diff --git a/code/simclr-pytorch-reefs/evaluation/embeddings/cluster.ipynb b/code/simclr-pytorch-reefs/evaluation/embeddings/cluster.ipynb
index e6aeb61..9e12120 100644
--- a/code/simclr-pytorch-reefs/evaluation/embeddings/cluster.ipynb
+++ b/code/simclr-pytorch-reefs/evaluation/embeddings/cluster.ipynb
@@ -123,16 +123,6 @@
" print(f\"Locations: {list(locations.keys())}\\n\")"
]
},
- {
- "cell_type": "code",
- "execution_count": 16,
- "metadata": {},
- "outputs": [],
- "source": [
- "#specific_df = datasets['ReefCLR']['australia']\n",
- "#print(specific_df.head())"
- ]
- },
{
"cell_type": "code",
"execution_count": 17,
@@ -192,219 +182,6 @@
"results"
]
},
- {
- "cell_type": "code",
- "execution_count": 32,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "
\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " Category | \n",
- " Location | \n",
- " Num_Clusters | \n",
- " Chi2_Stat | \n",
- " P_Value | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " ImageNet | \n",
- " australia | \n",
- " 64 | \n",
- " 516.445082 | \n",
- " 2.032088e-72 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " ImageNet | \n",
- " bermuda | \n",
- " 10 | \n",
- " 789.055342 | \n",
- " 3.808284e-131 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " ImageNet | \n",
- " florida | \n",
- " 53 | \n",
- " 2823.698835 | \n",
- " 0.000000e+00 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " ImageNet | \n",
- " french_polynesia | \n",
- " 24 | \n",
- " 5760.581385 | \n",
- " 0.000000e+00 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " ImageNet | \n",
- " indonesia | \n",
- " 35 | \n",
- " 1453.347837 | \n",
- " 7.585708e-284 | \n",
- "
\n",
- " \n",
- " 5 | \n",
- " ImageNet | \n",
- " kenya | \n",
- " 10 | \n",
- " 18.862426 | \n",
- " 2.638840e-02 | \n",
- "
\n",
- " \n",
- " 6 | \n",
- " ReefCLR | \n",
- " australia | \n",
- " 61 | \n",
- " 254.241849 | \n",
- " 9.528436e-26 | \n",
- "
\n",
- " \n",
- " 7 | \n",
- " ReefCLR | \n",
- " bermuda | \n",
- " 8 | \n",
- " 1307.879670 | \n",
- " 8.622588e-247 | \n",
- "
\n",
- " \n",
- " 8 | \n",
- " ReefCLR | \n",
- " florida | \n",
- " 48 | \n",
- " 2647.520080 | \n",
- " 0.000000e+00 | \n",
- "
\n",
- " \n",
- " 9 | \n",
- " ReefCLR | \n",
- " french_polynesia | \n",
- " 31 | \n",
- " 5820.833945 | \n",
- " 0.000000e+00 | \n",
- "
\n",
- " \n",
- " 10 | \n",
- " ReefCLR | \n",
- " indonesia | \n",
- " 38 | \n",
- " 1459.273108 | \n",
- " 1.153653e-282 | \n",
- "
\n",
- " \n",
- " 11 | \n",
- " ReefCLR | \n",
- " kenya | \n",
- " 27 | \n",
- " 290.869245 | \n",
- " 1.403893e-46 | \n",
- "
\n",
- " \n",
- " 12 | \n",
- " VGGish | \n",
- " australia | \n",
- " 69 | \n",
- " 1574.072635 | \n",
- " 6.953275e-284 | \n",
- "
\n",
- " \n",
- " 13 | \n",
- " VGGish | \n",
- " bermuda | \n",
- " 35 | \n",
- " 2439.335422 | \n",
- " 0.000000e+00 | \n",
- "
\n",
- " \n",
- " 14 | \n",
- " VGGish | \n",
- " florida | \n",
- " 52 | \n",
- " 3568.129860 | \n",
- " 0.000000e+00 | \n",
- "
\n",
- " \n",
- " 15 | \n",
- " VGGish | \n",
- " french_polynesia | \n",
- " 34 | \n",
