-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathpure_letrec_seqScript.sml
2017 lines (1939 loc) · 70.4 KB
/
pure_letrec_seqScript.sml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*
Prove that Seq can be introduced in a Letrec
*)
open HolKernel Parse boolLib bossLib term_tactic;
open fixedPointTheory arithmeticTheory listTheory stringTheory alistTheory
optionTheory pairTheory ltreeTheory llistTheory bagTheory dep_rewrite
BasicProvers pred_setTheory relationTheory rich_listTheory finite_mapTheory;
open pure_expTheory pure_valueTheory pure_evalTheory pure_eval_lemmasTheory
pure_exp_lemmasTheory pure_limitTheory pure_exp_relTheory
pure_alpha_equivTheory pure_miscTheory pure_congruenceTheory;
val _ = new_theory "pure_letrec_seq";
Type bind = “:string # (string # bool) list # exp”;
Definition mk_lams_def:
mk_lams ((n,vs,e):bind) = (n, Lams (MAP FST vs) e)
End
Definition mk_seqs_def:
mk_seqs [] e = e ∧
mk_seqs ((_,F)::xs) e = mk_seqs xs e ∧
mk_seqs ((v,T)::xs) e = Seq (Var v) (mk_seqs xs e)
End
Definition mk_seq_lams_def:
mk_seq_lams ((n,vs,e):bind) = (n, Lams (MAP FST vs) (mk_seqs vs e))
End
Overload Zero[local] = “Lit (Int 0):exp”;
Definition mk_bind_def: (* same as mk_lams but with Seq Zero marker *)
mk_bind ((n,vs,e):bind) = (n, Lams (MAP FST vs) (Seq Zero e))
End
Definition mk_seq_bind_def: (* same as mk_seq_lams but with Seq Zero marker *)
mk_seq_bind ((n,vs,e):bind) = (n, Lams (MAP FST vs) (Seq Zero (mk_seqs vs e)))
End
Definition obligation_def:
obligation (binds : bind list) ⇔
ALL_DISTINCT (MAP FST binds) ∧
EVERY (λ(vname,args,body).
(* args are disjoint *)
ALL_DISTINCT (MAP FST args) ∧
(* args are disjoint *)
DISJOINT (set (MAP FST args)) (set (MAP FST binds)) ∧
(* body of bound exp only mentions args and other bound names *)
freevars body SUBSET (set (MAP FST binds) UNION set (MAP FST args)) ∧
(* every forced var is free body *)
set (MAP FST (FILTER SND args)) SUBSET freevars body ∧
(* if all function rec. calls force args,
then we can add forcing to the top-level *)
(let
x = subst_funs (MAP mk_seq_bind binds) body
in
x ≈ mk_seqs args x)) binds
End
Inductive letrec_seq:
[~change:]
(∀binds b.
MEM b binds ∧ obligation binds ⇒
letrec_seq binds (Letrec (MAP mk_bind binds) (SND (mk_bind b)))
(Letrec (MAP mk_seq_bind binds) (SND (mk_seq_bind b))))
[~seq:]
(∀binds n vs e m1 m2.
MEM (n,vs,e) binds ∧ obligation binds ∧
FEVERY (λ(k,v). closed v) m1 ∧ FEVERY (λ(k,v). closed v) m2 ∧
FDOM m1 = FDOM m2 ∧
(∀k v1 v2.
FLOOKUP m1 k = SOME v1 ∧ FLOOKUP m2 k = SOME v2 ⇒
letrec_seq binds v1 v2) ⇒
letrec_seq binds
(Seq Zero (subst m1 (subst_funs (MAP mk_bind binds) e)))
(Seq Zero (subst m2 (mk_seqs vs (subst_funs (MAP mk_seq_bind binds) e)))))
(* cases below are just recursion *)
[~Var:]
(∀binds n.
letrec_seq binds (Var n) (Var n))
[~Lam:]
(∀binds n x y.
letrec_seq binds x y ⇒
letrec_seq binds (Lam n x) (Lam n y))
[~App:]
(∀binds f g x y.
letrec_seq binds f g ∧ letrec_seq binds x y ⇒
letrec_seq binds (App f x) (App g y))
[~Prim:]
(∀binds n xs ys.
LIST_REL (letrec_seq binds) xs ys ⇒
letrec_seq binds (Prim n xs) (Prim n ys))
[~Letrec:]
(∀binds xs ys x y.
LIST_REL (letrec_seq binds) (MAP SND xs) (MAP SND ys) ∧
MAP FST xs = MAP FST ys ∧ letrec_seq binds x y ⇒
letrec_seq binds (Letrec xs x) (Letrec ys y))
End
Theorem letrec_seq_refl:
∀x. letrec_seq binds x x
Proof
ho_match_mp_tac freevars_ind
\\ rw [] \\ simp [Once letrec_seq_cases]
\\ rpt disj2_tac
>- (Induct_on ‘es’ \\ fs [])
\\ Induct_on ‘lcs’ \\ fs [FORALL_PROD,SF DNF_ss]
\\ rw [] \\ res_tac \\ fs []
QED
Theorem freevars_mk_seqs_lemma:
∀vs x.
freevars (mk_seqs vs x) DIFF set (MAP FST vs) =
freevars x DIFF set (MAP FST vs)
Proof
Induct \\ fs [mk_seqs_def,FORALL_PROD]
\\ gen_tac \\ Cases
\\ fs [mk_seqs_def]
\\ fs [EXTENSION]
\\ metis_tac []
QED
Triviality MAP_FST_mk_bind:
MAP FST (MAP mk_bind binds) = MAP FST binds
Proof
Induct_on ‘binds’ \\ fs [FORALL_PROD,mk_bind_def]
QED
Theorem freevars_mk_seq_bind[local,simp]:
freevars (SND (mk_seq_bind b)) = freevars (SND (mk_bind b))
Proof
PairCases_on ‘b’
\\ rewrite_tac [mk_seq_bind_def,mk_bind_def]
\\ fs [freevars_mk_seqs_lemma]
QED
Theorem MAP_FST_mk_seq_bind[local,simp]:
MAP FST (MAP mk_seq_bind binds) = MAP FST (MAP mk_bind binds)
Proof
Induct_on ‘binds’ \\ fs [FORALL_PROD,mk_seq_bind_def,mk_bind_def]
QED
Definition obl_syntax_def:
obl_syntax binds ⇔
ALL_DISTINCT (MAP FST binds) ∧
EVERY (λ(vname,args,body).
