-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtext_output.py
195 lines (174 loc) · 10.2 KB
/
text_output.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
'''
This program is designed to preform the analysis and output the data in a way that is more easily read by Origin/excel
Carter Francis
'''
from load import load_traj, reduce
from compute_vornoi import *
from statistical_analysis import Timeseries, Sample
import matplotlib.pyplot as plt
def output_analysis(traj_file, themo_file, data_points, outfile):
pos, num_atom, boundbox, atom_type, timestep, temp = reduce(traj_file, themo_file, data_points)
with open(outfile, "w") as f:
for bb, at, p, t, ts, na in zip(boundbox, atom_type, pos,temp, timestep, num_atom):
cont = make_container(bb, at, p) # make sure to overwrite the container so that there isn't memory leakage
density = (float(na)/.6022)*(91.224*.36+63.546*.64)/(float((bb[0][1]-bb[0][0])**3))
_, _, indices, top_ten_freq = compute_freq(cont)
_, average_sarea, std_sarea = determine_surface_area(cont)
_, average_vol, std_vol = determine_volume(cont)
average_areas, area_stds, average_volumes, volume_stds = characterize_index(indices, cont)
f.write("Timestep:" + ts+"\n")
f.write("Temperature: %g\n" %t)
f.write("Density: %g\n" % density)
f.write("AverageArea: %g\n" % average_sarea)
f.write("AreaStd: %g\n" % std_sarea)
f.write("AverageVolume: %g\n" %average_vol)
f.write("VolumeStd: %g\n" %std_vol)
f.write("VornoiIndicies:")
for index in indices:
for i in index:
f.write("%g " % i)
f.write(",")
f.write("\n")
write_list("VornoiFreq:", f, top_ten_freq)
write_list("AverageAreas:",f, average_areas)
write_list("AreaStds:", f, area_stds)
write_list("AverageVolumes:", f, average_volumes)
write_list("VolumeStds:", f, volume_stds)
return
def write_list(name, file, list):
file.write(name)
[file.write("%g "%l) for l in list]
file.write("\n")
return
def read_analysis(input_file):
'''
Returns a timeseries object which can be manipulated for further analysis.
'''
ts, temp, aa, astd, av, vstd, vi, vf,aas, astds,vas,vstds,den = [], [], [], [], [], [], [], [], [], [], [], [], []
with open(input_file) as f:
for line in f:
if "Timestep:" in line:
ts.append(int(line.strip("\n").split(":")[1]))
elif "Temperature:" in line:
temp.append(float(line.strip("\n").split(":")[1]))
elif "AverageArea:" in line:
aa.append(float(line.strip("\n").split(":")[1]))
elif "AreaStd:" in line:
astd.append(float(line.strip("\n").split(":")[1]))
elif "AverageVolume:" in line:
av.append(float(line.strip("\n").split(":")[1]))
elif "VolumeStd:" in line:
vstd.append(float(line.strip("\n").split(":")[1]))
elif "VornoiIndicies:" in line:
vi.append([line.split()for line in line.strip("\n").split(":")[1].split(",")][0:10])
elif "VornoiFreq:" in line:
vf.append(list(np.array(line.strip("\n").split(":")[1].split())))
elif"AverageAreas:"in line:
aas.append(list(np.array(line.strip("\n").split(":")[1].split())))
elif "AreaStds:" in line:
astds.append(list(np.array(line.strip("\n").split(":")[1].split())))
