-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.go
428 lines (394 loc) · 11.6 KB
/
main.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
package main
import (
"bytes"
"encoding/binary"
"fmt"
)
// B-Tree Implementation:
type BNode struct {
data []byte
}
const (
BNODE_NODE = 1 //INTERNAL nodes without values
BNODE_LEAF = 2
)
type BTree struct {
// pointer pointing to disk page
root uint64
get func(uint64) BNode //dereferencing
new func(BNode) uint64 // reference new pointer to page
del func(uint64) // for free
}
// constraints so that a single KV pair fits on a single page
// one page size = 4k bytes
const HEADER = 4
const BTREE_PAGE_SIZE = 4096 // 1024 * 4
const BTREE_MAX_KEY_SIZE = 1000
const BTREE_MAX_VALUE_SIZE = 3000
func assert(condition bool) {
if !condition {
panic("Assertion failed")
}
}
func init() {
node1max := HEADER + 8 + 2 + 4 + BTREE_MAX_KEY_SIZE + BTREE_MAX_VALUE_SIZE
assert(node1max <= BTREE_PAGE_SIZE)
}
// header
func (node BNode) btype() uint16 {
return binary.LittleEndian.Uint16(node.data)
}
func (node BNode) nkeys() uint16 {
return binary.LittleEndian.Uint16(node.data[2:4])
}
func (node BNode) setHeader(btype uint16, nkeys uint16) {
binary.LittleEndian.PutUint16(node.data[0:2], btype)
binary.LittleEndian.PutUint16(node.data[2:4], nkeys)
}
// pointers
func (node BNode) getPtr(idx uint16) uint64 {
assert(idx < node.nkeys())
pos := HEADER + 8*idx
return binary.LittleEndian.Uint64(node.data[pos:])
}
func (node BNode) setPtr(idx uint16, val uint64) {
assert(idx < node.nkeys())
pos := HEADER + 8*idx
binary.LittleEndian.PutUint64(node.data[pos:], val)
}
// offset list
func offsetPos(node BNode, idx uint16) uint16 {
assert(1 <= idx && idx <= node.nkeys())
return HEADER + 8*node.nkeys() + 2*(idx-1)
}
func (node BNode) getOffset(idx uint16) uint16 {
if idx == 0 {
return 0
}
return binary.LittleEndian.Uint16(node.data[offsetPos(node, idx):])
}
func (node BNode) setOffset(idx uint16, offset uint16) {
binary.LittleEndian.PutUint16(node.data[offsetPos(node, idx):], offset)
}
// key-values
func (node BNode) kvPos(idx uint16) uint16 {
assert(idx <= node.nkeys())
return HEADER + 8*node.nkeys() + 2*node.nkeys() + node.getOffset(idx)
}
func (node BNode) getKey(idx uint16) []byte {
assert(idx < node.nkeys())
pos := node.kvPos(idx)
klen := binary.LittleEndian.Uint16(node.data[pos:])
return node.data[pos+4:][:klen]
}
func (node BNode) getVal(idx uint16) []byte {
assert(idx < node.nkeys())
pos := node.kvPos(idx)
klen := binary.LittleEndian.Uint16(node.data[pos+0:])
vlen := binary.LittleEndian.Uint16(node.data[pos+2:])
return node.data[pos+4+klen:][:vlen]
}
// node size in bytes
func (node BNode) nbytes() uint16 {
return node.kvPos(node.nkeys())
}
// nodeLookupLE returns the index of the first kid node whose range intersects the key.
func nodeLookupLE(node BNode, key []byte) uint16 {
nkeys := node.nkeys()
left, right := 1, int(nkeys) // Convert right to int
for left < right {
mid := uint16(left + (right-left)/2)
cmp := bytes.Compare(node.getKey(mid), key)
if cmp < 0 {
left = int(mid) + 1
} else {
right = int(mid)
}
}
return uint16(left - 1)
}
// add a new key to a leaf node
func leafInsert(new BNode, old BNode, idx uint16, key []byte, val []byte) {
new.setHeader(BNODE_LEAF, old.nkeys()+1)
nodeAppendRange(new, old, 0, 0, idx)
nodeAppendKV(new, idx, 0, key, val)
nodeAppendRange(new, old, idx+1, idx, old.nkeys()-idx)
}
// copy multiple KVs into the position
func nodeAppendRange(
new BNode, old BNode,
dstNew uint16, srcOld uint16, n uint16,
) {
assert(srcOld+n <= old.nkeys())
assert(dstNew+n <= new.nkeys())
if n == 0 {
return
}
// pointers
for i := uint16(0); i < n; i++ {
new.setPtr(dstNew+i, old.getPtr(srcOld+i))
}
// offsets
dstBegin := new.getOffset(dstNew)
srcBegin := old.getOffset(srcOld)
for i := uint16(1); i <= n; i++ { // NOTE: the range is [1, n]
offset := dstBegin + old.getOffset(srcOld+i) - srcBegin
new.setOffset(dstNew+i, offset)
}
// KVs
begin := old.kvPos(srcOld)
end := old.kvPos(srcOld + n)
copy(new.data[new.kvPos(dstNew):], old.data[begin:end])
}
// copy a KV into the position
func nodeAppendKV(new BNode, idx uint16, ptr uint64, key []byte, val []byte) {
// ptrs
new.setPtr(idx, ptr)
// KVs
pos := new.kvPos(idx)
binary.LittleEndian.PutUint16(new.data[pos+0:], uint16(len(key)))
binary.LittleEndian.PutUint16(new.data[pos+2:], uint16(len(val)))
copy(new.data[pos+4:], key)
copy(new.data[pos+4+uint16(len(key)):], val)
// the offset of the next key
new.setOffset(idx+1, new.getOffset(idx)+4+uint16((len(key)+len(val))))
}
func nodeInsert(tree *BTree, parent BNode, node BNode, idx uint16, key []byte, val []byte) {
if node.btype() == BNODE_LEAF {
leafInsert(node, parent, idx, key, val)
} else if node.btype() == BNODE_NODE {
// internal node, insert it to a kid node.
