-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpure_exp_lemmasScript.sml
991 lines (909 loc) · 28.1 KB
/
pure_exp_lemmasScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
open HolKernel Parse boolLib bossLib term_tactic BasicProvers;
open stringTheory optionTheory pairTheory listTheory
finite_mapTheory pred_setTheory dep_rewrite;
open pure_miscTheory pure_configTheory pure_expTheory;
val _ = temp_delsimps ["lift_disj_eq", "lift_imp_disj"]
val _ = new_theory "pure_exp_lemmas";
(******************* subst ********************)
Theorem subst_ignore:
∀m e. DISJOINT (freevars e) (FDOM m) ⇒ subst m e = e
Proof
ho_match_mp_tac subst_ind \\ rw [] \\ fs [subst_def] \\ rw[]
>- fs[FLOOKUP_DEF]
>- (Induct_on `xs` >> fs[])
>- (
first_x_assum irule >>
fs[DISJOINT_DEF, EXTENSION] >>
metis_tac[]
)
>- (
rw[LIST_EQ_REWRITE] >> fs[MEM_EL, PULL_EXISTS, EL_MAP] >>
Cases_on `EL x f` >> fs[] >> rename1 `(fn_name, fn_body)` >>
first_x_assum drule >> fs[] >> disch_then irule >>
fs[DISJOINT_DEF, EXTENSION] >> rw[] >> rename1 `var ∉ _` >>
first_assum (qspec_then `var` assume_tac) >> fs[] >>
first_x_assum (qspec_then `freevars fn_body` assume_tac) >> gvs[] >>
pop_assum mp_tac >> simp[MEM_MAP] >> strip_tac >>
pop_assum (qspec_then `(fn_name,fn_body)` assume_tac) >> gvs[MEM_EL] >>
pop_assum mp_tac >> simp[MEM_EL] >> strip_tac >>
pop_assum (qspec_then `x` assume_tac) >> gvs[]
)
>- (
first_x_assum irule >>
fs[DISJOINT_DEF, EXTENSION] >> rw[] >>
first_x_assum (qspec_then `x` assume_tac) >> fs[]
)
QED
Theorem subst_FEMPTY[simp]:
∀e. subst FEMPTY e = e
Proof
rw[] >> irule subst_ignore >> fs[]
QED
Theorem closed_subst[simp]:
∀m e. closed e ⇒ subst m e = e
Proof
rw [] \\ match_mp_tac subst_ignore \\ fs [closed_def]
QED
Theorem closed_simps[simp]:
(∀n. closed (Var n) ⇔ F) ∧
(∀op es. closed (Prim op es) ⇔ EVERY closed es) ∧
(∀e1 e2. closed (App e1 e2) ⇔ closed e1 ∧ closed e2) ∧
(∀n e. closed (Lam n e) ⇔ freevars e ⊆ {n}) ∧
(∀fns e. closed (Letrec fns e) ⇔
freevars e ⊆ set (MAP FST fns) ∧
EVERY (λe. freevars e ⊆ set (MAP FST fns)) (MAP SND fns))
Proof
rw[closed_def, freevars_def]
>- (
gvs[rich_listTheory.LIST_TO_SET_EQ_SING, EVERY_MEM, MEM_MAP, PULL_EXISTS] >>
eq_tac >> rw[] >> gvs[closed_def]
)
>- (
rw[EXTENSION, SUBSET_DEF] >> eq_tac >> rw[] >> metis_tac[]
)
>- (
gvs[SUBSET_DIFF_EMPTY, BIGUNION_SUBSET, EVERY_MEM, MEM_MAP, PULL_EXISTS] >>
simp[FORALL_PROD]
)
QED
Theorem subst_subst:
∀m1 e m2.
DISJOINT (FDOM m1) (FDOM m2) ∧
(∀v1. v1 ∈ FRANGE m1 ⇒ closed v1) ∧
(∀v2. v2 ∈ FRANGE m2 ⇒ closed v2)
⇒ subst m1 (subst m2 e) = subst m2 (subst m1 e)
Proof
ho_match_mp_tac subst_ind >> rw[subst_def] >> gvs[]
>- (
fs[DISJOINT_DEF, EXTENSION, FLOOKUP_DEF] >>
last_assum (qspec_then `s` assume_tac) >> fs[]
>- (
IF_CASES_TAC >> gvs[subst_def, FLOOKUP_DEF, IN_FRANGE] >>
irule closed_subst >> first_x_assum irule >>
goal_assum drule >> fs[]
)
>- (
IF_CASES_TAC >> gvs[subst_def, FLOOKUP_DEF, IN_FRANGE] >>
irule (GSYM closed_subst) >> last_x_assum irule >>
goal_assum drule >> fs[]
)
)
>- (
fs[MAP_MAP_o, combinTheory.o_DEF] >>
rw[MAP_EQ_f] >> first_x_assum irule >> fs[]
)
>- (first_x_assum irule >> fs[])
>- (first_x_assum irule >> fs[])
>- (
first_x_assum irule >> fs[] >>
gvs[IN_FRANGE, PULL_EXISTS, DOMSUB_FAPPLY_THM, DISJOINT_DEF, EXTENSION] >>
rw[] >> Cases_on `x = s` >> fs[]
)
>- (
rw[LIST_EQ_REWRITE] >> gvs[MEM_EL, PULL_EXISTS, EL_MAP] >>
Cases_on `EL x f` >> rename1 `(fn_name, fn_body)` >> gvs[] >>
gvs[MAP_MAP_o, combinTheory.o_DEF, UNCURRY] >>
CONV_TAC (DEPTH_CONV ETA_CONV) >>
first_x_assum irule >>
gvs[IN_FRANGE, PULL_EXISTS] >>
simp[FDIFF_def, DRESTRICT_DEF, GSYM CONJ_ASSOC] >>
goal_assum drule >> fs[] >>
fs[DISJOINT_DEF, EXTENSION] >> rw[] >> rename1 `foo ∉ _` >>
Cases_on `MEM foo (MAP FST f)` >> fs[]
)
>- (
gvs[MAP_MAP_o, combinTheory.o_DEF, UNCURRY] >>
CONV_TAC (DEPTH_CONV ETA_CONV) >>
first_x_assum irule >>
gvs[IN_FRANGE, PULL_EXISTS] >>
simp[FDIFF_def, DRESTRICT_DEF] >>
fs[DISJOINT_DEF, EXTENSION] >> rw[] >> rename1 `foo ∉ _` >>
Cases_on `MEM foo (MAP FST f)` >> fs[]
)
QED
Theorem subst_subst_FUNION:
∀m1 e m2.