elif "AverageVolumes:"in line:
vas.append(list(np.array(line.strip("\n").split(":")[1].split())))
elif "VolumeStds:"in line:
vstds.append(list(np.array(line.strip("\n").split(":")[1].split(),dtype=float)))
elif "Density:" in line:
den.append(float(line.strip("\n").split(":")[1]))
vi = [[[int(x) for x in y] for y in v]for v in vi]
timeSeries = Timeseries(ts, temp, aa, astd, av, vstd, vi, vf,aas, astds,vas,vstds,den)
return timeSeries
def print_index_details(index,out_file,sample):
avg_area, area_std, avg_vol, vol_std, freq, temp = sample.compare_index(index=index)
with open(str(index)+out_file+"Average_Area.csv", "w") as f:
f.write("2E12Cooling,1E12Cooling,5E11Cooling,2E11Cooling,2E11Cooling_1000,2E11Cooling_HQ\n")
np.savetxt(f, list(zip(*avg_area)), delimiter = ',')
with open(str(index)+out_file + "Area_std.csv", "w") as f:
f.write("2E12Cooling,1E12Cooling,5E11Cooling,2E11Cooling,2E11Cooling_1000,2E11Cooling_HQ\n")
np.savetxt(f, list(zip(*area_std)), delimiter=',')
with open(str(index)+out_file + "Average_Vol.csv", "w") as f:
f.write("2E12Cooling,1E12Cooling,5E11Cooling,2E11Cooling,2E11Cooling_1000,2E11Cooling_HQ\n")
np.savetxt(f, list(zip(*avg_vol)), delimiter=',')
with open(str(index)+out_file + "Vol_std.csv", "w") as f:
f.write("2E12Cooling,1E12Cooling,5E11Cooling,2E11Cooling,2E11Cooling_1000,2E11Cooling_HQ\n")
np.savetxt(f, list(zip(*vol_std)), delimiter=',')
def print_density(outfile,sample):
ts = sample.timeseries
with open(outfile, "w") as f:
density = [t.density for t in ts]
f.write("2E12Cooling,1E12Cooling,5E11Cooling,2E11Cooling,2E11Cooling_1000,2E11Cooling_HQ\n")
np.savetxt(f, list(zip(*density)), delimiter=',')
def print_average_values(outfile,sample):
ts = sample.timeseries
with open(outfile+"Average_Area.csv", "w") as f:
aa = [t.surface_area for t in ts]
f.write("2E12Cooling,1E12Cooling,5E11Cooling,2E11Cooling,2E11Cooling_1000,2E11Cooling_HQ\n")
np.savetxt(f, list(zip(*aa)), delimiter=',')
with open(outfile + "Area_STD.csv", "w") as f:
ast = [t.area_std for t in ts]
f.write("2E12Cooling,1E12Cooling,5E11Cooling,2E11Cooling,2E11Cooling_1000,2E11Cooling_HQ\n")
np.savetxt(f, list(zip(*ast)), delimiter=',')
with open(outfile + "Average_vol.csv", "w") as f:
av = [t.average_volume for t in ts]
f.write("2E12Cooling,1E12Cooling,5E11Cooling,2E11Cooling,2E11Cooling_1000,2E11Cooling_HQ\n")
np.savetxt(f, list(zip(*av)), delimiter=',')
with open(outfile + "vol_STD.csv", "w") as f:
vst = [t.volume_std for t in ts]
f.write("2E12Cooling,1E12Cooling,5E11Cooling,2E11Cooling,2E11Cooling_1000,2E11Cooling_HQ\n")
np.savetxt(f, list(zip(*vst)), delimiter=',')
with open(outfile + "temp.csv", "w") as f:
vst = [t.temp for t in ts]
f.write("2E12Cooling,1E12Cooling,5E11Cooling,2E11Cooling,2E11Cooling_1000,2E11Cooling_HQ\n")
np.savetxt(f, list(zip(*vst)), delimiter=',')
def print_freq(out_file,sample):
ts =sample.timeseries
with open(out_file,"w") as f:
for t in ts:
print(list(zip(*t.all_top_ten_freq))[99])
print(t.all_top_ten_freq)
'''