ALL_DISTINCT (MAP FST args) ∧
DISJOINT (set (MAP FST args)) (set (MAP FST binds)) ∧
freevars body ⊆ set (MAP FST binds) ∪ set (MAP FST args) ∧
set (MAP FST (FILTER SND args)) ⊆ freevars body) binds
End
Triviality IMP_obl_syntax[simp]:
obligation binds ⇒ obl_syntax binds
Proof
fs [obligation_def,obl_syntax_def,EVERY_MEM,FORALL_PROD,SF SFY_ss]
QED
Theorem freevars_mk_seqs_syntax:
MEM (n,args,body) binds ∧ obl_syntax binds ⇒
freevars (mk_seqs args body) = freevars body
Proof
rw [obl_syntax_def,EVERY_MEM]
\\ first_x_assum dxrule
\\ fs [] \\ rw []
\\ qpat_x_assum ‘_ ⊆ freevars body’ mp_tac
\\ qid_spec_tac ‘args’
\\ Induct \\ fs [mk_seqs_def,FORALL_PROD]
\\ rw [] \\ fs [mk_seqs_def]
\\ fs [EXTENSION] \\ metis_tac []
QED
Theorem freevars_mk_seqs:
MEM (n,args,body) binds ∧ obligation binds ⇒
freevars (mk_seqs args body) = freevars body
Proof
metis_tac [freevars_mk_seqs_syntax,IMP_obl_syntax]
QED
Triviality FDOM_UPDATES_EQ:
∀b1. FDOM (FEMPTY |++ MAP (λ(g,x). (g,Letrec b2 x)) b1) = set (MAP FST b1)
Proof
fs [FDOM_FUPDATE_LIST,MAP_MAP_o,combinTheory.o_DEF,UNCURRY,SF ETA_ss]
QED
Theorem mk_bind_closed:
obligation binds ⇒
(∀v. v ∈ FRANGE
(FEMPTY |++
MAP (λ(g,x). (g,Letrec (MAP mk_bind binds) x))
(MAP mk_bind binds)) ⇒
closed v)
Proof
rw [obligation_def,FRANGE_FLOOKUP]
\\ fs [FDOM_UPDATES_EQ,PULL_EXISTS,alistTheory.flookup_fupdate_list]
\\ fs [FORALL_FRANGE,alistTheory.flookup_fupdate_list,AllCaseEqs()]
\\ rw []
\\ dxrule ALOOKUP_MEM
\\ gvs [EVERY_MEM]
\\ fs [MEM_MAP,EXISTS_PROD,PULL_EXISTS,EVERY_MEM,mk_bind_def]
\\ CCONTR_TAC \\ fs [] \\ gvs []
\\ gvs [mk_bind_def,MAP_FST_mk_bind]
\\ fs [SUBSET_DEF,EVERY_MEM,FORALL_PROD,EXISTS_PROD,MEM_MAP,mk_bind_def,PULL_EXISTS]
\\ metis_tac []
QED
Theorem mk_seq_bind_closed_syntax':
obl_syntax binds ∧ set bs SUBSET set binds ⇒
(∀v. v ∈ FRANGE
(FEMPTY |++
MAP (λ(g,x). (g,Letrec (MAP mk_seq_bind binds) x))
(MAP mk_seq_bind bs)) ⇒
closed v)
Proof
rw []
\\ drule_at Any freevars_mk_seqs_syntax \\ strip_tac
\\ fs [obl_syntax_def,FRANGE_FLOOKUP]
\\ fs [FDOM_UPDATES_EQ,PULL_EXISTS,alistTheory.flookup_fupdate_list]
\\ fs [FORALL_FRANGE,alistTheory.flookup_fupdate_list,AllCaseEqs()]
\\ rw []
\\ dxrule ALOOKUP_MEM
\\ gvs [EVERY_MEM]
\\ fs [MEM_MAP,EXISTS_PROD,PULL_EXISTS,EVERY_MEM,mk_bind_def]
\\ CCONTR_TAC \\ fs []
\\ gvs [SUBSET_DEF]
\\ res_tac
\\ gvs []
\\ gvs [mk_seq_bind_def,MAP_FST_mk_seq_bind,mk_bind_def]
\\ fs [SUBSET_DEF,EVERY_MEM,FORALL_PROD,EXISTS_PROD,MEM_MAP,mk_seq_bind_def,PULL_EXISTS]
\\ gvs [mk_seq_bind_def,MAP_FST_mk_seq_bind,mk_bind_def]
\\ metis_tac []
QED
Theorem mk_seq_bind_closed_syntax:
obl_syntax binds ⇒
(∀v. v ∈ FRANGE
(FEMPTY |++
MAP (λ(g,x). (g,Letrec (MAP mk_seq_bind binds) x))
(MAP mk_seq_bind binds)) ⇒
closed v)
Proof
strip_tac \\ match_mp_tac mk_seq_bind_closed_syntax' \\ fs []
QED
Theorem mk_seq_bind_closed:
obligation binds ⇒
(∀v. v ∈ FRANGE
(FEMPTY |++
MAP (λ(g,x). (g,Letrec (MAP mk_seq_bind binds) x))
(MAP mk_seq_bind binds)) ⇒
closed v)
Proof
strip_tac \\ match_mp_tac mk_seq_bind_closed_syntax \\ fs []
QED
Theorem subset_funs_mk_bind:
obligation binds ⇒
subst_funs (MAP mk_bind binds) e =
subst
(FEMPTY |++
MAP (λ(g,x). (g,Letrec (MAP mk_bind binds) x))
(MAP mk_bind binds)) e
Proof
rw [subst_funs_def,bind_def]
\\ qsuff_tac ‘F’ \\ fs []
\\ drule mk_bind_closed
\\ fs [FLOOKUP_DEF,FRANGE_DEF]
\\ metis_tac []
QED
Theorem subset_funs_mk_seq_bind_syntax:
obl_syntax binds ⇒
subst_funs (MAP mk_seq_bind binds) e =
subst
(FEMPTY |++
MAP (λ(g,x). (g,Letrec (MAP mk_seq_bind binds) x))
(MAP mk_seq_bind binds)) e
Proof
rw [subst_funs_def,bind_def]
\\ qsuff_tac ‘F’ \\ fs []
\\ drule mk_seq_bind_closed_syntax
\\ fs [FLOOKUP_DEF,FRANGE_DEF]
\\ metis_tac []
QED
Theorem subset_funs_mk_seq_bind:
obligation binds ⇒
subst_funs (MAP mk_seq_bind binds) e =
subst
(FEMPTY |++
MAP (λ(g,x). (g,Letrec (MAP mk_seq_bind binds) x))
(MAP mk_seq_bind binds)) e
Proof
rw [subst_funs_def,bind_def]
\\ qsuff_tac ‘F’ \\ fs []
\\ drule mk_seq_bind_closed
\\ fs [FLOOKUP_DEF,FRANGE_DEF]
\\ metis_tac []
QED
Theorem mk_seqs_subst:
∀vs m e.