(∀v. v ∈ FRANGE m2 ⇒ closed v)
⇒ subst m1 (subst m2 e) = subst (m2 ⊌ m1) e
Proof
ho_match_mp_tac subst_ind >> rw[subst_def] >> gvs[FRANGE_FLOOKUP, PULL_EXISTS]
>- (
gvs[FLOOKUP_FUNION] >>
reverse CASE_TAC >> gvs[subst_def]
>- (irule closed_subst >> res_tac)
)
>- (
fs[MAP_MAP_o, combinTheory.o_DEF] >>
rw[MAP_EQ_f] >>
first_x_assum irule >> simp[] >> gvs[]
)
>- (
gvs[DOMSUB_FUNION] >>
first_x_assum irule >>
gvs[DOMSUB_FLOOKUP_THM] >> rw[] >>
res_tac
)
>- (
fs[MAP_MAP_o, combinTheory.o_DEF, UNCURRY] >>
CONV_TAC (DEPTH_CONV ETA_CONV) >>
rw[MAP_EQ_f] >> rename1 `MEM fn f` >> PairCases_on `fn` >> gvs[] >>
rw[FDIFF_FUNION] >>
first_x_assum irule >>
gvs[FDIFF_def, FLOOKUP_DRESTRICT] >> rw[] >> res_tac >>
goal_assum drule
)
>- (
rw[MAP_MAP_o, combinTheory.o_DEF, UNCURRY] >>
CONV_TAC (DEPTH_CONV ETA_CONV) >>
rw[FDIFF_FUNION] >>
first_x_assum irule >>
gvs[FDIFF_def, FLOOKUP_DRESTRICT] >> rw[] >> res_tac
)
QED
Theorem subst_subst_DISJOINT_FUNION:
∀m1 e m2.
DISJOINT (FDOM m1) (BIGUNION (IMAGE freevars (FRANGE m2)))
⇒ subst m1 (subst m2 e) = subst (m2 ⊌ m1) e
Proof
recInduct subst_ind >> rw[] >> gvs[IN_FRANGE_FLOOKUP, PULL_EXISTS]
>- (
simp[subst_def, FLOOKUP_FUNION] >>
EVERY_CASE_TAC >> gvs[subst_def] >>
irule subst_ignore >> metis_tac[DISJOINT_SYM]
)
>- (
simp[subst_def, MAP_MAP_o, combinTheory.o_DEF] >>
rw[MAP_EQ_f] >> last_x_assum irule >> simp[] >> metis_tac[]
)
>- (
simp[subst_def] >> metis_tac[]
)
>- (
simp[subst_def, DOMSUB_FUNION] >>
last_x_assum irule >> simp[DOMSUB_FLOOKUP_THM] >> rw[] >>
last_x_assum drule >> gvs[DISJOINT_DEF, EXTENSION] >> metis_tac[]
)
>- (
simp[subst_def, MAP_MAP_o, combinTheory.o_DEF, LAMBDA_PROD] >>
simp[GSYM FST_THM] >> rw[MAP_EQ_f, FDIFF_FUNION]
>- (
PairCases_on `e` >> gvs[] >>
last_x_assum irule >> simp[PULL_EXISTS] >> goal_assum (drule_at Any) >>
rw[FDIFF_def, FLOOKUP_DRESTRICT, FDOM_DRESTRICT] >>
first_x_assum drule >> simp[DISJOINT_DEF, EXTENSION] >> metis_tac[]
)
>- (
first_x_assum irule >> rw[FDIFF_def, FLOOKUP_DRESTRICT, FDOM_DRESTRICT] >>
first_x_assum drule >> simp[DISJOINT_DEF, EXTENSION] >> metis_tac[]
)
)
QED
Theorem subst_id:
∀f e.
(∀k v. FLOOKUP f k = SOME v ⇒ v = Var k)
⇒ subst f e = e
Proof
recInduct subst_ind >> rw[subst_def]
>- (CASE_TAC >> res_tac >> gvs[])
>- rw[MAP_ID_ON]
>- (last_x_assum irule >> simp[DOMSUB_FLOOKUP_THM])
>- (
irule MAP_ID_ON >> simp[FORALL_PROD] >> rw[] >>
last_x_assum irule >> simp[FDIFF_def, FLOOKUP_DRESTRICT] >> goal_assum drule
)
>- (first_x_assum irule >> simp[FDIFF_def, FLOOKUP_DRESTRICT])
QED
(******************* bind ********************)
Theorem bind_FEMPTY[simp]:
∀e. bind FEMPTY e = e
Proof
rw[bind_def, subst_FEMPTY]
QED
Theorem bind_bind:
∀m1 m2 e.
