-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSeqence_Number.py
114 lines (96 loc) · 3.78 KB
/
Seqence_Number.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
def arithmetic_sequence (a1 , d , n):
return [ a1 + (i - 1) * d for i in range (1 , n + 1) ]
a1 = 3 # first term
d = 4 # common difference
n = 5 # number of terms
arithmetic_seq = arithmetic_sequence (a1 , d , n)
print (" Arithmetic Sequence :", arithmetic_seq )
#******************************************************************************
def geometric_sequence ( a1 , r , n):
return [ a1 * (r ** (i - 1) ) for i in range (1 , n + 1) ]
a1 = 2 # first term
r = 3 # common ratio
n = 4 # number of terms
geometric_seq = geometric_sequence ( a1 , r , n)
print (" Geometric Sequence :", geometric_seq )
#******************************************************************************
def fibonacci_sequence ( n):
fib_seq = [0 , 1]
for i in range (2 , n ):
fib_seq . append ( fib_seq [ -1] + fib_seq [ -2])
return fib_seq [: n]
n = 10 # number of terms
fibonacci_seq = fibonacci_sequence ( n)
print (" Fibonacci Sequence :", fibonacci_seq )
#******************************************************************************
def harmonic_sequence (n ):
return [1 / i for i in range (1 , n + 1) ]
n = 5 # number of terms
harmonic_seq = harmonic_sequence (n)
print (" Harmonic Sequence :", harmonic_seq )
#******************************************************************************
def square_numbers (n):
return [i **2 for i in range (1 , n + 1) ]
n = 5 # number of terms
square_seq = square_numbers (n)
print (" Square Numbers :", square_seq )
#******************************************************************************
def cube_numbers (n ):
return [i **3 for i in range (1 , n + 1) ]
n = 5 # number of terms
cube_seq = cube_numbers (n )
print (" Cube Numbers :", cube_seq )
#******************************************************************************
def triangular_numbers ( n):
return [i * (i + 1) // 2 for i in range (1 , n + 1) ]
n = 5 # number of terms
triangular_seq = triangular_numbers (n)
print (" Triangular Numbers :", triangular_seq )
#******************************************************************************
def is_prime ( num ):
if num <= 1:
return False
for i in range (2 , int ( num **0.5) + 1) :
if num % i == 0:
return False
return True
def prime_numbers ( n):
primes = []
num = 2
while len ( primes ) < n:
if is_prime ( num ):
primes . append ( num )
num += 1
return primes
n = 6 # number of terms
prime_seq = prime_numbers ( n)
print (" Prime Numbers :", prime_seq )
#******************************************************************************
def factorial_sequence ( n):
factorials = [1]
for i in range (1 , n + 1) :
factorials . append ( factorials [ -1] * i)
return factorials
n = 5 # number of terms
factorial_seq = factorial_sequence ( n)
print (" Factorial Sequence :", factorial_seq )
#******************************************************************************
def alternating_sequence (n):
return [( -1) ** i for i in range (n) ]
n = 10 # number of terms
alternating_seq = alternating_sequence ( n)
print (" Alternating Sequence :", alternating_seq )
#******************************************************************************
def exponential_sequence (b , n):
return [b ** i for i in range (1 , n + 1) ]
b = 2 # base
n = 5 # number of terms
exponential_seq = exponential_sequence (b , n )
print (" Exponential Sequence :", exponential_seq )
#******************************************************************************
from math import comb
def catalan_numbers (n):
return [ comb (2 * i , i) // ( i + 1) for i in range (n) ]
n = 5 # number of terms
catalan_seq = catalan_numbers (n)
print (" Catalan Numbers :", catalan_seq )