DISJOINT (set (MAP FST vs)) (FDOM m) ⇒
mk_seqs vs (subst m e) = subst m (mk_seqs vs e)
Proof
Induct \\ fs [mk_seqs_def]
\\ PairCases \\ fs [mk_seqs_def]
\\ Cases_on ‘h1’ \\ fs [mk_seqs_def]
\\ fs [subst_def,FLOOKUP_DEF]
QED
Theorem letrec_seq_freevars:
∀binds x y. letrec_seq binds x y ⇒ freevars x = freevars y
Proof
Induct_on ‘letrec_seq’ \\ rw [] \\ gvs []
>-
(PairCases_on ‘b’ \\ fs [mk_bind_def,MAP_FST_mk_bind]
\\ rw [EXTENSION] \\ eq_tac \\ rw [] \\ fs [MEM_MAP,EXISTS_PROD,PULL_EXISTS]
\\ fs [mk_seq_bind_def,MEM_MAP,EXISTS_PROD,PULL_EXISTS,FORALL_PROD,mk_bind_def]
\\ gvs [freevars_mk_seqs]
\\ metis_tac [freevars_mk_seqs])
>-
(simp [subset_funs_mk_bind,subset_funs_mk_seq_bind]
\\ DEP_REWRITE_TAC [mk_seqs_subst]
\\ DEP_REWRITE_TAC [pure_exp_lemmasTheory.subst_subst_FUNION]
\\ DEP_REWRITE_TAC [freevars_subst]
\\ fs [FDOM_FUPDATE_LIST]
\\ drule_at Any freevars_mk_seqs \\ strip_tac
\\ drule mk_bind_closed
\\ drule mk_seq_bind_closed
\\ fs [SF SFY_ss]
\\ fs [MAP_MAP_o,combinTheory.o_DEF,LAMBDA_PROD,mk_bind_def,mk_seq_bind_def]
\\ fs [FRANGE_FLOOKUP,PULL_EXISTS,FLOOKUP_FUNION,AllCaseEqs()]
\\ fs [SF SFY_ss, SF DNF_ss]
\\ rw []
\\ imp_res_tac FEVERY_FLOOKUP
\\ fs []
\\ fs [obligation_def,IN_DISJOINT,EVERY_MEM]
\\ res_tac \\ fs []
\\ fs [SUBSET_DEF,EXTENSION,MEM_MAP,EXISTS_PROD,FORALL_PROD,MEM_FILTER])
>- (pop_assum mp_tac
\\ qid_spec_tac ‘xs’
\\ qid_spec_tac ‘ys’
\\ Induct \\ Cases_on ‘xs’ \\ fs [])
\\ last_x_assum mp_tac
\\ qid_spec_tac ‘xs’
\\ qid_spec_tac ‘ys’
\\ Induct \\ fs []
\\ fs [PULL_EXISTS]
\\ strip_tac \\ Cases \\ fs []
\\ strip_tac \\ res_tac \\ fs [UNCURRY]
\\ gvs [EXTENSION]
\\ metis_tac []
QED
Theorem subst_letrec_seq:
∀binds x y m1 m2.
letrec_seq binds x y ∧
FDOM m1 = FDOM m2 ∧
(∀k v1 v2.
FLOOKUP m1 k = SOME v1 ∧ FLOOKUP m2 k = SOME v2 ⇒
letrec_seq binds v1 v2 ∧ closed v1 ∧ closed v2) ⇒
letrec_seq binds (subst m1 x) (subst m2 y)
Proof
Induct_on ‘letrec_seq’ \\ rw []
>-
(DEP_REWRITE_TAC [closed_subst]
\\ irule_at Any letrec_seq_change \\ fs [MAP_FST_mk_bind]
\\ drule_at Any freevars_mk_seqs
\\ PairCases_on ‘b’ \\ fs [mk_bind_def,EVERY_MEM]
\\ fs [MEM_MAP,EXISTS_PROD,PULL_EXISTS,mk_seq_bind_def,mk_bind_def]
\\ gvs [SF SFY_ss]
\\ fs [obligation_def,EVERY_MEM,FORALL_PROD]
\\ rw [] \\ res_tac
\\ gvs [SUBSET_DEF]
\\ metis_tac [])
>-
(simp [subst_def]
\\ DEP_REWRITE_TAC [pure_exp_lemmasTheory.subst_subst_FUNION]
\\ conj_tac >- fs [FRANGE_DEF,FEVERY_DEF,PULL_EXISTS]
\\ irule letrec_seq_seq
\\ last_x_assum $ irule_at Any
\\ fs [FEVERY_DEF,FUNION_DEF,FLOOKUP_DEF]
\\ rw [])
>-
(fs [subst_def] \\ rpt CASE_TAC \\ fs [letrec_seq_refl]
\\ res_tac \\ fs [] \\ gvs [FLOOKUP_DEF])
>-
(fs [subst_def]
\\ simp [Once letrec_seq_cases]
\\ last_x_assum irule \\ fs []
\\ fs [DOMSUB_FLOOKUP_THM,AllCaseEqs()]
\\ rw [] \\ res_tac \\ fs [SUBSET_DEF])
>-
(fs [subst_def]
\\ simp [Once letrec_seq_cases]
\\ rpt $ last_x_assum $ irule_at Any \\ fs [])
>-
(fs [subst_def]
\\ simp [Once letrec_seq_cases,SF ETA_ss]
\\ disj2_tac
\\ last_x_assum mp_tac \\ fs []
\\ qid_spec_tac ‘ys’
\\ qid_spec_tac ‘xs’
\\ Induct \\ fs [PULL_EXISTS]
\\ rw [] \\ metis_tac [])
>-
(fs [subst_def]
\\ simp [Once letrec_seq_cases] \\ disj2_tac
\\ fs [MAP_MAP_o,combinTheory.o_DEF,UNCURRY,SF ETA_ss]
\\ reverse conj_tac
>-
(last_x_assum irule
\\ fs [FDOM_FDIFF,EXTENSION,FLOOKUP_FDIFF,SUBSET_DEF]
\\ rw [] \\ res_tac \\ fs [])
\\ last_x_assum mp_tac
\\ last_x_assum mp_tac
\\ pop_assum mp_tac
\\ pop_assum mp_tac
\\ pop_assum mp_tac
\\ pop_assum mp_tac
\\ qid_spec_tac ‘m2’
\\ qid_spec_tac ‘m1’
\\ qid_spec_tac ‘ys’
\\ qid_spec_tac ‘xs’
\\ Induct \\ fs [PULL_EXISTS]
\\ strip_tac \\ Cases \\ fs []
\\ rw []
>-
(first_x_assum irule
\\ fs [FDOM_FDIFF,EXTENSION,FLOOKUP_FDIFF,SUBSET_DEF]
\\ rw [] \\ res_tac \\ fs [])
\\ rewrite_tac [GSYM finite_mapTheory.FDIFF_FDOMSUB_INSERT]
\\ first_x_assum irule
\\ fs [FDOM_FDIFF,EXTENSION,FLOOKUP_FDIFF]
\\ fs [DOMSUB_FLOOKUP_THM,AllCaseEqs(),SUBSET_DEF]
\\ rw [] \\ res_tac \\ fs [])
QED
Theorem letrec_seq_subst1:
letrec_seq binds a1 a2 ∧ letrec_seq binds z y ∧ closed a1 ∧ closed a2 ⇒
letrec_seq binds (subst1 v a1 z) (subst1 v a2 y)
Proof
strip_tac
\\ irule subst_letrec_seq
\\ fs [FLOOKUP_DEF]
QED
Theorem ALOOKUP_REVERSE_LIST_REL[local]:
∀bs ys.
