forked from valhongli/reID-PCB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test.py
189 lines (171 loc) · 6.64 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os
import torch
import numpy as np
import torch.nn as nn
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torch.nn import DataParallel
from scipy.spatial.distance import cdist
from sklearn.metrics import average_precision_score
from PIL import Image
from utils import log
from net import FeatureExtractor
from data import Market1501
from config import transform
from utils import get_time
def extract_feat(args, extractor, dataloader, feat_dim):
feat = []
labels = []
cameras = []
filenames = []
for _, data in enumerate(dataloader):
extractor.eval()
inputs, l, c, f = data
inputs = Variable(inputs, volatile=True)
if args.use_gpu:
inputs = inputs.cuda()
outputs = extractor.forward(inputs)
feat.append(outputs)
labels += list(l)
cameras += list(c)
filenames += list(f)
feat = torch.cat(feat)
feat.view(-1, feat_dim)
return (feat.cpu().data.numpy(), np.array(labels),
np.array(cameras), np.array(filenames))
def get_dist(query, test):
return cdist(query, test)
def calc_dist(query_feat, test_feat):
class Dist(nn.Module):
def __init__(self):
super(Dist, self).__init__()
def forward(self, x, y):
n = x.size(0)
m = y.size(0)
d = x.size(1)
x = x.unsqueeze(1).expand(n, m, d)
y = y.unsqueeze(0).expand(n, m, d)
dist = torch.pow(x - y, 2).sum(2)
return dist
pdist = Dist().cuda()
split_num = 40
lx = int(len(query_feat) / split_num) + 1
ly = int(len(test_feat) / split_num) + 1
dist = []
for i in range(split_num):
tmp_dist = []
if i * lx >= len(query_feat):
continue
x = torch.from_numpy(query_feat[i*lx:(i+1)*lx])
x = Variable(x, volatile=True).cuda()
for j in range(split_num):
if j * ly >= len(test_feat):
continue
y = torch.from_numpy(test_feat[j*ly:(j+1)*ly])
y = Variable(y, volatile=True).cuda()
d = pdist(x, y).cpu().data.numpy()
tmp_dist.append(d)
tmp_dist = np.concatenate(tmp_dist, axis=1)
dist.append(tmp_dist)
dist = np.concatenate(dist, axis=0)
return dist
def get_rank_x(x, dist, query_labels, query_cameras, test_labels, test_cameras):
rank_x = 0
total = 0
for i, row in enumerate(dist):
index = np.argsort(row)
good = False
vaild_num = 0
for j in index:
if (test_labels[j] == query_labels[i]
and test_cameras[j] == query_cameras[i]):
continue
vaild_num += 1
if vaild_num > x:
break
if (test_labels[j] == query_labels[i]
and test_cameras[j] != query_cameras[i]):
good = True
break
if good:
rank_x += 1
total += 1
rank_x /= total
return rank_x
def get_map(dist, query_labels, query_cameras, test_labels, test_cameras):
indices = np.argsort(dist, axis=1)
matches = (test_labels[indices] == query_labels[:, np.newaxis])
m, _ = dist.shape
aps = np.zeros(m)
is_valid_query = np.zeros(m)
for i in range(m):
valid = ((test_labels[indices[i]] != query_labels[i]) |
(test_cameras[indices[i]] != query_cameras[i]))
y_true = matches[i, valid]
y_score = -dist[i][indices[i]][valid]
if not np.any(y_true): continue
is_valid_query[i] = 1
aps[i] = average_precision_score(y_true, y_score)
return float(np.sum(aps)) / np.sum(is_valid_query)
def visualize(dist, query_files, test_files):
canvas = Image.new('RGB', (600, 1000), (255, 255, 255))
idx = np.random.randint(0, len(dist), (10))
rows = dist[idx]
q_files = query_files[idx]
for i, row in enumerate(rows):
img = Image.open(q_files[i]).resize((50, 100))
canvas.paste(img, (0, i*100))
candidates = test_files[np.argsort(row)[:10]]
for j, candidate in enumerate(candidates):
img = Image.open(candidate).resize((50, 100))
canvas.paste(img, (100+j*50, i*100))
canvas.save('visualize.png')
try:
import matplotlib.pyplot as plt
plt.imshow(np.asarray(canvas))
except:
log('[NOTE] Failed to show image by matplotlib.')
def test(args):
feat_extractor = FeatureExtractor(state_path=args.model_file,
last_conv=args.last_conv,
model_type=args.test_type)
if args.use_gpu:
feat_extractor = DataParallel(feat_extractor)
feat_extractor.cuda()
feat_dim = 256 if args.last_conv else 2048
log('[START] Loading Data')
queryset = Market1501(args.dataset, data_type='query',
transform=transform, once=args.load_once)
testset = Market1501(args.dataset, data_type='test',
transform=transform, once=args.load_once)
queryloader = DataLoader(queryset, batch_size=args.batch_size,
num_workers=args.num_workers)
testloader = DataLoader(testset, batch_size=args.batch_size,
num_workers=args.num_workers)
log('[ END ] Loading Query Data')
log('[START] Extracting Query Features')
query_feat, query_labels, query_cameras, query_files = extract_feat(
args, feat_extractor, queryloader, feat_dim)
log('[ END ] Extracting Query Features')
log('[START] Extracting Test Features')
test_feat, test_labels, test_cameras, test_files = extract_feat(
args, feat_extractor, testloader, feat_dim)
log('[ END ] Extracting Test Features')
log('[START] Calculating Distances')
dist = None
if args.use_gpu:
dist = calc_dist(query_feat, test_feat)
else:
dist = get_dist(query_feat, test_feat)
log('[ END ] Calculating Distances')
log('[START] Evaluating mAP, Rank-x')
mAP = get_map(dist, query_labels, query_cameras,
test_labels, test_cameras)
rank1 = get_rank_x(1, dist, query_labels, query_cameras,
test_labels, test_cameras)
rank10 = get_rank_x(10, dist, query_labels, query_cameras,
test_labels, test_cameras)
log('[ END ] Evaluating mAP, Rank-x')
log('mAP: %f\trank-1: %f\trank-10: %f' % (mAP, rank1, rank10))
visualize(dist, query_files, test_files)
return mAP, rank1, rank10