(∀v. v ∈ FRANGE m1 ⇒ closed v) ∧ DISJOINT (FDOM m1) (FDOM m2)
⇒ bind m1 (bind m2 e) = bind (m2 ⊌ m1) e
Proof
rw[] >> fs[bind_def, FRANGE_FLOOKUP, PULL_EXISTS, DISJOINT_DEF, EXTENSION] >>
reverse IF_CASES_TAC >> gvs[]
>- (
IF_CASES_TAC >> gvs[] >>
gvs[FLOOKUP_FUNION] >>
imp_res_tac flookup_thm >> res_tac
) >>
reverse (IF_CASES_TAC) >> gvs[FLOOKUP_FUNION]
>- (
IF_CASES_TAC >> gvs[subst_def] >>
pop_assum (qspec_then `n` assume_tac) >> gvs[]
) >>
reverse (IF_CASES_TAC) >> gvs[]
>- (Cases_on `FLOOKUP m2 n` >> gvs[] >> res_tac) >>
irule subst_subst_FUNION >> gvs[FRANGE_FLOOKUP, PULL_EXISTS]
QED
Theorem bind_Var:
∀m x.
(∀v. v ∈ FRANGE m ⇒ closed v)
⇒ bind m (Var x) =
case FLOOKUP m x of
SOME e => e
| NONE => Var x
Proof
gvs[bind_def, FRANGE_FLOOKUP] >>
reverse (rw[]) >> gvs[] >- res_tac >>
fs[subst_def]
QED
Theorem bind_Lam:
∀m x e1.
(∀v. v ∈ FRANGE m ⇒ closed v)
⇒ bind m (Lam x e1) = Lam x (bind (m \\ x) e1)
Proof
gvs[bind_def, FRANGE_FLOOKUP] >>
reverse (rw[]) >> gvs[PULL_EXISTS, subst_def]
>- (goal_assum drule >> fs[])
>- (goal_assum drule >> fs[])
>- (gvs[DOMSUB_FLOOKUP_THM] >> res_tac)
QED
Theorem bind_App:
∀m e1 e2.
(∀v. v ∈ FRANGE m ⇒ closed v)
⇒ bind m (App e1 e2) = App (bind m e1) (bind m e2)
Proof
gvs[bind_def, FRANGE_FLOOKUP] >>
reverse (rw[]) >> gvs[PULL_EXISTS]
>- (goal_assum drule >> fs[]) >>
simp[subst_def]
QED
Theorem bind_alt_def:
∀sub.
(∀v. v ∈ FRANGE sub ⇒ closed v)
⇒
(∀s.
bind sub (Var s) = case FLOOKUP sub s of SOME v => v | NONE => Var s) ∧
(∀op xs. bind sub (Prim op xs) = Prim op (MAP (λe. bind sub e) xs)) ∧
(∀x y. bind sub (App x y) = App (bind sub x) (bind sub y)) ∧
(∀s x. bind sub (Lam s x) = Lam s (bind (sub \\ s) x)) ∧
(∀f x. bind sub (Letrec f x) =
let sub1 = FDIFF sub (set (MAP FST f)) in
Letrec (MAP (λ(n,e). (n, bind sub1 e)) f) (bind sub1 x))
Proof
rw[]
>- (drule bind_Var >> fs[])
>- (
gvs[FRANGE_FLOOKUP, PULL_EXISTS] >>
reverse (rw[bind_def]) >> gvs[] >- res_tac >>
fs[subst_def] >> res_tac
)
>- (drule bind_App >> fs[])
>- (drule bind_Lam >> fs[])
>- (
gvs[FRANGE_FLOOKUP, PULL_EXISTS] >>
reverse (rw[bind_def]) >> gvs[subst_def]
>- res_tac
>- res_tac
>- (gvs[FDIFF_def, FLOOKUP_DRESTRICT] >> res_tac)
)
QED
(******************* single subst/bind ********************)
Theorem subst1_def:
(∀n v s. subst1 n v (Var s) = (if n = s then v else Var s)) ∧
(∀n v op xs. subst1 n v (Prim op xs) = Prim op (MAP (subst1 n v) xs)) ∧
(∀n v x y. subst1 n v (App x y) = App (subst1 n v x) (subst1 n v y)) ∧
(∀n v s x. subst1 n v (Lam s x) = Lam s (if s = n then x else subst1 n v x)) ∧
(∀n v f x. subst1 n v (Letrec f x) =
(if MEM n (MAP FST f) then Letrec f x else
Letrec (MAP (λ(g,z). (g, subst1 n v z )) f) (subst1 n v x)))
Proof
rw[subst_def, FLOOKUP_UPDATE, FDIFF_def, subst_FEMPTY] >> gvs[]
>- (
MK_COMB_TAC >> fs[] >> AP_TERM_TAC >>
irule DOMSUB_NOT_IN_DOM >> gvs[]
)
>- (
rw[LIST_EQ_REWRITE] >> Cases_on `EL x f` >> fs[EL_MAP]
)
QED
Theorem subst1_ignore:
∀ n v e. n ∉ freevars e ⇒ subst1 n v e = e
Proof
rw[] >>
irule subst_ignore >>
gvs[pred_setTheory.EXTENSION, finite_mapTheory.FDOM_FUPDATE]
QED
Theorem subst1_subst1:
∀m n x y.