// Implement the logic for inserting into internal nodes here.
} else {
panic("bad node!")
}
}
func setKey(node BNode, idx uint16, key []byte) {
pos := HEADER + 8*node.nkeys() + 2*idx
copy(node.data[pos:pos+len(key)], key)
}
func setVal(node BNode, idx uint16, val []byte) {
pos := HEADER + 8*node.nkeys() + 2*node.nkeys() + 2*idx
copy(node.data[pos:pos+len(val)], val)
}
func leafUpdate(node BNode, idx uint16, key []byte, val []byte) {
node.setKey(idx, key)
node.setVal(idx, val)
}
func treeInsert(tree *BTree, node BNode, key []byte, val []byte) BNode {
// the result node.
// it's allowed to be bigger than 1 page and will be split if so
new := BNode{data: make([]byte, 2*BTREE_PAGE_SIZE)}
// where to insert the key?
idx := nodeLookupLE(node, key)
// act depending on the node type
switch node.btype() {
case BNODE_LEAF:
// leaf, node.getKey(idx) <= key
if bytes.Equal(key, node.getKey(idx)) {
// found the key, update it.
leafUpdate(new, node, idx, key, val)
} else {
// insert it after the position.
leafInsert(new, node, idx+1, key, val)
}
case BNODE_NODE:
// internal node, insert it to a kid node.
nodeInsert(tree, new, node, idx, key, val)
default:
panic("bad node!")
}
return new
}
// split a node if it's too big. the results are 1~3 nodes.
func nodeSplit3(old BNode) (uint16, [3]BNode) {
if old.nbytes() <= BTREE_PAGE_SIZE {
old.data = old.data[:BTREE_PAGE_SIZE]
return 1, [3]BNode{old}
}
left := BNode{make([]byte, 2*BTREE_PAGE_SIZE)} // might be split later
right := BNode{make([]byte, BTREE_PAGE_SIZE)}
nodeSplit2(left, right, old)
if left.nbytes() <= BTREE_PAGE_SIZE {
left.data = left.data[:BTREE_PAGE_SIZE]
return 2, [3]BNode{left, right}
}
// the left node is still too large
leftleft := BNode{make([]byte, BTREE_PAGE_SIZE)}
middle := BNode{make([]byte, BTREE_PAGE_SIZE)}
nodeSplit2(leftleft, middle, left)
assert(leftleft.nbytes() <= BTREE_PAGE_SIZE)
return 3, [3]BNode{leftleft, middle, right}
}
// replace a link with multiple links
func nodeReplaceKidN(
tree *BTree, new BNode, old BNode, idx uint16,
kids ...BNode,
) {
inc := uint16(len(kids))
new.setHeader(BNODE_NODE, old.nkeys()+inc-1)
nodeAppendRange(new, old, 0, 0, idx)
for i, node := range kids {
nodeAppendKV(new, idx+uint16(i), tree.new(node), node.getKey(0), nil)
}
nodeAppendRange(new, old, idx+inc, idx+1, old.nkeys()-(idx+1))
}
// part of the treeInsert(): KV insertion to an internal node
func nodeInsert(
tree *BTree, new BNode, node BNode, idx uint16,
key []byte, val []byte,
) {
// get and deallocate the kid node
kptr := node.getPtr(idx)
knode := tree.get(kptr)
tree.del(kptr)
// recursive insertion to the kid node
knode = treeInsert(tree, knode, key, val)
// split the result
nsplit, splited := nodeSplit3(knode)
// update the kid links
nodeReplaceKidN(tree, new, node, idx, splited[:nsplit]...)
