|
| 1 | +import tensorflow as tf |
| 2 | +import numpy as np |
| 3 | +from tensorflow.contrib.rnn import GRUCell |
| 4 | +from tensorflow.contrib import layers |
| 5 | + |
| 6 | + |
| 7 | +######################model########################## |
| 8 | +def weights(name, hidden_size, i): |
| 9 | + image_stdv = np.sqrt(1. / (2048)) |
| 10 | + text_stdv = np.sqrt(1. / (2757)) |
| 11 | + hidden_stdv = np.sqrt(1. / (hidden_size)) |
| 12 | + if name == 'in_image': |
| 13 | + w = tf.get_variable(name='w/in_image_'+ str(i), |
| 14 | + shape=[2048, hidden_size], |
| 15 | + initializer=tf.random_normal_initializer(stddev=image_stdv)) |
| 16 | + #w = tf.get_variable(name='gnn/w/in_image_', shape=[2048, hidden_size], initializer=tf.random_normal_initializer) |
| 17 | + if name == 'out_image': |
| 18 | + w = tf.get_variable(name='w/out_image_' + str(i), |
| 19 | + shape=[hidden_size, 2048], |
| 20 | + initializer=tf.random_normal_initializer(stddev=image_stdv)) |
| 21 | + #w = tf.get_variable(name='w/out_image_', shape=[hidden_size, 2048], initializer=tf.random_normal_initializer) |
| 22 | + if name == 'in_text': |
| 23 | + w = tf.get_variable(name='w/in_text_'+ str(i), |
| 24 | + shape=[2757, hidden_size], |
| 25 | + initializer=tf.random_normal_initializer(stddev=image_stdv)) |
| 26 | + #w = tf.get_variable(name='gnn/w/in_image_', shape=[2048, hidden_size], initializer=tf.random_normal_initializer) |
| 27 | + if name == 'out_text': |
| 28 | + w = tf.get_variable(name='w/out_text_' + str(i), |
| 29 | + shape=[hidden_size, 2757], |
| 30 | + initializer=tf.random_normal_initializer(stddev=image_stdv)) |
| 31 | + #w = tf.get_variable(name='w/out_image_', shape=[hidden_size, 2048], initializer=tf.random_normal_initializer) |
| 32 | + if name == 'image_hidden_state_out': |
| 33 | + w = tf.get_variable(name='w/image_hidden_state_out' + str(i), |
| 34 | + shape=[hidden_size, hidden_size], |
| 35 | + initializer=tf.random_normal_initializer(stddev=hidden_stdv)) |
| 36 | + #w = tf.get_variable(name='w/hidden_state_out_' + str(i), shape=[hidden_size, hidden_size], initializer=tf.random_normal_initializer) |
| 37 | + if name == 'image_hidden_state_in': |
| 38 | + #w = tf.get_variable(name='w/hidden_state_in_', shape=[hidden_size, hidden_size], initializer=tf.random_normal_initializer) |
| 39 | + w = tf.get_variable(name='w/image_hidden_state_in_' + str(i), |
| 40 | + shape=[hidden_size, hidden_size], |
| 41 | + initializer=tf.random_normal_initializer(stddev=hidden_stdv)) |
| 42 | + if name == 'text_hidden_state_out': |
| 43 | + w = tf.get_variable(name='w/text_hidden_state_out' + str(i), |
| 44 | + shape=[hidden_size, hidden_size], |
| 45 | + initializer=tf.random_normal_initializer(stddev=hidden_stdv)) |
| 46 | + #w = tf.get_variable(name='w/hidden_state_out_' + str(i), shape=[hidden_size, hidden_size], initializer=tf.random_normal_initializer) |
| 47 | + if name == 'text_hidden_state_in': |
| 48 | + #w = tf.get_variable(name='w/hidden_state_in_', shape=[hidden_size, hidden_size], initializer=tf.random_normal_initializer) |
| 49 | + w = tf.get_variable(name='w/text_hidden_state_in_' + str(i), |
| 50 | + shape=[hidden_size, hidden_size], |
| 51 | + initializer=tf.random_normal_initializer(stddev=hidden_stdv)) |
| 52 | + |
| 53 | + |
| 54 | + return w |
| 55 | + |
| 56 | + |
| 57 | +def biases(name, hidden_size, i): |
| 58 | + image_stdv = np.sqrt(1. / (2048)) |
| 59 | + hidden_stdv = np.sqrt(1. / (hidden_size)) |
| 60 | + if name == 'image_hidden_state_out': |