LIST_REL p (MAP SND bs) (MAP SND ys) ∧
MAP FST ys = MAP FST bs ∧
ALOOKUP (REVERSE (MAP (λ(g,x). (g,f x)) bs)) k' = SOME v1 ∧
ALOOKUP (REVERSE (MAP (λ(g,x). (g,h x)) ys)) k' = SOME v2 ⇒
∃x y. p x y ∧ v1 = f x ∧ v2 = h y ∧ MEM x (MAP SND bs) ∧ MEM y (MAP SND ys)
Proof
Induct using SNOC_INDUCT \\ fs [PULL_EXISTS]
\\ Cases \\ Cases using SNOC_CASES
\\ gvs [GSYM REVERSE_APPEND,MAP_SNOC,LIST_REL_SNOC,REVERSE_SNOC]
\\ rename [‘SND hh’] \\ PairCases_on ‘hh’ \\ fs []
\\ fs [AllCaseEqs()]
\\ rpt strip_tac \\ gvs []
\\ metis_tac []
QED
Triviality EVERY_FLOOKUP_closed_lemma:
EVERY (λe. freevars e ⊆ set (MAP FST ys)) (MAP SND ys) ⇒
(∀n v.
FLOOKUP (FEMPTY |++ MAP (λ(g,x). (g,Letrec ys x)) ys) n = SOME v ⇒
closed v)
Proof
fs [alistTheory.flookup_fupdate_list,AllCaseEqs()]
\\ rw [] \\ imp_res_tac ALOOKUP_MEM
\\ gvs [MEM_MAP,EXISTS_PROD,EVERY_MEM,PULL_EXISTS]
\\ res_tac \\ fs []
QED
Theorem subst_funs_Lams:
∀vs xs.
DISJOINT (set vs) (set (MAP FST xs)) ∧
(∀n v. FLOOKUP (FEMPTY |++ MAP (λ(g,x). (g,Letrec xs x)) xs) n = SOME v ⇒
closed v) ⇒
subst_funs xs (Lams vs y) = Lams vs (subst_funs xs y)
Proof
Induct \\ fs [Lams_def] \\ rw []
\\ fs [subst_funs_def,bind_def,SF SFY_ss,subst_def]
\\ irule EQ_TRANS
\\ last_x_assum $ irule_at Any \\ fs [SF SFY_ss]
\\ AP_THM_TAC \\ AP_TERM_TAC
\\ pop_assum kall_tac
\\ rename [‘(_,f _)’]
\\ fs [finite_mapTheory.DOMSUB_FUPDATE_LIST]
\\ AP_TERM_TAC
\\ last_x_assum kall_tac
\\ Induct_on ‘xs’ \\ fs [FORALL_PROD]
QED
Triviality subst_funs_Seq_Zero:
(∀n v. FLOOKUP (FEMPTY |++ MAP (λ(g,x). (g,Letrec xs x)) xs) n = SOME v ⇒
closed v) ⇒
subst_funs xs (Seq Zero x) = Seq Zero (subst_funs xs x)
Proof
fs [subst_funs_def, bind_def, SF SFY_ss, subst_def]
QED
Theorem letrec_seq_Lams[local]:
∀vs. letrec_seq binds x y ⇒ letrec_seq binds (Lams vs x) (Lams vs y)
Proof
Induct \\ fs [Lams_def] \\ rw [] \\ fs []
\\ simp [Once letrec_seq_cases]
QED
Theorem subst_funs_mk_seq[local]:
∀args.
(∀n v. FLOOKUP (FEMPTY |++ MAP (λ(g,x). (g,Letrec fs x)) fs) n = SOME v ⇒
closed v) ∧ DISJOINT (set (MAP FST args)) (set (MAP FST fs)) ⇒
subst_funs fs (mk_seqs args body) = mk_seqs args (subst_funs fs body)
Proof
Induct \\ fs [mk_seqs_def,FORALL_PROD]
\\ gen_tac \\ Cases \\ fs [mk_seqs_def]
\\ fs [subst_funs_def,bind_def, SF SFY_ss, subst_def]
\\ fs [alistTheory.flookup_fupdate_list,AllCaseEqs()]
\\ fs [ALOOKUP_NONE,MEM_MAP,FORALL_PROD]
QED
Theorem letrec_seq_subst_funs:
MEM b binds ∧ obligation binds ⇒
letrec_seq binds (subst_funs (MAP mk_bind binds) (SND (mk_bind b)))
(subst_funs (MAP mk_seq_bind binds) (SND (mk_seq_bind b)))
Proof
rw []
\\ PairCases_on ‘b’
\\ fs [mk_bind_def,mk_seq_bind_def]
\\ DEP_REWRITE_TAC [subst_funs_Lams] \\ fs [MAP_FST_mk_bind]
\\ first_assum mp_tac
\\ simp_tac std_ss [obligation_def] \\ strip_tac
\\ fs [EVERY_MEM] \\ res_tac \\ fs []
\\ irule_at Any letrec_seq_Lams
\\ once_rewrite_tac [CONJ_COMM]
\\ DEP_REWRITE_TAC [subst_funs_Seq_Zero]
\\ DEP_REWRITE_TAC [subst_funs_mk_seq]
\\ fs [MAP_FST_mk_bind]
\\ REWRITE_TAC [CONJ_ASSOC]
\\ reverse conj_tac
>-
(simp [Once letrec_seq_cases]
\\ disj1_tac
\\ last_x_assum $ irule_at Any
\\ qexists_tac ‘FEMPTY’
\\ qexists_tac ‘FEMPTY’
\\ fs [FEVERY_DEF])
\\ rw []
\\ fs [FDOM_UPDATES_EQ,PULL_EXISTS,alistTheory.flookup_fupdate_list]
\\ fs [FORALL_FRANGE,alistTheory.flookup_fupdate_list,AllCaseEqs()]
\\ rw []
\\ imp_res_tac ALOOKUP_MEM
\\ gvs [EVERY_MEM] \\ res_tac \\ fs []
\\ gvs [MEM_MAP,EXISTS_PROD,PULL_EXISTS,EVERY_MEM,mk_seq_bind_def,
MAP_FST_mk_bind,mk_bind_def,freevars_mk_seqs_lemma]
\\ rw [] \\ res_tac \\ fs []
\\ gvs [SUBSET_DEF]
\\ metis_tac []
QED
Triviality eval_wh_Constructor_NIL_bisim =
eval_wh_Constructor_bisim |> Q.GEN ‘xs’ |> Q.SPEC ‘[]’ |> SIMP_RULE (srw_ss()) [];
Triviality IMP_Seq_Zero:
closed y ∧ (x ≃ y) F ⇒ (x ≃ Seq Zero y) F
Proof
rw []
\\ irule app_bisimilarity_trans
\\ first_x_assum $ irule_at Any
\\ irule eval_wh_IMP_app_bisimilarity
\\ fs [eval_wh_Seq,eval_wh_Prim,get_atoms_def]
QED
Theorem letrec_seq_subst_funs_mk_bind:
obligation binds ∧
FEVERY (λ(k,v). closed v) m1 ∧
FEVERY (λ(k,v). closed v) m2 ∧
FDOM m1 = FDOM m2 ∧
(∀k v1 v2.