closed x ∧ closed y ∧ m ≠ n ⇒
subst1 n x (subst1 m y e) = subst1 m y (subst1 n x e)
Proof
rw[] >>
qspecl_then [
`FEMPTY |+ (n,x)`, `e`, `FEMPTY |+ (m,y)`] assume_tac subst_subst_FUNION >>
qspecl_then [
`FEMPTY |+ (m,y)`, `e`, `FEMPTY |+ (n,x)`] assume_tac subst_subst_FUNION >>
gvs[FRANGE_FLOOKUP, FLOOKUP_UPDATE] >>
MK_COMB_TAC >> fs[] >> AP_TERM_TAC >>
fs[fmap_eq_flookup, FLOOKUP_FUNION, FLOOKUP_UPDATE] >> rw[]
QED
Theorem subst_subst1_UPDATE:
∀m e n v.
closed v ⇒
subst (m |+ (n,v)) e = subst m (subst1 n v e)
Proof
rw[] >>
simp[Once FUPDATE_EQ_FUNION] >>
irule (GSYM subst_subst_FUNION) >>
fs[FRANGE_FLOOKUP, FLOOKUP_UPDATE, PULL_EXISTS]
QED
Theorem bind1_def:
∀n v e. bind1 n v e = if closed v then subst1 n v e else Fail
Proof
rw[bind_def] >> gvs[FLOOKUP_UPDATE]
QED
Theorem bind1_bind1:
∀m n x y.
closed x ∧ m ≠ n ⇒
bind1 n x (bind1 m y e) = bind1 m y (bind1 n x e)
Proof
rw[] >> fs[bind_def] >>
IF_CASES_TAC >> gvs[] >>
IF_CASES_TAC >> gvs[] >>
irule subst1_subst1 >> fs[] >>
gvs[FLOOKUP_UPDATE]
QED
Theorem bind_bind1_UPDATE:
∀m e n v.
closed v ∧ n ∉ FDOM m ⇒
bind (m |+ (n,v)) e = bind m (bind1 n v e)
Proof
rw[] >> fs[bind_def] >>
reverse IF_CASES_TAC >> gvs[]
>- (
IF_CASES_TAC >> gvs[] >>
gvs[FLOOKUP_UPDATE] >>
rename1 `if n1 = n2 then _ else _` >>
Cases_on `n1 = n2` >> gvs[] >>
res_tac
) >>
reverse (IF_CASES_TAC) >> gvs[]
>- (
gvs[FLOOKUP_UPDATE] >>
rename1 `FLOOKUP _ n2` >> rename1 `n1 ∉ _` >>
`n1 ≠ n2` by (gvs[flookup_thm] >> CCONTR_TAC >> gvs[]) >>
first_assum (qspec_then `n2` assume_tac) >> gvs[]
) >>
IF_CASES_TAC >> gvs[FLOOKUP_UPDATE] >>
fs[Once subst_subst1_UPDATE]
QED
(******************* freevars ********************)
Theorem freevars_equiv:
∀e. freevars e = set (freevars_l e)
Proof
recInduct freevars_ind >> rw[]
>- (
gvs[LIST_TO_SET_FLAT, LIST_TO_SET_MAP, IMAGE_IMAGE, combinTheory.o_DEF] >>
AP_TERM_TAC >> rw[EXTENSION] >> metis_tac[]
)
>- (
simp[LIST_TO_SET_FILTER] >> rw[EXTENSION] >> eq_tac >> rw[]
)
>- (
simp[LIST_TO_SET_FILTER, LIST_TO_SET_FLAT, LIST_TO_SET_MAP, FORALL_PROD] >>
simp[IMAGE_IMAGE, combinTheory.o_DEF, LAMBDA_PROD] >>
rw[EXTENSION, EXISTS_PROD] >> metis_tac[]
)
QED
Theorem freevars_FINITE[simp]:
∀e. FINITE (freevars e)
Proof
simp[freevars_equiv]
QED
Theorem freevars_expandLets:
∀y i cn nm vs cs.
y ∈ freevars (expandLets i cn nm vs cs) ∧ y ≠ nm ⇒
y ∈ freevars cs DIFF set vs
Proof
strip_tac >>
Induct_on ‘vs’ >> rw[expandLets_def] >>
res_tac >> gvs[]
QED
Theorem freevars_expandRows:
∀y nm css.
y ∈ freevars (expandRows nm css) ∧ y ≠ nm ⇒
∃cn vs cs. MEM (cn,vs,cs) css ∧ y ∈ freevars cs DIFF set vs
Proof
strip_tac >>
ho_match_mp_tac expandRows_ind >>
rw[freevars_def,expandRows_def,freevars_expandLets] >>
imp_res_tac freevars_expandLets >> gvs[] >>
metis_tac[]
QED
Theorem freevars_expandCases:
∀y x nm css.
y ∈ freevars (expandCases x nm css) ⇒
(nm ≠ y ∧
∃cn vs cs. MEM (cn,vs,cs) css ∧ y ∈ freevars cs DIFF set vs) ∨
y ∈ freevars x
Proof
rw[expandCases_def,MEM_FILTER] >> simp[] >>
disj1_tac >> drule freevars_expandRows >> simp[]
QED
Theorem freevars_subst:
∀m e.
