-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_reccurent_network_model_text.py
209 lines (174 loc) · 7.02 KB
/
run_reccurent_network_model_text.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import argparse
import pickle
from src.cleaning import clean_pipe_line
import numpy as np
import pandas as pd
from keras.utils import pad_sequences
from sklearn.model_selection import KFold
import optuna
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
from src.models import TextModel
from src.models_utils import pad_text, train_epoch, validate_epoch
from src.early_stopping import EarlyStopping
embedding_matrix = np.load("./fast_text/embedding.npy")
with open("./fast_text/tokenizer.pkl", "rb") as handle:
tokenizer = pickle.load(handle)
MAX_SEQUENCE_LENGTH = 280
TEXT_COLUMN = "text"
EMBEDDINGS_DIMENSION = 300
def main() -> None:
parser = argparse.ArgumentParser()
parser.add_argument(
"--dataset",
type=str,
default="my_personality",
help="Dataset to use for training",
)
args = parser.parse_args()
dataset = args.dataset
if dataset == "my_personality":
PERSONALITY_COLUMNS = [
"sEXT",
"sNEU",
"sAGR",
"sCON",
"sOPN",
]
train = pd.read_csv(
"data/my_personality/my_personality.csv",
encoding="ISO-8859-1",
)
train.rename(columns={"STATUS": "text"}, inplace=True)
elif dataset == "idiap":
PERSONALITY_COLUMNS = [
"hones16",
"emoti16",
"extra16",
"agree16",
"consc16",
"openn16",
"icar_hat0",
"icar_hat1",
"icar_hat2",
]
train = pd.read_excel("data/idiap/dataset.xlsx")
train.rename(columns={"final_text": "text"}, inplace=True)
else:
PERSONALITY_COLUMNS = [
"hones16",
"emoti16",
"extra16",
"agree16",
"consc16",
"openn16",
"icar_hat0",
"icar_hat1",
"icar_hat2",
]
train = pd.read_csv("data/idiap_chunked")
train.rename(columns={"chunk_text": "text"}, inplace=True)
train = train.dropna()
train = train.reset_index(drop=True)
train = train.loc[:, PERSONALITY_COLUMNS + ["text"]]
for col in PERSONALITY_COLUMNS:
train[col] = train[col] - train[col].min()
train[col] = train[col] / train[col].max()
train_df = clean_pipe_line(train)
def objective(trial):
num_units = trial.suggest_int("num_units", 32, 128, step=16)
num_layers = trial.suggest_int("num_layers", 1, 3)
dropout = trial.suggest_float("dropout", 0.1, 0.5, step=0.1)
learning_rate = trial.suggest_float("learning_rate", 1e-4, 1e-2, log=True)
text_data = pad_text(train_df[TEXT_COLUMN], tokenizer, MAX_SEQUENCE_LENGTH)
labels = train_df[PERSONALITY_COLUMNS].values
kfold = KFold(n_splits=5, shuffle=True, random_state=42)
fold_val_losses = []
fold_val_maes = []
fold_val_rmses = []
fold_per_output_maes = []
fold_per_output_rmses = []
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
for train_idx, val_idx in kfold.split(text_data):
train_text, val_text = text_data[train_idx], text_data[val_idx]
train_labels, val_labels = labels[train_idx], labels[val_idx]
train_dataset = TensorDataset(
torch.tensor(train_text, dtype=torch.long),
torch.tensor(train_labels, dtype=torch.float32),
)
val_dataset = TensorDataset(
torch.tensor(val_text, dtype=torch.long),
torch.tensor(val_labels, dtype=torch.float32),
)
train_loader = DataLoader(train_dataset, batch_size=256, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=256)
model = TextModel(
vocab_size=len(tokenizer.word_index) + 1,
embedding_dim=EMBEDDINGS_DIMENSION,
embedding_matrix=embedding_matrix,
num_units=num_units,
num_layers=num_layers,
dropout=dropout,
num_classes=len(PERSONALITY_COLUMNS),
)
model = model.to(device)
criterion = nn.L1Loss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
early_stopping = EarlyStopping(patience=3)
for epoch in range(50):
train_epoch(model, criterion, optimizer, train_loader, device)
val_loss, overall_mae, overall_rmse, per_output_mae, per_output_rmse = (
validate_epoch(model, criterion, val_loader, device)
)
early_stopping(val_loss)
if early_stopping.early_stop:
break
fold_val_losses.append(val_loss)
fold_val_maes.append(overall_mae)
fold_val_rmses.append(overall_rmse)
fold_per_output_maes.append(per_output_mae)
fold_per_output_rmses.append(per_output_rmse)
mean_val_loss = np.mean(fold_val_losses)
std_val_loss = np.std(fold_val_losses)
mean_val_mae = np.mean(fold_val_maes)
std_val_mae = np.std(fold_val_maes)
mean_val_rmse = np.mean(fold_val_rmses)
std_val_rmse = np.std(fold_val_rmses)
mean_per_output_mae = np.mean(fold_per_output_maes, axis=0)
mean_per_output_rmse = np.mean(fold_per_output_rmses, axis=0)
trial.set_user_attr("mean_val_loss", mean_val_loss)
trial.set_user_attr("std_val_loss", std_val_loss)
trial.set_user_attr("mean_val_mae", mean_val_mae)
trial.set_user_attr("std_val_mae", std_val_mae)
trial.set_user_attr("mean_val_rmse", mean_val_rmse)
trial.set_user_attr("std_val_rmse", std_val_rmse)
trial.set_user_attr("mean_per_output_mae", mean_per_output_mae.tolist())
trial.set_user_attr("mean_per_output_rmse", mean_per_output_rmse.tolist())
return mean_val_loss
study = optuna.create_study(direction="minimize")
study.optimize(objective, n_trials=2, n_jobs=1)
print("\n=== Best Hyperparameters ===")
print(study.best_params)
print("\n=== Best Validation Loss ===")
print(study.best_value)
best_trial = study.best_trial
print("\n=== K-Fold Metrics for Best Trial ===")
print(
f"Mean Val Loss: {best_trial.user_attrs['mean_val_loss']:.4f} ± {best_trial.user_attrs['std_val_loss']:.4f}"
)
print(
f"Mean Val MAE: {best_trial.user_attrs['mean_val_mae']:.4f} ± {best_trial.user_attrs['std_val_mae']:.4f}"
)
print(
f"Mean Val RMSE: {best_trial.user_attrs['mean_val_rmse']:.4f} ± {best_trial.user_attrs['std_val_rmse']:.4f}"
)
print("\n=== Per-Output Metrics for Best Trial ===")
for i, column in enumerate(PERSONALITY_COLUMNS):
print(
f"{column}: MAE = {best_trial.user_attrs['mean_per_output_mae'][i]:.4f}, RMSE = {best_trial.user_attrs['mean_per_output_rmse'][i]:.4f}"
)
if __name__ == "__main__":
main()