FLOOKUP m1 k = SOME v1 ∧ FLOOKUP m2 k = SOME v2 ⇒
letrec_seq binds v1 v2) ⇒
letrec_seq binds (subst m1 (subst_funs (MAP mk_bind binds) e))
(subst m2 (subst_funs (MAP mk_seq_bind binds) e))
Proof
simp [subset_funs_mk_bind,subset_funs_mk_seq_bind]
\\ strip_tac
\\ irule subst_letrec_seq \\ fs []
\\ conj_tac >- (rw [] \\ imp_res_tac FEVERY_FLOOKUP \\ fs [] \\ res_tac)
\\ irule subst_letrec_seq \\ fs []
\\ fs [letrec_seq_refl]
\\ reverse conj_tac
>- fs [FDOM_FUPDATE_LIST,MAP_MAP_o,combinTheory.o_DEF,UNCURRY,SF ETA_ss,
LAMBDA_PROD,mk_bind_def,mk_seq_bind_def]
\\ reverse (rpt strip_tac)
>- (drule mk_seq_bind_closed \\ disch_then irule
\\ fs [FRANGE_FLOOKUP] \\ first_x_assum $ irule_at Any)
>- (drule mk_bind_closed \\ disch_then irule
\\ fs [FRANGE_FLOOKUP] \\ first_x_assum $ irule_at Any)
\\ fs [FDOM_UPDATES_EQ,PULL_EXISTS,alistTheory.flookup_fupdate_list]
\\ fs [FORALL_FRANGE,alistTheory.flookup_fupdate_list,AllCaseEqs()]
\\ simp [Once letrec_seq_cases]
\\ disj1_tac
\\ fs [EXISTS_PROD]
\\ fs [FDOM_FUPDATE_LIST,MAP_MAP_o,combinTheory.o_DEF,UNCURRY,SF ETA_ss,
LAMBDA_PROD,mk_bind_def,mk_seq_bind_def]
\\ qabbrev_tac ‘xs = MAP mk_bind binds’ \\ pop_assum kall_tac
\\ qabbrev_tac ‘ys = MAP mk_seq_bind binds’ \\ pop_assum kall_tac
\\ pop_assum mp_tac \\ pop_assum mp_tac
\\ rpt $ pop_assum kall_tac
\\ qid_spec_tac ‘k’
\\ qid_spec_tac ‘v1’
\\ qid_spec_tac ‘v2’
\\ qid_spec_tac ‘binds’
\\ Induct \\ fs [FORALL_PROD]
\\ fs [ALOOKUP_APPEND,AllCaseEqs(),ALOOKUP_NONE,MAP_REVERSE]
\\ fs [MEM_MAP,FORALL_PROD]
\\ rw []
>- metis_tac []
\\ imp_res_tac ALOOKUP_MEM
\\ fs [MEM_MAP,EXISTS_PROD] \\ gvs []
\\ res_tac \\ fs []
\\ metis_tac []
QED
Triviality freevars_mk_seqs':
freevars (mk_seqs vs e) =
set (MAP FST (FILTER SND vs)) UNION freevars e
Proof
Induct_on ‘vs’ \\ fs [mk_seqs_def,FORALL_PROD]
\\ strip_tac \\ Cases \\ fs [mk_seqs_def]
\\ fs [EXTENSION] \\ metis_tac []
QED
Theorem obligation_imp_freevars:
obligation binds ∧ MEM (n,vs,e) binds ⇒
freevars (mk_seqs vs (subst_funs (MAP mk_seq_bind binds) e)) ⊆
freevars (subst_funs (MAP mk_bind binds) e)
Proof
rw [subset_funs_mk_bind,subset_funs_mk_seq_bind]
\\ fs [freevars_mk_seqs']
\\ DEP_REWRITE_TAC [freevars_subst]
\\ fs [FDOM_FUPDATE_LIST]
\\ drule mk_bind_closed
\\ drule mk_seq_bind_closed
\\ simp [SF SFY_ss] \\ strip_tac \\ strip_tac
\\ fs [MAP_MAP_o,combinTheory.o_DEF,LAMBDA_PROD,mk_bind_def,mk_seq_bind_def]
\\ fs [obligation_def,EVERY_MEM]
\\ res_tac
\\ fs [SUBSET_DEF,MEM_FILTER,MEM_MAP,EXISTS_PROD,FORALL_PROD,IN_DISJOINT]
\\ metis_tac []
QED
Theorem eval_forward_letrec_seq:
obligation binds ⇒
eval_forward F (letrec_seq binds)
Proof
strip_tac
\\ simp [eval_forward_def]
\\ ho_match_mp_tac eval_wh_to_ind
\\ rpt conj_tac
\\ rpt gen_tac
\\ rpt (disch_then strip_assume_tac)
>~ [‘Var’] >- fs [eval_wh_to_def]
>~ [‘Lam v z’] >-
(fs [eval_wh_to_def]
\\ qpat_x_assum ‘letrec_seq _ _ _’ mp_tac
\\ simp [Once letrec_seq_cases] \\ strip_tac \\ gvs []
\\ ‘eval_wh (Lam v y) = wh_Closure v y’ by fs [eval_wh_Lam]
\\ drule_all eval_wh_Closure_bisim
\\ strip_tac \\ fs []
\\ rw [] \\ first_x_assum drule
\\ disch_then $ irule_at Any
\\ irule_at Any letrec_seq_subst1
\\ fs [])
>~ [‘App e1 e2y’] >-
(fs [eval_wh_to_def]
\\ simp [Once letrec_seq_cases] \\ rpt strip_tac \\ gvs []
\\ IF_CASES_TAC \\ fs []
\\ Cases_on ‘dest_wh_Closure (eval_wh_to k e1)’ \\ fs []
\\ PairCases_on ‘x’ \\ fs []
\\ IF_CASES_TAC \\ fs []
\\ Cases_on ‘eval_wh_to k e1’ \\ gvs [dest_wh_Closure_def]
\\ first_x_assum drule \\ fs []
\\ imp_res_tac letrec_seq_freevars
\\ ‘(g ≃ g) F ∧ closed g’ by
(irule_at Any pure_exp_relTheory.reflexive_app_bisimilarity
\\ fs [closed_def])
\\ disch_then drule_all
\\ strip_tac \\ fs []
\\ rename [‘eval_wh g = wh_Closure v1 e1’]