(∀v. v ∈ FRANGE m ⇒ closed v) ⇒
freevars (subst m e) = freevars e DIFF (FDOM m)
Proof
ho_match_mp_tac subst_ind >>
rw[subst_def,closed_def] >>
fs[FRANGE_FLOOKUP, PULL_EXISTS]
>- fs[FLOOKUP_DEF]
>- fs[FLOOKUP_DEF]
>- (
fs[LIST_TO_SET_FLAT, MAP_MAP_o, combinTheory.o_DEF, BIGUNION_DIFF] >>
fs[EXTENSION, MEM_MAP, PULL_EXISTS] >>
rw[] >> eq_tac >> rw[GSYM CONJ_ASSOC] >>
rename1 `MEM e xs`
>- (
qexists_tac `freevars (subst m e)` >> fs[] >>
qexists_tac `freevars e` >> fs[] >>
goal_assum (drule_at Any) >> fs[]
)
>- (
qexists_tac `freevars (subst m e)` >> fs[] >>
qexists_tac `e` >> fs[]
)
)
>- (gvs[EXTENSION] >> rw[] >> eq_tac >> rw[] >> gvs[])
>- (
gvs[FLOOKUP_DEF, LIST_TO_SET_FILTER, EXTENSION] >>
rw[] >> eq_tac >> rw[] >> gvs[] >>
last_assum mp_tac >> reverse impl_tac >> rw[] >> gvs[] >>
first_x_assum drule >> fs[DOMSUB_FAPPLY_THM]
)
>- (
gvs[LIST_TO_SET_FILTER] >>
gvs[MAP_MAP_o, combinTheory.o_DEF, UNCURRY, LIST_TO_SET_FLAT] >>
fs[EXTENSION, MEM_MAP, PULL_EXISTS] >>
qpat_x_assum `_ ⇒ _` mp_tac >> impl_tac >> rw[] >> gvs[]
>- (
fs[FDIFF_def, FLOOKUP_DRESTRICT] >>
first_x_assum irule >> goal_assum drule >> fs[]
) >>
rw[] >> eq_tac >> rw[GSYM CONJ_ASSOC] >> gvs[]
>- (first_x_assum (qspec_then `y` assume_tac) >> gvs[]) >>
(
rename1 `MEM fn f` >> PairCases_on `fn` >> gvs[] >>
last_x_assum drule >> impl_tac >> rw[] >> gvs[] >>
gvs[FDIFF_def, FLOOKUP_DRESTRICT]
>- (first_x_assum irule >> goal_assum drule >> fs[])
) >> gvs[GSYM FDIFF_def]
>- (
DISJ2_TAC >>
qexists_tac `freevars fn1` >>
goal_assum (drule_at Any) >> fs[]
)
>- (qpat_x_assum `∀x. _ ≠ _ ∨ _` (qspec_then `y` assume_tac) >> gvs[])
>- (qpat_x_assum `∀x. _ ≠ _ ∨ _` (qspec_then `y` assume_tac) >> gvs[])
>- (
DISJ2_TAC >>
qexists_tac `freevars (subst (FDIFF m (set (MAP FST f))) fn1)` >>
goal_assum (drule_at Any) >> fs[]
)
)
QED
Theorem freevars_subst1:
∀n v e.
closed v ⇒
freevars (subst1 n v e) = freevars e DELETE n
Proof
rw[] >>
qspec_then `FEMPTY |+ (n,v)` assume_tac freevars_subst >> fs[DELETE_DEF]
QED
Theorem freevars_subst_SUBSET:
∀e f. freevars (subst f e) ⊆ freevars e DIFF FDOM f ∪
(BIGUNION $ IMAGE freevars (FRANGE f))
Proof
Induct using freevars_ind >> rw[subst_def, freevars_def] >>
gvs[LIST_TO_SET_MAP, IMAGE_IMAGE, combinTheory.o_DEF] >>
gvs[BIGUNION_SUBSET, PULL_EXISTS, SUBSET_DEF] >> rw[]
>- (gvs[FLOOKUP_DEF, FRANGE_DEF] >> metis_tac[])
>- (gvs[FLOOKUP_DEF, FRANGE_DEF] >> metis_tac[])
>- metis_tac[]
>- metis_tac[]
>- metis_tac[]
>- (
first_x_assum drule >> strip_tac >> gvs[] >> disj2_tac >>
gvs[IN_FRANGE_FLOOKUP, DOMSUB_FLOOKUP_THM] >> rpt $ goal_assum drule
)
>- (
gvs[FORALL_PROD] >> first_x_assum drule >> strip_tac >> gvs[]
>- (Cases_on `x'` >> gvs[]) >>
disj2_tac >> gvs[IN_FRANGE_FLOOKUP, FLOOKUP_FDIFF] >> rpt $ goal_assum drule
)
>- (
pairarg_tac >> gvs[FORALL_PROD] >> pairarg_tac >> gvs[] >>
first_x_assum drule_all >> strip_tac >> gvs[EXISTS_PROD]
>- metis_tac[] >>
disj2_tac >> gvs[IN_FRANGE_FLOOKUP, FLOOKUP_FDIFF] >> rpt $ goal_assum drule
)
QED
Theorem subst1_subst1_eq:
closed y ⇒ subst1 v x (subst1 v y e) = subst1 v y e
Proof
rw [] \\ match_mp_tac subst1_ignore
\\ fs [freevars_subst1]
QED
Theorem closed_subst1_iff:
∀ n e x y.
closed x ∧ closed y
⇒ (closed (subst1 n x e) ⇔ closed (subst1 n y e))
Proof
rw[] >> fs[closed_def] >>
DEP_REWRITE_TAC[freevars_subst1] >> simp[closed_def]
QED
Theorem freevars_bind:
∀m y.
freevars (bind m y) =
if (∀v. v ∈ FRANGE m ⇒ closed v) then
freevars y DIFF FDOM m
else {}
Proof
rw[bind_def] >> fs[]
>- (drule freevars_subst >> fs[]) >>
gvs[FRANGE_FLOOKUP] >> res_tac
QED
Theorem freevars_bind1:
∀ n v e.