- " 7972.709599 | \n",
- " 0.000000e+00 | \n",
- "
\n",
- " \n",
- " 16 | \n",
- " VGGish | \n",
- " indonesia | \n",
- " 38 | \n",
- " 1970.642248 | \n",
- " 0.000000e+00 | \n",
- "
\n",
- " \n",
- " 17 | \n",
- " VGGish | \n",
- " kenya | \n",
- " 26 | \n",
- " 168.635032 | \n",
- " 2.857384e-23 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " Category Location Num_Clusters Chi2_Stat P_Value\n",
- "0 ImageNet australia 64 516.445082 2.032088e-72\n",
- "1 ImageNet bermuda 10 789.055342 3.808284e-131\n",
- "2 ImageNet florida 53 2823.698835 0.000000e+00\n",
- "3 ImageNet french_polynesia 24 5760.581385 0.000000e+00\n",
- "4 ImageNet indonesia 35 1453.347837 7.585708e-284\n",
- "5 ImageNet kenya 10 18.862426 2.638840e-02\n",
- "6 ReefCLR australia 61 254.241849 9.528436e-26\n",
- "7 ReefCLR bermuda 8 1307.879670 8.622588e-247\n",
- "8 ReefCLR florida 48 2647.520080 0.000000e+00\n",
- "9 ReefCLR french_polynesia 31 5820.833945 0.000000e+00\n",
- "10 ReefCLR indonesia 38 1459.273108 1.153653e-282\n",
- "11 ReefCLR kenya 27 290.869245 1.403893e-46\n",
- "12 VGGish australia 69 1574.072635 6.953275e-284\n",
- "13 VGGish bermuda 35 2439.335422 0.000000e+00\n",
- "14 VGGish florida 52 3568.129860 0.000000e+00\n",
- "15 VGGish french_polynesia 34 7972.709599 0.000000e+00\n",
- "16 VGGish indonesia 38 1970.642248 0.000000e+00\n",
- "17 VGGish kenya 26 168.635032 2.857384e-23"
- ]
- },
- "execution_count": 32,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "results"
- ]
- },
{
"cell_type": "code",
"execution_count": 37,
diff --git a/code/simclr-pytorch-reefs/evaluation/embeddings/simple_ml.ipynb b/code/simclr-pytorch-reefs/evaluation/embeddings/simple_ml.ipynb
index dd999ce..f858e28 100644
--- a/code/simclr-pytorch-reefs/evaluation/embeddings/simple_ml.ipynb
+++ b/code/simclr-pytorch-reefs/evaluation/embeddings/simple_ml.ipynb
@@ -351,344 +351,6 @@
"Adds embedding and country column then sorts by these"
]
},
- {
- "cell_type": "code",
- "execution_count": 39,
- "metadata": {},
- "outputs": [],
- "source": [
- "results_df = pd.read_csv('/home/ben/reef-audio-representation-learning/code/simclr-pytorch-reefs/evaluation/embeddings/Results/RF_results-20230830_231531.csv')"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 40,
- "metadata": {},
- "outputs": [
- {
- "data": {
- "text/html": [
- "\n",
- "\n",
- "
\n",
- " \n",
- " \n",
- " | \n",
- " Filename | \n",
- " Test Accuracy | \n",
- " Test Precision | \n",
- " Test Recall | \n",
- " Test F1 | \n",
- " Train Accuracy | \n",
- " Train Precision | \n",
- " Train Recall | \n",
- " Train F1 | \n",
- "
\n",
- " \n",
- " \n",
- " \n",
- " 0 | \n",
- " ImageNet-australia-embeddings.csv | \n",
- " 0.743333 | \n",
- " 0.743864 | \n",
- " 0.743333 | \n",
- " 0.743194 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- "
\n",
- " \n",
- " 1 | \n",
- " ImageNet-bermuda-embeddings.csv | \n",
- " 0.525568 | \n",
- " 0.475927 | \n",
- " 0.525568 | \n",
- " 0.485934 | \n",
- " 0.965885 | \n",
- " 0.965219 | \n",
- " 0.965885 | \n",
- " 0.965173 | \n",
- "
\n",
- " \n",