\\ first_x_assum $ qspec_then ‘e2y’ mp_tac
\\ imp_res_tac letrec_seq_freevars
\\ ‘closed y’ by fs [closed_def]
\\ disch_then drule_all \\ strip_tac \\ gvs []
\\ fs [bind_def,FLOOKUP_DEF]
\\ first_x_assum drule
\\ disch_then irule
\\ irule_at Any IMP_closed_subst
\\ fs [FRANGE_DEF]
\\ irule_at Any pure_eval_lemmasTheory.eval_wh_Closure_closed
\\ drule eval_wh_to_IMP_eval_wh \\ fs [] \\ strip_tac
\\ first_x_assum $ irule_at $ Pos hd \\ fs []
\\ irule app_bisimilarity_trans
\\ first_x_assum $ irule_at $ Pos hd \\ fs []
\\ irule app_bisimilarity_trans
\\ first_x_assum $ irule_at $ Pos last \\ fs []
\\ irule eval_wh_IMP_app_bisimilarity
\\ irule_at Any IMP_closed_subst
\\ fs [FRANGE_DEF]
\\ irule_at Any pure_eval_lemmasTheory.eval_wh_Closure_closed
\\ first_assum $ irule_at $ Pos hd \\ fs []
\\ fs [eval_wh_App,bind_def,FLOOKUP_DEF])
>~ [‘Letrec bs x’] >-
(rpt strip_tac
\\ qpat_x_assum ‘letrec_seq _ _ _’ mp_tac
\\ simp [Once letrec_seq_cases]
\\ reverse strip_tac \\ gvs []
>-
(rw [eval_wh_to_def] \\ gvs [] \\ first_x_assum irule
\\ rename [‘(Letrec ys y ≃ e2) F’]
\\ irule_at Any app_bisimilarity_trans
\\ first_x_assum $ irule_at $ Pos $ el 2
\\ qexists_tac ‘subst_funs ys y’
\\ irule_at Any eval_wh_IMP_app_bisimilarity
\\ simp [eval_wh_Letrec] \\ gvs []
\\ fs [subst_funs_def,bind_def]
\\ ‘MAP FST ys = MAP FST bs’ by fs [] \\ fs []
\\ drule EVERY_FLOOKUP_closed_lemma \\ strip_tac
\\ ‘EVERY (λe. freevars e ⊆ set (MAP FST ys)) (MAP SND ys)’ by
(fs [EVERY_MEM] \\ rw []
\\ drule_all LIST_REL_MEM_ALT \\ rw []
\\ imp_res_tac letrec_seq_freevars \\ fs []
\\ res_tac \\ gvs [] \\ metis_tac [])
\\ imp_res_tac letrec_seq_freevars \\ fs []
\\ drule EVERY_FLOOKUP_closed_lemma \\ strip_tac
\\ asm_rewrite_tac []
\\ rpt $ irule_at Any IMP_closed_subst
\\ gvs [] \\ irule_at Any subst_letrec_seq \\ gs [FORALL_FRANGE]
\\ asm_rewrite_tac []
\\ fs [FDOM_FUPDATE_LIST,MAP_MAP_o,combinTheory.o_DEF,UNCURRY,SF ETA_ss]
\\ fs [alistTheory.flookup_fupdate_list,AllCaseEqs()]
\\ rpt strip_tac
\\ drule_all ALOOKUP_REVERSE_LIST_REL \\ strip_tac \\ gvs []
>- (simp [Once letrec_seq_cases] \\ disj2_tac \\ fs [])
\\ res_tac \\ fs []
\\ imp_res_tac letrec_seq_freevars \\ fs [])
\\ rw [eval_wh_to_def] \\ gvs []
\\ first_x_assum irule \\ fs []
\\ conj_tac >-
(fs [subst_funs_def] \\ irule IMP_closed_bind
\\ fs [SUBSET_DEF,FDOM_FUPDATE_LIST,MAP_MAP_o,
combinTheory.o_DEF,UNCURRY,SF ETA_ss])
\\ irule_at Any letrec_seq_subst_funs \\ simp []
\\ irule_at Any app_bisimilarity_trans
\\ last_x_assum $ irule_at Any
\\ irule eval_IMP_app_bisimilarity
\\ fs [eval_Letrec]
\\ fs [subst_funs_def,bind_def]
\\ rpt $ irule_at Any IMP_closed_subst
\\ fs [EVERY_MEM,MEM_MAP,PULL_EXISTS]
\\ rw []
\\ rpt $ irule_at Any IMP_closed_subst
\\ fs [FDOM_UPDATES_EQ,PULL_EXISTS,alistTheory.flookup_fupdate_list]
\\ fs [FORALL_FRANGE,alistTheory.flookup_fupdate_list,AllCaseEqs()]
\\ rw []
\\ imp_res_tac ALOOKUP_MEM
\\ gvs [EVERY_MEM] \\ res_tac \\ fs []
\\ fs [MEM_MAP,EXISTS_PROD,PULL_EXISTS,EVERY_MEM])
>~ [‘letrec_seq _ (Prim p xs)’]
\\ rpt strip_tac
\\ qpat_x_assum ‘letrec_seq _ _ _’ mp_tac
\\ Cases_on ‘p = Seq’
>-
(simp [Once letrec_seq_cases]
\\ reverse (rpt strip_tac) \\ gvs []
>-
(fs [eval_wh_to_def]
\\ IF_CASES_TAC \\ fs []
\\ fs [] \\ gvs [LENGTH_EQ_NUM_compute]
\\ Cases_on ‘k=0’ \\ fs [SF DNF_ss]
\\ Cases_on ‘eval_wh_to (k − 1) h = wh_Diverge’ \\ fs []
\\ Cases_on ‘eval_wh_to (k − 1) h = wh_Error’ \\ gvs []
\\ imp_res_tac letrec_seq_freevars
\\ first_assum irule \\ fs []
\\ first_x_assum $ irule_at $ Pos last
\\ irule app_bisimilarity_trans
\\ first_x_assum $ irule_at $ Pos last \\ fs []
\\ irule eval_wh_IMP_app_bisimilarity
\\ fs [closed_def,eval_wh_Seq,AllCaseEqs()]