| 61 | + b = tf.get_variable(name='b/image_hidden_state_out' + str(i), shape=[hidden_size], |
| 62 | + initializer=tf.random_normal_initializer(stddev=hidden_stdv)) |
| 63 | + # b = tf.get_variable(name='b/hidden_state_out', shape=[hidden_size], |
| 64 | + # initializer=tf.random_normal_initializer) |
| 65 | + if name == 'image_hidden_state_in': |
| 66 | + b = tf.get_variable(name='b/image_hidden_state_in' + str(i), shape=[hidden_size], |
| 67 | + initializer=tf.random_normal_initializer(stddev=hidden_stdv)) |
| 68 | + # b = tf.get_variable(name='b/hidden_state_in', shape=[hidden_size], |
| 69 | + # initializer=tf.random_normal_initializer) |
| 70 | + if name == 'text_hidden_state_out': |
| 71 | + b = tf.get_variable(name='b/text_hidden_state_out' + str(i), shape=[hidden_size], |
| 72 | + initializer=tf.random_normal_initializer(stddev=hidden_stdv)) |
| 73 | + # b = tf.get_variable(name='b/hidden_state_out', shape=[hidden_size], |
| 74 | + # initializer=tf.random_normal_initializer) |
| 75 | + if name == 'text_hidden_state_in': |
| 76 | + b = tf.get_variable(name='b/text_hidden_state_in' + str(i), shape=[hidden_size], |
| 77 | + initializer=tf.random_normal_initializer(stddev=hidden_stdv)) |
| 78 | + # b = tf.get_variable(name='b/hidden_state_in', shape=[hidden_size], |
| 79 | + # initializer=tf.random_normal_initializer) |
| 80 | + if name == 'out_image': |
| 81 | + # b = tf.get_variable(name='b/out_image_', shape=[2048], |
| 82 | + # initializer=tf.random_normal_initializer) |
| 83 | + b = tf.get_variable(name='b/out_image_' + str(i), shape=[2048], |
| 84 | + initializer=tf.random_normal_initializer(stddev=image_stdv)) |
| 85 | + if name == 'out_text': |
| 86 | + # b = tf.get_variable(name='b/out_image_', shape=[2048], |
| 87 | + # initializer=tf.random_normal_initializer) |
| 88 | + b = tf.get_variable(name='b/out_text_' + str(i), shape=[2757], |
| 89 | + initializer=tf.random_normal_initializer(stddev=image_stdv)) |
| 90 | + |
| 91 | + return b |
| 92 | + |
| 93 | + |
| 94 | +def message_pass(label, x, hidden_size, batch_size, num_category, graph): |
| 95 | + |
| 96 | + w_hidden_state = weights(label + '_hidden_state_out', hidden_size, 0) |
| 97 | + #b_hidden_state = biases('hidden_state_out', hidden_size, 0) |
| 98 | + x_all = tf.reshape(tf.matmul( |
| 99 | + tf.reshape(x[:,0,:], [batch_size, hidden_size]), |
| 100 | + w_hidden_state), |
| 101 | + [batch_size, hidden_size]) |
| 102 | + for i in range(1, num_category): |
| 103 | + w_hidden_state = weights(label + '_hidden_state_out', hidden_size, i) |
| 104 | + #b_hidden_state = biases('hidden_state_out', hidden_size, i) |
| 105 | + x_all_ = tf.reshape(tf.matmul( |
| 106 | + tf.reshape(x[:, i, :], [batch_size, hidden_size]), |
| 107 | + w_hidden_state), |
| 108 | + [batch_size, hidden_size]) |
| 109 | + x_all = tf.concat([x_all, x_all_], 1) |
| 110 | + x_all = tf.reshape(x_all, [batch_size, num_category, hidden_size]) |
| 111 | + x_all = tf.transpose(x_all, (0, 2, 1)) # [batch_size, hidden_size, num_category] |
| 112 | + |
| 113 | + x_ = x_all[0] |
| 114 | + graph_ = graph[0] |
| 115 | + x = tf.matmul(x_, graph_) |
| 116 | + for i in range(1, batch_size): |
| 117 | + x_ = x_all[i] |
| 118 | + graph_ = graph[i] |
| 119 | + x_ = tf.matmul(x_, graph_) |
| 120 | + x = tf.concat([x, x_], 0) |
| 121 | + x = tf.reshape(x, [batch_size, hidden_size, num_category]) |
| 122 | + x = tf.transpose(x, (0, 2, 1)) |
| 123 | + |
| 124 | + x_ = tf.reshape(tf.matmul(x[:, 0, :], weights(label + '_hidden_state_in', hidden_size, 0)), |
| 125 | + [batch_size, hidden_size]) |