}
// update 1 : begins
// remove a key from a leaf node
func leafDelete(new BNode, old BNode, idx uint16) {
new.setHeader(BNODE_LEAF, old.nkeys()-1)
nodeAppendRange(new, old, 0, 0, idx)
nodeAppendRange(new, old, idx, idx+1, old.nkeys()-(idx+1))
}
// delete a key from the tree
func treeDelete(tree *BTree, node BNode, key []byte) BNode {
// where to find the key?
idx := nodeLookupLE(node, key)
// act depending on the node type
switch node.btype() {
case BNODE_LEAF:
if !bytes.Equal(key, node.getKey(idx)) {
return BNode{} // not found
}
// delete the key in the leaf
new := BNode{data: make([]byte, BTREE_PAGE_SIZE)}
leafDelete(new, node, idx)
return new
case BNODE_NODE:
return nodeDelete(tree, node, idx, key)
default:
panic("bad node!")
}
}
// part of the treeDelete()
func nodeDelete(tree *BTree, node BNode, idx uint16, key []byte) BNode {
// recurse into the kid
kptr := node.getPtr(idx)
updated := treeDelete(tree, tree.get(kptr), key)
if len(updated.data) == 0 {
return BNode{} // not found
}
tree.del(kptr)
new := BNode{data: make([]byte, BTREE_PAGE_SIZE)}
// check for merging
mergeDir, sibling := shouldMerge(tree, node, idx, updated)
switch {
case mergeDir < 0: // left
merged := BNode{data: make([]byte, BTREE_PAGE_SIZE)}
nodeMerge(merged, sibling, updated)
tree.del(node.getPtr(idx - 1))
nodeReplace2Kid(new, node, idx-1, tree.new(merged), merged.getKey(0))
case mergeDir > 0: // right
merged := BNode{data: make([]byte, BTREE_PAGE_SIZE)}
nodeMerge(merged, updated, sibling)
tree.del(node.getPtr(idx + 1))
nodeReplace2Kid(new, node, idx, tree.new(merged), merged.getKey(0))
case mergeDir == 0:
assert(updated.nkeys() > 0)
nodeReplaceKidN(tree, new, node, idx, updated)
}
return new
}
// merge 2 nodes into 1
func nodeMerge(new BNode, left BNode, right BNode) {
new.setHeader(left.btype(), left.nkeys()+right.nkeys())
nodeAppendRange(new, left, 0, 0, left.nkeys())
nodeAppendRange(new, right, left.nkeys(), 0, right.nkeys())
}
// should the updated kid be merged with a sibling?
func shouldMerge(
tree *BTree, node BNode,
idx uint16, updated BNode,
) (int, BNode) {
if updated.nbytes() > BTREE_PAGE_SIZE/4 {
return 0, BNode{}
}
if idx > 0 {
sibling := tree.get(node.getPtr(idx - 1))
merged := sibling.nbytes() + updated.nbytes() - HEADER
if merged <= BTREE_PAGE_SIZE {
return -1, sibling
}
}
if idx+1 < node.nkeys() {
sibling := tree.get(node.getPtr(idx + 1))
merged := sibling.nbytes() + updated.nbytes() - HEADER
if merged <= BTREE_PAGE_SIZE {
return +1, sibling
}
}
return 0, BNode{}
}
// ---------------------------rootnode -----------------
func (tree *BTree) Delete(key []byte) bool {
assert(len(key) != 0)
assert(len(key) <= BTREE_MAX_KEY_SIZE)
if tree.root == 0 {
return false
}
updated := treeDelete(tree, tree.get(tree.root), key)
if len(updated.data) == 0 {
return false // not found
}
tree.del(tree.root)
if updated.btype() == BNODE_NODE && updated.nkeys() == 1 {
// remove a level
tree.root = updated.getPtr(0)
} else {
tree.root = tree.new(updated)
}
return true
}
// the interface
func (tree *BTree) Insert(key []byte, val []byte) {
assert(len(key) != 0)
assert(len(key) <= BTREE_MAX_KEY_SIZE)
assert(len(val) <= BTREE_MAX_VAL_SIZE)
if tree.root == 0 {
// create the first node
root := BNode{data: make([]byte, BTREE_PAGE_SIZE)}
root.setHeader(BNODE_LEAF, 2)
// a dummy key, this makes the tree cover the whole key space.
// thus a lookup can always find a containing node.
nodeAppendKV(root, 0, 0, nil, nil)
nodeAppendKV(root, 1, 0, key, val)
tree.root = tree.new(root)
return
}
node := tree.get(tree.root)
tree.del(tree.root)
node = treeInsert(tree, node, key, val)
nsplit, splitted := nodeSplit3(node)
if nsplit > 1 {
// the root was split, add a new level.
root := BNode{data: make([]byte, BTREE_PAGE_SIZE)}
root.setHeader(BNODE_NODE, nsplit)
for i, knode := range splitted[:nsplit] {
ptr, key := tree.new(knode), knode.getKey(0)
nodeAppendKV(root, uint16(i), ptr, key, nil)
}
tree.root = tree.new(root)
} else {
tree.root = tree.new(splitted[0])
}
}
//update 1 - finished
func main() {
fmt.Println("Hello World")
}