\\ qsuff_tac ‘eval_wh y ≠ wh_Error ∧ eval_wh y ≠ wh_Diverge’
\\ fs []
\\ first_x_assum drule
\\ ‘(y ≃ y) F ∧ closed y’ by
(irule_at Any pure_exp_relTheory.reflexive_app_bisimilarity
\\ fs [closed_def])
\\ disch_then drule \\ fs [] \\ strip_tac
\\ Cases_on ‘eval_wh_to (k − 1) h’ \\ fs [])
\\ fs [SF DNF_ss]
\\ simp [eval_wh_to_def]
\\ Cases_on ‘k = 0’ \\ gvs []
\\ first_x_assum irule \\ fs []
\\ irule_at Any app_bisimilarity_trans
\\ first_x_assum $ irule_at $ Pos $ el 2
\\ irule_at Any IMP_Seq_Zero
\\ irule_at Any letrec_seq_subst_funs_mk_bind \\ fs []
\\ qexists_tac ‘m2’ \\ fs []
\\ conj_tac >- fs [SF SFY_ss]
\\ ‘∀n v. FLOOKUP m2 n = SOME v ⇒ closed v’ by fs [FEVERY_DEF,FLOOKUP_DEF]
\\ ‘∀v. v ∈ FRANGE m2 ⇒ closed v’ by fs [FRANGE_DEF,FLOOKUP_DEF,PULL_EXISTS]
\\ conj_asm1_tac
>-
(‘∀n v. FLOOKUP m1 n = SOME v ⇒ closed v’ by fs [FEVERY_DEF,FLOOKUP_DEF]
\\ ‘∀v. v ∈ FRANGE m1 ⇒ closed v’ by fs [FRANGE_DEF,FLOOKUP_DEF,PULL_EXISTS]
\\ drule_all pure_exp_lemmasTheory.closed_subst_freevars \\ strip_tac
\\ irule IMP_closed_subst \\ fs [] \\ gvs []
\\ irule SUBSET_TRANS \\ pop_assum $ irule_at Any
\\ irule obligation_imp_freevars \\ fs [] \\ first_x_assum $ irule_at Any)
\\ fs [obligation_def,EVERY_MEM]
\\ first_x_assum drule \\ fs [exp_eq_def]
\\ rpt strip_tac
\\ pop_assum $ qspec_then ‘m2’ mp_tac
\\ fs [bind_def,SF SFY_ss]
\\ disch_then irule
\\ qabbrev_tac ‘aa = subst_funs (MAP mk_seq_bind binds) e’
\\ drule_all pure_exp_lemmasTheory.closed_subst_freevars
\\ fs [] \\ rw []
\\ irule SUBSET_TRANS
\\ pop_assum $ irule_at Any
\\ qid_spec_tac ‘vs’ \\ Induct \\ fs [mk_seqs_def]
\\ Cases \\ Cases_on ‘r’ \\ fs [mk_seqs_def]
\\ fs [SUBSET_DEF])
\\ simp [Once letrec_seq_cases] \\ rw []
\\ Cases_on ‘p’ \\ fs []
>~ [‘Cons s xs’] >-
(rw [eval_wh_to_def]
\\ ‘eval_wh (Cons s ys) = wh_Constructor s ys’ by fs [eval_wh_Cons]
\\ drule_all eval_wh_Constructor_bisim \\ strip_tac \\ fs []
\\ drule_then drule LIST_REL_COMP
\\ match_mp_tac LIST_REL_mono \\ fs [])
>~ [‘If’] >-
(gvs [eval_wh_to_def]
\\ IF_CASES_TAC \\ fs []
\\ fs [] \\ gvs [LENGTH_EQ_NUM_compute]
\\ IF_CASES_TAC \\ fs [SF DNF_ss]
\\ reverse (Cases_on ‘∃s. eval_wh_to (k − 1) h = wh_Constructor s []’ \\ fs [])
>- (Cases_on ‘eval_wh_to (k − 1) h’ \\ gvs [] \\ rw [])
\\ qpat_x_assum ‘letrec_seq _ h y’ assume_tac
\\ first_assum drule
\\ imp_res_tac letrec_seq_freevars
\\ ‘(y ≃ y) F ∧ closed y’ by
(irule_at Any pure_exp_relTheory.reflexive_app_bisimilarity
\\ fs [closed_def])
\\ disch_then drule \\ fs [] \\ strip_tac
\\ reverse (rw []) \\ fs []
\\ rename [‘eval_wh_to (k − 1) h2’]
\\ qpat_x_assum ‘letrec_seq _ h2 _’ assume_tac
\\ first_x_assum drule
\\ disch_then irule \\ fs []
\\ irule app_bisimilarity_trans
\\ first_x_assum $ irule_at Any \\ fs []
\\ irule eval_wh_IMP_app_bisimilarity
\\ fs [closed_def,eval_wh_If])
>~ [‘IsEq cname arity onoff’] >-
(fs [eval_wh_to_def]
\\ IF_CASES_TAC \\ fs []
\\ fs [] \\ gvs [LENGTH_EQ_NUM_compute]
\\ IF_CASES_TAC \\ fs [SF DNF_ss]
\\ reverse (Cases_on ‘∃s xs. eval_wh_to (k − 1) h = wh_Constructor s xs ∧
~is_eq_fail onoff s ∧ (s = cname ⇒ arity = LENGTH xs)’ \\ fs [])
>- (Cases_on ‘eval_wh_to (k − 1) h’ \\ gvs [] \\ rw [])
\\ IF_CASES_TAC \\ gvs []
\\ first_assum drule
\\ imp_res_tac letrec_seq_freevars
\\ ‘(y ≃ y) F ∧ closed y’ by
(irule_at Any pure_exp_relTheory.reflexive_app_bisimilarity
\\ fs [closed_def])
\\ disch_then drule \\ fs [] \\ strip_tac
\\ irule eval_wh_Constructor_NIL_bisim
\\ first_x_assum $ irule_at $ Pos last
\\ imp_res_tac LIST_REL_LENGTH
\\ fs [eval_wh_IsEq])
>~ [‘Proj cname i’] >-
(fs [eval_wh_to_def]
\\ IF_CASES_TAC \\ fs []
\\ fs [] \\ gvs [LENGTH_EQ_NUM_compute]
\\ Cases_on ‘k=0’ \\ fs [SF DNF_ss]
\\ imp_res_tac LIST_REL_LENGTH