freevars (bind1 n v e) =
if closed v then freevars e DELETE n else {}
Proof
rw[bind_def] >> gvs[FLOOKUP_UPDATE] >>
irule freevars_subst1 >> simp[]
QED
Theorem IMP_closed_subst:
(∀v. v ∈ FRANGE m ⇒ closed v) ∧ freevars e ⊆ FDOM m ⇒
closed (subst m e)
Proof
rw [] \\ drule freevars_subst
\\ disch_then (qspec_then ‘e’ mp_tac)
\\ fs [EXTENSION,SUBSET_DEF,closed_def]
\\ metis_tac[]
QED
Theorem IMP_closed_bind:
∀e m. freevars e ⊆ FDOM m ⇒ closed (bind m e)
Proof
rw[bind_def] >>
irule IMP_closed_subst >>
simp[IN_FRANGE_FLOOKUP]
QED
Theorem subst_FDIFF':
∀f x p. (∀n. n ∈ p ⇒ n ∉ freevars x) ⇒ subst f x = subst (FDIFF f p) x
Proof
recInduct subst_ind >> rw[subst_def]
>- simp[FDIFF_def, FLOOKUP_DRESTRICT]
>- (
rw[MAP_EQ_f] >> first_x_assum irule >> rw[] >>
gvs[MEM_MAP, PULL_EXISTS] >> metis_tac[]
)
>- (
simp[GSYM FDIFF_FDOMSUB] >>
first_x_assum $ qspec_then `p DELETE s` mp_tac >> gvs[] >> impl_tac
>- (rw[] >> gvs[] >> res_tac) >>
simp[FDIFF_FDOMSUB_INSERT] >> strip_tac >>
AP_THM_TAC >> AP_TERM_TAC >> AP_TERM_TAC >> rw[EXTENSION] >> metis_tac[]
)
>- (
rw[MAP_EQ_f] >> pairarg_tac >> gvs[FDIFF_FDIFF] >> simp[Once UNION_COMM] >>
last_x_assum drule >>
disch_then $ qspec_then `p DIFF set (MAP FST f)` mp_tac >>
impl_tac >> simp[] >>
gvs[MEM_MAP, PULL_EXISTS, EXISTS_PROD] >> rw[] >> metis_tac[]
)
>- (
gvs[FDIFF_FDIFF] >> simp[Once UNION_COMM] >>
first_x_assum $ qspec_then `p DIFF set (MAP FST f)` mp_tac >>
impl_tac >> simp[] >> rw[] >>
metis_tac[]
)
QED
Theorem subst_fdomsub:
∀f e x. x ∉ freevars e ⇒ subst f e = subst (f \\ x) e
Proof
rw[] >>
`f \\ x = FDIFF f {x}` by (
rw[fmap_eq_flookup, DOMSUB_FLOOKUP_THM, FLOOKUP_FDIFF] >> rw[]) >>
simp[] >> irule subst_FDIFF' >> simp[]
QED
Theorem subst_FDIFF:
∀f x. subst f x = subst (DRESTRICT f (freevars x)) x
Proof
rw[] >>
SIMP_TAC std_ss [SimpR “$=”,Once(GSYM COMPL_COMPL)] >>
SIMP_TAC std_ss [GSYM FDIFF_def] >>
match_mp_tac subst_FDIFF' >>
rw[]
QED
Theorem closed_subst1_freevars:
∀s x y.
closed x ∧ closed(subst1 s x y) ⇒
freevars y ⊆ {s}
Proof
rw[] >> pop_assum mp_tac >> drule freevars_subst1 >>
disch_then(qspecl_then [‘s’,‘y’] mp_tac) >> rw[] >>
gvs[closed_def, DELETE_DEF, SUBSET_DIFF_EMPTY]
QED
Theorem closed_subst_freevars:
∀m e.
(∀v. v ∈ FRANGE m ⇒ closed v) ∧
closed (subst m e)
⇒ freevars e ⊆ FDOM m
Proof
rw[] >> imp_res_tac freevars_subst >>
gvs[closed_def, EXTENSION, NIL_iff_NOT_MEM, SUBSET_DEF, DISJ_EQ_IMP]
QED
Theorem closed_freevars_subst1:
∀s x y.
closed x ∧ freevars y ⊆ {s} ⇒
closed(subst1 s x y)
Proof
rw[] >>
drule freevars_subst1 >> disch_then (qspecl_then [‘s’,‘y’] mp_tac) >>
gvs[DELETE_DEF, closed_def] >> rw[] >> gvs[SUBSET_DIFF_EMPTY]
QED
Triviality FDOMSUB_EQ_FDIFF:
M \\ x = FDIFF M {x}
Proof
rw [REWRITE_RULE [pred_setTheory.EXTENSION] fmap_EXT, FDIFF_def, DRESTRICT_DEF, DOMSUB_FAPPLY_NEQ]
QED
Triviality FDOM_FLOOKUP:
x IN FDOM m <=> FLOOKUP m x <> NONE
Proof
Cases_on `FLOOKUP m x` \\ fs [FLOOKUP_DEF]
QED
val subst_triv_cong = Q.prove (`m = m' /\ x = y ==> subst m x = subst m' y`, simp [])
Theorem subst_distrib:
∀ body f f2.
