-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
executable file
·215 lines (176 loc) · 7.89 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import time
import os
import copy
import logging
import sys
import argparse
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
from torchvision import datasets, transforms
import torchvision
from models.alexnet import alexnet
logger = logging.getLogger()
def train(model, data_loaders, dataset_sizes, reg_lambda, criterion, optimizer, scheduler, mask_network, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
logger.info('Initial sparsity of conv2: {:.4f}'.format(model.compute_sparsity()))
for epoch in range(num_epochs):
logger.info('-' * 10)
logger.info('Epoch {}/{}'.format(epoch, num_epochs - 1))
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
scheduler.step()
model.train(True) # Set model to training mode
else:
model.train(False) # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterating over data once is one epoch
for data in data_loaders[phase]:
# get the inputs
inputs, labels = data
# wrap them in Variable
inputs = Variable(inputs.cuda())
labels = Variable(labels.cuda())
# zero the parameter gradients
optimizer.zero_grad()
# forward
outputs = model(inputs)
_, preds = torch.max(outputs.data, 1)
if mask_network is None:
# normal l1 regularization on weights
loss = criterion(outputs, labels) + model.conv2.weight.norm(1) * reg_lambda
elif mask_network == 'dns':
loss = criterion(outputs, labels)
else:
# loss = crossentropy + l1 regularization on mask
loss = criterion(outputs, labels) + model.compute_mask().norm(1) * reg_lambda
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.data[0] * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects / dataset_sizes[phase]
logger.info('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
logger.info('Sparsity of conv2: {:.4f}'.format(model.compute_sparsity()))
time_elapsed = time.time() - since
logger.info('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
logger.info('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model, best_acc
def load_model(network, num_classes, mask_network, binarization_func, frozen_layers, dns_threshold, l1_threshold):
if network == 'alexnet':
model = alexnet(num_classes, mask_network, binarization_func, frozen_layers, dns_threshold, l1_threshold)
model.cuda()
else:
raise NotImplementedError
logger.info('Trainable parameters: {}'.format([name for name, p in model.named_parameters() if p.requires_grad]))
return model
def load_dataset(dataset):
if dataset == 'dtd':
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
# transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'test': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
data_dir = 'datasets/dtd_splits'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])
for x in ['train', 'val', 'test']}
data_loaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=400,
shuffle=True, num_workers=4)
for x in ['train', 'val', 'test']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val', 'test']}
else:
raise NotImplementedError
return data_loaders, dataset_sizes
def main(args):
network = 'alexnet'
dataset = 'dtd'
num_classes = 47
reg_lambda = 1e-5
num_epochs = 200
learning_rate = 0.001
step_size = 500
dns_threshold = 1e-1
l1_threshold = 1e-4
# 1x1, 3x3, 5x5, no_mask
mask_network = args.mask if args.mask != 'none' else None
# sign, sigmoid
binarization_func = 'sign'
frozen_layers = ['conv1', 'conv3', 'conv4', 'conv5', 'fc6', 'fc7', 'fc8']
# logging config
if not os.path.exists('results'):
os.makedirs('results', exist_ok=True)
postfix = ''
if len(frozen_layers) == 8:
# only training mask_cnn
postfix = ''
elif len(frozen_layers) == 7:
# training conv2 and mask_cnn jointly
postfix = '_joint'
elif len(frozen_layers) == 0:
# train conv2 and all layers together
postfix = '_all'
if mask_network is None:
pass
elif mask_network == 'dns':
postfix = '_{}{}'.format(dns_threshold, postfix)
else:
postfix = '_{}{}'.format(binarization_func, postfix)
log_file = 'results/{}_{}_{}_{}_{}{}.log'.format(network, dataset, reg_lambda, num_epochs, mask_network, postfix)
file_handler = logging.FileHandler(log_file, mode='w')
stdout_handler = logging.StreamHandler(sys.stdout)
logging.basicConfig(level=logging.INFO, handlers=[file_handler, stdout_handler],
format='%(asctime)s, %(levelname)s: %(message)s', datefmt="%Y-%m-%d %H:%M:%S")
model = load_model(network, num_classes, mask_network, binarization_func, frozen_layers, dns_threshold, l1_threshold)
data_loaders, dataset_sizes = load_dataset(dataset)
criterion = nn.CrossEntropyLoss().cuda()
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=learning_rate, momentum=0.9)
# Decay LR by a factor of 0.1 every 100 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=step_size, gamma=0.1)
best_model, best_acc = train(model, data_loaders, dataset_sizes, reg_lambda,
criterion, optimizer_ft, exp_lr_scheduler, mask_network, num_epochs=num_epochs)
torch.save(best_model.state_dict(), 'models/masked_alexnet_{:.4f}.pth'.format(best_acc))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--mask', type=str, default='1x1',
choices=('1x1', '3x3', '5x5', '5x5x5',
'res', 'res3x',
'shuffle', 'shuffle3x',
'dns', 'none'))
args = parser.parse_args()
main(args)