# These are just the generalized input files from my computer...
OneE12Cooling_lammps = '/home/carter/Documents/Classes/760/Organized/1E12Cooling_5000Atoms.lammps'
OneE12Cooling_traj = '/home/carter/Documents/Classes/760/Organized/1E12Cooling_5000Atoms.lammpstrj'
TwoE12Cooling_lammps ='/home/carter/Documents/Classes/760/Organized/2E12Cooling_5000Atoms.lammps'
TwoE12Cooling_traj = '/home/carter/Documents/Classes/760/Organized/2E12Cooling_5000Atoms.lammpstrj'
FiveE11Cooling_lammps ='/home/carter/Documents/Classes/760/Organized/5E11Cooling_5000Atoms.lammps'
FiveE11Cooling_traj = '/home/carter/Documents/Classes/760/Organized/5E11Cooling_5000Atoms.lammpstrj'
FiveE11Cooling_lammps_2 ='/home/carter/Documents/Classes/760/Organized/5E11Cooling_5000Atoms_1.lammps'
FiveE11Cooling_traj_2 ='/home/carter/Documents/Classes/760/Organized/5E11Cooling_5000Atoms_1.lammpstrj'
TwoE11Cooling_lammps ='/home/carter/Documents/Classes/760/Organized/2E11Cooling_5000Atoms.lammps'
TwoE11Cooling_traj ='/home/carter/Documents/Classes/760/Organized/2E11Cooling_5000Atoms.lammpstrj'
TwoE11Cooling_lammps_10000 ='/home/carter/Documents/Classes/760/Organized/2E11Cooling_10000Atoms.lammps'
TwoE11Cooling_traj_10000 ='/home/carter/Documents/Classes/760/Organized/2E11Cooling_10000Atoms.lammpstrj'
TwoE11Cooling_traj_Higher_Q ='/home/carter/Documents/Classes/760/Organized/2E11Cooling_10000AtomsHigherQ.lammpstrj'
TwoE11Cooling_lammps_Higher_Q ='/home/carter/Documents/Classes/760/Organized/2E11Cooling_10000AtomsHigherQ.lammps'
OneE11Cooling_lammps = '/home/carter/Documents/Classes/760/Organized/1E11Cooling_5000Atoms.lammps'
OneE11Cooling_traj = '/home/carter/Documents/Classes/760/Organized/1E11Cooling_5000Atoms.lammpstrj'
# for outputting analysis
output_analysis(TwoE11Cooling_traj, TwoE11Cooling_lammps, 100, 'OutputFiles/TwoE11Cooling.out')
output_analysis(TwoE11Cooling_traj, TwoE11Cooling_lammps, 100, 'OutputFiles/OneE11Cooling.out')
output_analysis(FiveE11Cooling_traj, FiveE11Cooling_lammps, 100, 'OutputFiles/FiveE11Cooling.out')
output_analysis(TwoE12Cooling_traj, TwoE12Cooling_lammps, 100, 'OutputFiles/TwoE12Cooling.out')
output_analysis(OneE12Cooling_traj, OneE12Cooling_lammps, 100, 'OutputFiles/OneE12Cooling.out')
output_analysis(TwoE11Cooling_traj_10000, TwoE11Cooling_lammps_10000, 100, 'OutputFiles/TwoE11Cooling_10000.out')
output_analysis(TwoE11Cooling_traj_Higher_Q, TwoE11Cooling_lammps_Higher_Q, 100, 'OutputFiles/TwoE11Cooling_HQ.out')
'''
# list of timeseries outputs
timeseries_list = ["OutputFiles/TwoE12Cooling.out", "OutputFiles/OneE12Cooling.out", "OutputFiles/FiveE11Cooling.out",
"OutputFiles/TwoE11Cooling.out","OutputFiles/TwoE11Cooling_10000.out",
"OutputFiles/TwoE11Cooling_HQ.out"]
ts_list = []
for t in timeseries_list:
ts_list.append(read_analysis(t))
s = Sample(ts_list, timeseries_list) # creating a sample class which is basically multiple time series
avg_area, area_std, avg_vol, vol_std, freq, temp = s.compare_index(index=[0, 0, 0, 0, 2, 8, 1, 0, 0, 0, 0, 0, 0, 0, 0])
# out putting a bunch of files
print_index_details([0, 0, 0, 0, 1, 10, 2, 0, 0, 0, 0, 0, 0, 0, 0],'out',s)
print_index_details([0, 0, 0, 0, 2, 8, 1, 0, 0, 0, 0, 0, 0, 0, 0],'out',s)
print_index_details([0, 0, 0, 0, 2, 8, 2, 0, 0, 0, 0, 0, 0, 0, 0],'out',s)
print_index_details([0, 0, 0, 0, 3, 6, 3, 0, 0, 0, 0, 0, 0, 0, 0],'out',s)
print_density("density.csv",s)
print_average_values("SystemVarible",s)
print_freq("freq.csv",s)
[plt.scatter(t, a) for a, t in zip(avg_area,temp)]
plt.xlim(2000, 0)
plt.show()