(∀n v. FLOOKUP f2 n = SOME v ⇒ closed v) ∧
DISJOINT (BIGUNION (IMAGE freevars (FRANGE f))) (boundvars body)
⇒ subst f2 (subst f body) = subst (subst f2 o_f f) (subst (FDIFF f2 (FDOM f)) body)
Proof
ho_match_mp_tac freevars_ind
\\ rw []
\\ simp [subst_def]
>- (
simp [FDIFF_def, FLOOKUP_DRESTRICT, FDOM_FLOOKUP]
\\ every_case_tac
\\ simp [subst_def, FLOOKUP_o_f]
\\ srw_tac [SatisfySimps.SATISFY_ss] [closed_subst]
)
>- (
rw [listTheory.MAP_MAP_o, listTheory.MAP_EQ_f]
\\ fs [PULL_EXISTS]
\\ first_x_assum irule
\\ fs [listTheory.MEM_MAP, PULL_EXISTS]
\\ srw_tac [SatisfySimps.SATISFY_ss] []
)
>- (
rw []
\\ fs [PULL_EXISTS]
\\ fs [pred_setTheory.DISJOINT_SYM]
\\ srw_tac [SatisfySimps.SATISFY_ss] []
)
>- (
irule EQ_TRANS \\ first_x_assum (irule_at Any)
\\ fs [PULL_EXISTS]
\\ srw_tac [SatisfySimps.SATISFY_ss] [DOMSUB_FLOOKUP_THM,
REWRITE_RULE [SUBSET_DEF] FRANGE_DOMSUB_SUBSET]
\\ rpt (irule_at Any subst_triv_cong)
\\ simp [FDOMSUB_EQ_FDIFF, FDIFF_FDIFF, UNION_COMM]
\\ irule_at Any o_f_cong
\\ fs [FRANGE_FLOOKUP, PULL_EXISTS, FLOOKUP_FDIFF]
\\ srw_tac [SatisfySimps.SATISFY_ss] [GSYM subst_FDIFF']
\\ AP_TERM_TAC
\\ simp [EXTENSION]
\\ metis_tac []
)
>- (
simp [pairTheory.UNCURRY, MAP_MAP_o, combinTheory.o_DEF, Q.ISPEC `FST` ETA_THM]
\\ fs [MEM_MAP, pairTheory.EXISTS_PROD, PULL_EXISTS]
\\ simp [MAP_EQ_f, pairTheory.FORALL_PROD]
\\ conj_tac
>- (
rw []
\\ irule EQ_TRANS \\ first_x_assum (irule_at Any)
\\ first_assum (irule_at Any)
\\ fs [FLOOKUP_FDIFF, FRANGE_FLOOKUP, PULL_EXISTS, DISJOINT_SYM]
\\ rpt (irule_at Any subst_triv_cong)
\\ simp [fmap_eq_flookup, FLOOKUP_FDIFF, FLOOKUP_o_f]
\\ rw [] \\ fs [] \\ fs [] \\ srw_tac [SatisfySimps.SATISFY_ss] []
\\ every_case_tac
\\ irule (GSYM subst_FDIFF')
\\ fs [IN_DISJOINT]
\\ metis_tac []
)
\\ irule EQ_TRANS \\ first_x_assum (irule_at Any)
\\ fs [FLOOKUP_FDIFF, FRANGE_FLOOKUP, PULL_EXISTS, DISJOINT_SYM]
\\ srw_tac [SatisfySimps.SATISFY_ss] [GSYM subst_FDIFF']
\\ rpt (irule_at Any subst_triv_cong)
\\ simp [FDIFF_FDIFF, UNION_COMM]
\\ simp [fmap_eq_flookup, FLOOKUP_FDIFF, FLOOKUP_o_f]
\\ rw [] \\ fs [] \\ fs []
\\ every_case_tac
\\ irule (GSYM subst_FDIFF')
\\ fs [IN_DISJOINT]
\\ metis_tac []
)
QED
Theorem subst1_distrib:
∀ body f v arg.
(∀n v. FLOOKUP f n = SOME v ⇒ closed v) ∧
DISJOINT (freevars arg) (boundvars body)
⇒ subst f (subst1 v arg body) = subst1 v (subst f arg) (subst (f \\ v) body)
Proof
rw []
\\ irule EQ_TRANS \\ irule_at Any subst_distrib
\\ srw_tac [SatisfySimps.SATISFY_ss] []
\\ rpt (irule_at Any subst_triv_cong)
\\ simp [fmap_eq_flookup, FLOOKUP_FDIFF, DOMSUB_FLOOKUP_THM]
\\ rw []
QED
(******************* boundvars ********************)
Theorem boundvars_equiv:
∀e. boundvars e = set (boundvars_l e)
Proof
recInduct boundvars_l_ind >> rw[]
>- (
gvs[LIST_TO_SET_MAP, LIST_TO_SET_FLAT] >> AP_TERM_TAC >>
rw[EXTENSION] >> metis_tac[]
)
>- (
gvs[LIST_TO_SET_MAP, LIST_TO_SET_FLAT] >>
simp[IMAGE_IMAGE, combinTheory.o_DEF, LAMBDA_PROD] >>
rw[EXTENSION, EXISTS_PROD, PULL_EXISTS] >> eq_tac >> rw[] >> metis_tac[]
)
QED
Theorem boundvars_FINITE[simp]:
∀e. FINITE (boundvars e)
Proof
simp[boundvars_equiv]
QED
Theorem boundvars_Apps:
boundvars (Apps e es) =
boundvars e ∪ BIGUNION (set $ MAP boundvars es)
Proof
qid_spec_tac `e` >> Induct_on `es` >> rw[Apps_def] >> simp[UNION_ASSOC]
QED
Theorem boundvars_Lams:
boundvars (Lams xs e) = set xs ∪ boundvars e