- " 2 | \n",
- " ImageNet-florida-embeddings.csv | \n",
- " 0.915842 | \n",
- " 0.915013 | \n",
- " 0.915842 | \n",
- " 0.915043 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- "
\n",
- " \n",
- " 3 | \n",
- " ImageNet-french_polynesia-embeddings.csv | \n",
- " 0.968820 | \n",
- " 0.968822 | \n",
- " 0.968820 | \n",
- " 0.968819 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- "
\n",
- " \n",
- " 4 | \n",
- " ImageNet-indonesia-embeddings.csv | \n",
- " 0.980050 | \n",
- " 0.979675 | \n",
- " 0.980050 | \n",
- " 0.979593 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- "
\n",
- " \n",
- " 5 | \n",
- " ImageNet-kenya-embeddings.csv | \n",
- " 0.764706 | \n",
- " 0.823529 | \n",
- " 0.764706 | \n",
- " 0.703081 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- "
\n",
- " \n",
- " 6 | \n",
- " ReefCLR-australia-embeddings.csv | \n",
- " 0.654167 | \n",
- " 0.654693 | \n",
- " 0.654167 | \n",
- " 0.653872 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- "
\n",
- " \n",
- " 7 | \n",
- " ReefCLR-bermuda-embeddings.csv | \n",
- " 0.585227 | \n",
- " 0.550704 | \n",
- " 0.585227 | \n",
- " 0.565166 | \n",
- " 0.958778 | \n",
- " 0.957339 | \n",
- " 0.958778 | \n",
- " 0.957557 | \n",
- "
\n",
- " \n",
- " 8 | \n",
- " ReefCLR-florida-embeddings.csv | \n",
- " 0.918812 | \n",
- " 0.918458 | \n",
- " 0.918812 | \n",
- " 0.917362 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- "
\n",
- " \n",
- " 9 | \n",
- " ReefCLR-french_polynesia-embeddings.csv | \n",
- " 0.956570 | \n",
- " 0.956580 | \n",
- " 0.956570 | \n",
- " 0.956570 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- "
\n",
- " \n",
- " 10 | \n",
- " ReefCLR-indonesia-embeddings.csv | \n",
- " 0.977556 | \n",
- " 0.977341 | \n",
- " 0.977556 | \n",
- " 0.977433 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- "
\n",
- " \n",
- " 11 | \n",
- " ReefCLR-kenya-embeddings.csv | \n",
- " 0.854545 | \n",
- " 0.852821 | \n",
- " 0.854545 | \n",
- " 0.849890 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- "
\n",
- " \n",
- " 12 | \n",
- " VGGish-australia-embeddings.csv | \n",
- " 0.800000 | \n",
- " 0.800334 | \n",
- " 0.800000 | \n",
- " 0.799944 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- "
\n",
- " \n",
- " 13 | \n",
- " VGGish-bermuda-embeddings.csv | \n",
- " 0.661932 | \n",
- " 0.641133 | \n",
- " 0.661932 | \n",
- " 0.634280 | \n",
- " 0.953802 | \n",
- " 0.952931 | \n",
- " 0.953802 | \n",
- " 0.953206 | \n",
- "
\n",
- " \n",
- " 14 | \n",
- " VGGish-florida-embeddings.csv | \n",
- " 0.958416 | \n",
- " 0.958293 | \n",
- " 0.958416 | \n",
- " 0.958337 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- "
\n",
- " \n",
- " 15 | \n",
- " VGGish-french_polynesia-embeddings.csv | \n",
- " 0.967706 | \n",
- " 0.967763 | \n",
- " 0.967706 | \n",
- " 0.967705 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- "
\n",
- " \n",
- " 16 | \n",
- " VGGish-indonesia-embeddings.csv | \n",
- " 0.997506 | \n",
- " 0.997513 | \n",
- " 0.997506 | \n",
- " 0.997493 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- "