\\ reverse (Cases_on ‘∃s xs. eval_wh_to (k − 1) h = wh_Constructor s xs ∧
s = cname ∧ i < LENGTH xs’ \\ fs [])
>- (Cases_on ‘eval_wh_to (k − 1) h’ \\ gvs [] \\ rw [])
\\ first_assum irule \\ fs []
\\ last_x_assum drule \\ fs []
\\ imp_res_tac letrec_seq_freevars
\\ ‘(y ≃ y) F ∧ closed y’ by
(irule_at Any pure_exp_relTheory.reflexive_app_bisimilarity
\\ fs [closed_def])
\\ disch_then drule \\ fs [] \\ strip_tac
\\ fs [LIST_REL_EL_EQN]
\\ gvs []
\\ pop_assum drule \\ strip_tac
\\ first_x_assum $ irule_at $ Pos last
\\ irule_at Any app_bisimilarity_trans
\\ first_x_assum $ irule_at $ Pos hd \\ fs []
\\ irule_at Any app_bisimilarity_trans
\\ first_x_assum $ irule_at $ Pos $ el 2 \\ fs []
\\ irule_at Any eval_wh_IMP_app_bisimilarity
\\ fs [eval_wh_Proj]
\\ dxrule eval_wh_freevars_SUBSET
\\ dxrule eval_wh_to_freevars_SUBSET
\\ fs [PULL_EXISTS,MEM_MAP,closed_def,EXTENSION]
\\ fs [MEM_EL]
\\ metis_tac [])
>~ [‘AtomOp a’] >-
(fs [eval_wh_to_def]
\\ Cases_on ‘get_atoms (MAP (if k = 0 then K wh_Diverge else
(λa. eval_wh_to (k − 1) a)) xs)’ \\ fs []
\\ Cases_on ‘x’ \\ fs []
\\ rename [‘eval_op a atoms’]
\\ qsuff_tac ‘get_atoms (MAP eval_wh ys) = SOME (SOME atoms)’
>-
(rw [] \\ gvs []
\\ Cases_on ‘eval_op a atoms’ \\ fs []
\\ Cases_on ‘x’ \\ fs []
>-
(rw [] \\ irule eval_wh_Atom_bisim
\\ last_x_assum $ irule_at Any
\\ gvs [eval_wh_Prim])
\\ Cases_on ‘y’ \\ fs []
\\ rw [] \\ irule eval_wh_Constructor_NIL_bisim
\\ last_x_assum $ irule_at Any
\\ gvs [eval_wh_Prim])
\\ fs [get_atoms_def,AllCaseEqs()]
\\ gvs []
\\ Cases_on ‘xs = []’ >- gvs []
\\ Cases_on ‘k = 0’ >- (Cases_on ‘xs’ \\ fs [])
\\ gvs [MEM_MAP]
\\ rw []
>-
(fs [EVERY_MEM,MEM_MAP] \\ rw []
\\ drule_all LIST_REL_MEM_ALT \\ rw []
\\ first_x_assum $ drule_then drule
\\ res_tac
\\ imp_res_tac letrec_seq_freevars
\\ ‘(y ≃ y) F ∧ closed y’ by
(irule_at Any pure_exp_relTheory.reflexive_app_bisimilarity
\\ fs [closed_def])
\\ disch_then drule_all
\\ rw [] \\ fs [PULL_EXISTS]
\\ first_x_assum drule \\ strip_tac
\\ Cases_on ‘eval_wh_to (k − 1) x’ \\ fs []
\\ res_tac \\ fs [])
>-
(CCONTR_TAC \\ fs []
\\ fs [EVERY_MEM,MEM_MAP,PULL_EXISTS]
\\ drule_all LIST_REL_MEM_ALT \\ strip_tac
\\ ‘closed x ∧ ¬error_Atom (eval_wh_to (k − 1) x)’ by (res_tac \\ fs [])
\\ ‘eval_wh_to (k − 1) x ≠ wh_Diverge’ by (CCONTR_TAC \\ fs [] \\ res_tac \\ fs [])
\\ first_x_assum $ drule_then drule
\\ imp_res_tac letrec_seq_freevars
\\ ‘(y ≃ y) F ∧ closed y ∧ closed x’ by
(irule_at Any pure_exp_relTheory.reflexive_app_bisimilarity
\\ fs [closed_def,EVERY_MEM] \\ res_tac \\ fs [])
\\ disch_then drule \\ fs []
\\ Cases_on ‘eval_wh_to (k − 1) x’ \\ fs [])
\\ AP_TERM_TAC
\\ qpat_x_assum ‘LIST_REL _ _ _’ mp_tac
\\ match_mp_tac LIST_REL_IMP_MAP_EQ
\\ rw []
\\ fs [EVERY_MEM,MEM_MAP,PULL_EXISTS]
\\ ‘closed x ∧ ¬error_Atom (eval_wh_to (k − 1) x)’ by (res_tac \\ fs [])
\\ ‘eval_wh_to (k − 1) x ≠ wh_Diverge’ by (CCONTR_TAC \\ fs [] \\ res_tac \\ fs [])
\\ first_x_assum $ drule_then drule
\\ imp_res_tac letrec_seq_freevars
\\ ‘(y ≃ y) F ∧ closed y ∧ closed x’ by
(irule_at Any pure_exp_relTheory.reflexive_app_bisimilarity
\\ fs [closed_def,EVERY_MEM] \\ res_tac \\ fs [])
\\ disch_then drule \\ fs []
\\ Cases_on ‘eval_wh_to (k − 1) x’ \\ fs [])
QED
Theorem eval_wh_mk_seqs_skip:
∀vs ee k.
eval_wh_to k (subst m2 (mk_seqs vs ee)) ≠ wh_Error ∧
eval_wh_to k (subst m2 (mk_seqs vs ee)) ≠ wh_Diverge ⇒
∃k1. eval_wh_to k (subst m2 (mk_seqs vs ee)) =
eval_wh_to k1 (subst m2 ee) ∧ k1 ≤ k
Proof
Induct \\ fs [mk_seqs_def]
>- (rw [] \\ qexists_tac ‘k’ \\ fs [])
\\ fs [FORALL_PROD] \\ gen_tac \\ Cases \\ rw []
\\ fs [mk_seqs_def,subst_def]
\\ fs [eval_wh_to_def]
\\ Cases_on ‘k = 0’ \\ fs []
\\ IF_CASES_TAC \\ fs [] \\ gvs []
\\ FULL_CASE_TAC \\ fs [eval_wh_to_def]
\\ rpt strip_tac