| 126 | + for j in range(1, num_category): |
| 127 | + _x = tf.reshape(tf.matmul(x[:, j, :], weights(label + '_hidden_state_in', hidden_size, j)), |
| 128 | + [batch_size, hidden_size]) |
| 129 | + x_ = tf.concat([x_, _x], 1) |
| 130 | + x = tf.reshape(x_, [batch_size, num_category, hidden_size]) |
| 131 | + |
| 132 | + return x |
| 133 | + |
| 134 | + |
| 135 | + |
| 136 | +#def GNN(image, batch_size, hidden_size, keep_prob, n_steps, mask_x, num_category, graph): |
| 137 | +def GNN(label, data, batch_size, hidden_size, n_steps, num_category, graph): |
| 138 | + |
| 139 | + gru_cell = GRUCell(hidden_size) |
| 140 | + w_in = weights('in_' + label, hidden_size, 0) |
| 141 | + h0 = tf.reshape(tf.matmul(data[:,0,:], w_in), [batch_size, hidden_size]) #initialize h0 [batchsize, hidden_state] |
| 142 | + for i in range(1, num_category): |
| 143 | + w_in = weights('in_' + label, hidden_size, i) |
| 144 | + h0 = tf.concat([h0, tf.reshape( |
| 145 | + tf.matmul(data[:,i,:], w_in), [batch_size, hidden_size]) |
| 146 | + ], 1) |
| 147 | + h0 = tf.reshape(h0, [batch_size, num_category, hidden_size]) # h0: [batchsize, num_category, hidden_state] |
| 148 | + ini = h0 |
| 149 | + h0 = tf.nn.tanh(h0) |
| 150 | + |
| 151 | + state = h0 |
| 152 | + sum_graph = tf.reduce_sum(graph, reduction_indices=1) |
| 153 | + enable_node = tf.cast(tf.cast(sum_graph, dtype=bool), dtype=tf.float32) |
| 154 | + |
| 155 | + with tf.variable_scope("gnn"): |
| 156 | + for step in range(n_steps): |
| 157 | + if step > 0: tf.get_variable_scope().reuse_variables() |
| 158 | + # state = state * mask_x |
| 159 | + x = message_pass(label, state, hidden_size, batch_size, num_category, graph) |
| 160 | + # x = tf.reshape(x, [batch_size*num_category, hidden_size]) |
| 161 | + # state = tf.reshape(state, [batch_size*num_category, hidden_size]) |
| 162 | + (x_new, state_new) = gru_cell(x[0], state[0]) |
| 163 | + state_new = tf.transpose(state_new, (1, 0)) |
| 164 | + state_new = tf.multiply(state_new, enable_node[0]) |
| 165 | + state_new = tf.transpose(state_new, (1, 0)) |
| 166 | + for i in range(1, batch_size): |
| 167 | + (x_, state_) = gru_cell(x[i], state[i]) # #input of GRUCell must be 2 rank, not 3 rank |
| 168 | + state_ = tf.transpose(state_, (1, 0)) |
| 169 | + state_ = tf.multiply(state_, enable_node[i]) |
| 170 | + state_ = tf.transpose(state_, (1, 0)) |
| 171 | + state_new = tf.concat([state_new, state_], 0) |
| 172 | + # x = tf.reshape(x, [batch_size, num_category, hidden_size]) |
| 173 | + state = tf.reshape(state_new, [batch_size, num_category, hidden_size]) # #restore: 2 rank to 3 rank |
| 174 | + # state = state * mask_x |
| 175 | + # state = tf.nn.dropout(state, keep_prob) |
| 176 | + |
| 177 | + # w_out_image = weights('out_image', hidden_size, 0) |
| 178 | + # b_out_image = biases('out_image', hidden_size, 0) |
| 179 | + # output = tf.reshape(tf.matmul(state[:, 0, :], w_out_image) + b_out_image, [batch_size, 2048]) #initialize output : [batchsize, 2048] |
| 180 | + # for i in range(1, num_category): |
| 181 | + # w_out_image = weights('out_image', hidden_size, i) |
| 182 | + # b_out_image = biases('out_image', hidden_size, i) |
| 183 | + # output = tf.concat([output, tf.reshape( |
| 184 | + # tf.matmul(state[:, i, :], w_out_image) + b_out_image, |
| 185 | + # [batch_size, 2048])], 1) |
| 186 | + # output = tf.reshape(output, [batch_size, num_category, 2048]) |
| 187 | + # output = tf.nn.tanh(output) |
| 188 | + |
| 189 | + return state, ini |
| 190 | + |
0 commit comments