\n",
- " \n",
- " 17 | \n",
- " VGGish-kenya-embeddings.csv | \n",
- " 0.806061 | \n",
- " 0.800535 | \n",
- " 0.806061 | \n",
- " 0.799854 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- " 1.000000 | \n",
- "
\n",
- " \n",
- "
\n",
- "
"
- ],
- "text/plain": [
- " Filename Test Accuracy Test Precision \\\n",
- "0 ImageNet-australia-embeddings.csv 0.743333 0.743864 \n",
- "1 ImageNet-bermuda-embeddings.csv 0.525568 0.475927 \n",
- "2 ImageNet-florida-embeddings.csv 0.915842 0.915013 \n",
- "3 ImageNet-french_polynesia-embeddings.csv 0.968820 0.968822 \n",
- "4 ImageNet-indonesia-embeddings.csv 0.980050 0.979675 \n",
- "5 ImageNet-kenya-embeddings.csv 0.764706 0.823529 \n",
- "6 ReefCLR-australia-embeddings.csv 0.654167 0.654693 \n",
- "7 ReefCLR-bermuda-embeddings.csv 0.585227 0.550704 \n",
- "8 ReefCLR-florida-embeddings.csv 0.918812 0.918458 \n",
- "9 ReefCLR-french_polynesia-embeddings.csv 0.956570 0.956580 \n",
- "10 ReefCLR-indonesia-embeddings.csv 0.977556 0.977341 \n",
- "11 ReefCLR-kenya-embeddings.csv 0.854545 0.852821 \n",
- "12 VGGish-australia-embeddings.csv 0.800000 0.800334 \n",
- "13 VGGish-bermuda-embeddings.csv 0.661932 0.641133 \n",
- "14 VGGish-florida-embeddings.csv 0.958416 0.958293 \n",
- "15 VGGish-french_polynesia-embeddings.csv 0.967706 0.967763 \n",
- "16 VGGish-indonesia-embeddings.csv 0.997506 0.997513 \n",
- "17 VGGish-kenya-embeddings.csv 0.806061 0.800535 \n",
- "\n",
- " Test Recall Test F1 Train Accuracy Train Precision Train Recall \\\n",
- "0 0.743333 0.743194 1.000000 1.000000 1.000000 \n",
- "1 0.525568 0.485934 0.965885 0.965219 0.965885 \n",
- "2 0.915842 0.915043 1.000000 1.000000 1.000000 \n",
- "3 0.968820 0.968819 1.000000 1.000000 1.000000 \n",
- "4 0.980050 0.979593 1.000000 1.000000 1.000000 \n",
- "5 0.764706 0.703081 1.000000 1.000000 1.000000 \n",
- "6 0.654167 0.653872 1.000000 1.000000 1.000000 \n",
- "7 0.585227 0.565166 0.958778 0.957339 0.958778 \n",
- "8 0.918812 0.917362 1.000000 1.000000 1.000000 \n",
- "9 0.956570 0.956570 1.000000 1.000000 1.000000 \n",
- "10 0.977556 0.977433 1.000000 1.000000 1.000000 \n",
- "11 0.854545 0.849890 1.000000 1.000000 1.000000 \n",
- "12 0.800000 0.799944 1.000000 1.000000 1.000000 \n",
- "13 0.661932 0.634280 0.953802 0.952931 0.953802 \n",
- "14 0.958416 0.958337 1.000000 1.000000 1.000000 \n",
- "15 0.967706 0.967705 1.000000 1.000000 1.000000 \n",
- "16 0.997506 0.997493 1.000000 1.000000 1.000000 \n",
- "17 0.806061 0.799854 1.000000 1.000000 1.000000 \n",
- "\n",
- " Train F1 \n",
- "0 1.000000 \n",
- "1 0.965173 \n",
- "2 1.000000 \n",
- "3 1.000000 \n",
- "4 1.000000 \n",
- "5 1.000000 \n",
- "6 1.000000 \n",
- "7 0.957557 \n",
- "8 1.000000 \n",
- "9 1.000000 \n",
- "10 1.000000 \n",
- "11 1.000000 \n",
- "12 1.000000 \n",
- "13 0.953206 \n",
- "14 1.000000 \n",
- "15 1.000000 \n",
- "16 1.000000 \n",
- "17 1.000000 "
- ]
- },
- "execution_count": 40,
- "metadata": {},
- "output_type": "execute_result"
- }
- ],
- "source": [
- "results_df"
- ]
- },
{
"cell_type": "code",
"execution_count": 41,