
action_ = np.zeros(self.num_actions)
action_[action] = 1
episode_actions.append(action_)
episode_rewards.append(reward)
state = new_state
self.normalizer.observe(state)
state = self.normalizer.normalize(state).eval(session=self.session)
# Now that we have run the episode, we use this data to train the agent
start = time.time()
discounted_episode_rewards = self.discount_and_normalize_rewards(episode_rewards)
_ = self.session.run(self.train_op, feed_dict={self.state_input: np.array(episode_states), \
self.actions: np.array(episode_actions), \
self.discounted_episode_rewards_: discounted_episode_rewards})
end = time.time()
log('Episode Agent Training Time ~ ' + str((start - end) / 60) + ' minutes.')
self.save_model()
return np.sum(episode_rewards)
def discount_and_normalize_rewards(self, episode_rewards):
"""
used internally to calculate the discounted episode rewards
"""
discounted_episode_rewards = np.zeros_like(episode_rewards)
cumulative = 0.0
for i in reversed(range(len(episode_rewards))):
cumulative = cumulative * self.gamma + episode_rewards[i]
discounted_episode_rewards[i] = cumulative
mean = np.mean(discounted_episode_rewards)
std = np.std(discounted_episode_rewards)
discounted_episode_rewards = (discounted_episode_rewards - mean) / std
return discounted_episode_rewards