-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_detect.py
65 lines (44 loc) · 1.81 KB
/
test_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import argparse
from torch.utils.data import DataLoader
from torchvision.utils import save_image
from tqdm import tqdm
import utils
from data import get_test_data
from model import *
from accelerate import Accelerator
from evaluation.ber import cal_BER
from config import Config
def main():
model = DSDGenerator()
test_dir = opt.TRAINING.VAL_DIR
test_dataset = get_test_data(test_dir, {'patch_size': opt.TRAINING.VAL_PS})
test_loader = DataLoader(dataset=test_dataset, batch_size=opt.OPTIM.TEST_BATCH_SIZE, shuffle=False, num_workers=8,
drop_last=False, pin_memory=True)
model, test_loader = accelerator.prepare(model, test_loader)
utils.load_checkpoint(model, args.weights)
model.eval()
with torch.no_grad():
stat_ber = 0
stat_acc = 0
for ii, data_test in enumerate(tqdm(test_loader), 0):
inp = data_test[0]
mas = data_test[2]
filenames = data_test[3]
res = model(inp)['attn']
res, mas = accelerator.gather((res, mas))
ber, acc = cal_BER(res * 255, mas * 255)
stat_ber += ber
stat_acc += acc
# save_image(res, os.path.join(args.result_dir, filenames[0]))
stat_ber /= len(test_loader)
stat_acc /= len(test_loader)
print(f'BER {stat_ber:.2f}, acc {stat_acc:.2f}')
if __name__ == '__main__':
opt = Config('config.yml')
accelerator = Accelerator()
parser = argparse.ArgumentParser(description='Shadow Detection')
parser.add_argument('--result_dir', default='./results/', type=str, help='Directory for results')
parser.add_argument('--weights', default='./pretrained_models/detect_' + opt.MODEL.MODE + '.pth', type=str,
help='Path to weights')
args = parser.parse_args()
main()