Proof
Induct_on `xs` >> rw[boundvars_def, Lams_def] >>
rw[EXTENSION] >> metis_tac[]
QED
(******************* allvars ********************)
Theorem allvars_thm:
allvars e = freevars e ∪ boundvars e
Proof
Induct_on `e` using freevars_ind >>
rw[allvars_def, freevars_def, boundvars_def]
>- (Induct_on `es` >> rw[] >> gvs[] >> rw[Once EXTENSION] >> metis_tac[])
>- (rw[EXTENSION] >> metis_tac[])
>- (rw[EXTENSION] >> metis_tac[]) >>
simp[AC UNION_ASSOC UNION_COMM] >> AP_TERM_TAC >>
simp[UNION_ASSOC] >>
qmatch_goalsub_abbrev_tac `_ = a ∪ b ∪ (c DIFF _)` >>
`a ∪ b ∪ (c DIFF a) = a ∪ b ∪ c` by (rw[EXTENSION] >> metis_tac[]) >>
rw[] >> unabbrev_all_tac >>
simp[AC UNION_ASSOC UNION_COMM] >> ntac 2 AP_TERM_TAC >>
ntac 2 $ pop_assum kall_tac >> Induct_on `lcs` >> rw[] >>
pairarg_tac >> gvs[SF DNF_ss] >> last_x_assum drule >> rw[] >>
rw[Once EXTENSION] >> metis_tac[]
QED
(******************* Apps / Lams ********************)
Theorem freevars_Lams[simp]:
∀vs e. freevars (Lams vs e) = freevars e DIFF set vs
Proof
Induct >> rw[Lams_def] >> gvs[EXTENSION] >> rw[] >> metis_tac[]
QED
Theorem subst_Lams:
∀l x f. subst f (Lams l x) = Lams l (subst (FDIFF f (set l)) x)
Proof
Induct >> rw[Lams_def] >> simp[subst_def, FDIFF_FDOMSUB_INSERT]
QED
Theorem Lams_SNOC:
(∀e. Lams [] e = e) ∧
(∀vs v. Lams (SNOC v vs) e = Lams vs (Lam v e))
Proof
conj_tac >- rw[Lams_def] >>
Induct >> rw[Lams_def]
QED
Theorem Lams_11[simp]:
Lams vs bod1 = Lams vs bod2 ⇔ bod1 = bod2
Proof
Induct_on ‘vs’ >> simp[exp_11, Lams_def]
QED
Theorem freevars_Apps[simp]:
∀es e. freevars (Apps e es) = freevars e ∪ BIGUNION (set (MAP freevars es))
Proof
Induct >> rw[Apps_def] >> simp[UNION_ASSOC]
QED
Theorem subst_Apps:
∀l x f. subst f (Apps x l) = Apps (subst f x) (MAP (subst f) l)
Proof
Induct >> rw[Apps_def, subst_def]
QED
Theorem Apps_SNOC:
(∀x. Apps x [] = x) ∧
(∀ys x y. Apps x (SNOC y ys) = App (Apps x ys) y)
Proof
conj_tac >- rw[Apps_def] >>
Induct >> rw[Apps_def]
QED
Theorem Let_Lams:
Let x a (Lams ys e) = App (Lams (x::ys) e) a
Proof
rw[Lams_def]
QED
Theorem closed_Apps[simp]:
closed (Apps e es) ⇔ closed e ∧ EVERY closed es
Proof
rw[closed_def, freevars_Apps] >> Cases_on `es` >> simp[] >>
once_rewrite_tac[EXTENSION] >> simp[closed_def, MEM_MAP, EVERY_MEM] >>
eq_tac >> rw[] >> metis_tac[]
QED
Theorem closed_Lams[simp]:
closed (Lams vs e) ⇔ freevars e ⊆ set vs
Proof
rw[closed_def, freevars_Lams] >> simp[SUBSET_DIFF_EMPTY]
QED
Theorem Apps_append:
∀xs ys x. Apps x (xs ++ ys) = Apps (Apps x xs) ys
Proof
Induct \\ fs [Apps_def]
QED
Theorem Apps_11:
∀xs ys x y. Apps x xs = Apps y ys ∧ LENGTH xs = LENGTH ys ⇒ x = y ∧ xs = ys
Proof
Induct \\ fs [Apps_def]
\\ Cases_on ‘ys’ \\ fs [Apps_def]
\\ rw [] \\ res_tac \\ fs []
QED
Theorem subst_Seqs:
∀xs y. subst m (Seqs xs y) = Seqs (MAP (subst m) xs) (subst m y)
Proof
Induct \\ fs [subst_def]
QED
Theorem letrecs_distinct_Apps:
∀l e. letrecs_distinct (Apps e l) ⇔ letrecs_distinct e ∧ EVERY letrecs_distinct l
Proof
Induct \\ gs [letrecs_distinct_def, Apps_def, GSYM CONJ_ASSOC]
QED
Theorem letrecs_distinct_Lams:
∀l e. letrecs_distinct (Lams l e) ⇔ letrecs_distinct e
Proof
Induct \\ gs [letrecs_distinct_def, Lams_def]
QED
Theorem ignore_FDIFF:
DISJOINT f (FDOM m) ⇒ FDIFF m f = m
Proof
fs [fmap_eq_flookup,FLOOKUP_DEF,FDIFF_def,DRESTRICT_DEF,IN_DISJOINT]
\\ metis_tac []
QED
val _ = export_theory();