-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathextract_features.py
176 lines (143 loc) · 6.65 KB
/
extract_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import hydra
from omegaconf import DictConfig
import os
import dotenv
from tqdm import tqdm
from PIL import Image
import pickle
import numpy as np
import json
import base64
from src.utils.dataset_loaders import get_dataset
from torch.utils.data import DataLoader
# load environment variables from `.env` file if it exists
# recursively searches for `.env` in all folders starting from work dir
dir_path = os.path.dirname(os.path.realpath(__file__))
dotenv.load_dotenv(dir_path + '/var_environment.env', override=True)
def read_image(image_path):
with open(image_path, "rb") as f:
return f.read()
@hydra.main(version_base=None, config_path="configs", config_name="extract_features.yaml")
def run(cfg: DictConfig):
"""Extracts features from a dataset and save it into numpy files.
Args:
cfg (DictConfig): DictConfig configuration composed by Hydra.
"""
assert cfg.features in ["image", "descriptions", "concepts"]
train_dataset, test_dataset = get_dataset(cfg)
batch_size = cfg.get("bs") if hasattr(cfg, "bs") else 1
train_dataloader = DataLoader(train_dataset, shuffle=False, num_workers=cfg.num_workers, batch_size=batch_size)
test_dataloader = DataLoader(test_dataset, shuffle=False, num_workers=cfg.num_workers, batch_size=batch_size)
if cfg.get("name") == 'med-flamingo':
""" Extract features from Med-Flamingo """
from src.models.med_flamingo.demo import MedFlamingo
model = MedFlamingo(os.environ["LLAMA_PATH"])
elif cfg.get("name") == 'open-flamingo':
""" Extract features from OpenFlamingo """
from src.models.open_flamingo.demo import OpenFlamingo
model = OpenFlamingo()
elif cfg.get("name") == 'llava-next':
""" Extract features from LLaVA-NeXT """
from src.models.llava_next.demo import LlavaNext
model = LlavaNext(cfg.max_memory)
elif cfg.get("name") == 'chexagent':
""" Extract features from CheXagent """
from src.models.chexagent.demo import CheXagent
model = CheXagent(cfg.max_memory)
elif cfg.get("name") == 'llava-med':
""" Extract features from LLaVA-Med """
from src.models.llava_med.demo import LlavaMed
model = LlavaMed()
elif cfg.get("name") == 'idefics':
""" Extract features from IDEFICS """
from src.models.idefics.demo import Idefics
model = Idefics()
elif cfg.get("name") == 'vila8B':
""" Extract features from VILA """
from src.models.vila.demo import Vila
model = Vila(version="8B")
elif cfg.get("name") == 'vila40B':
""" Extract features from VILA """
from src.models.vila.demo import Vila
model = Vila(version="40B")
elif cfg.get("name") == 'skingpt4':
""" Extract features from SkinGPT-4 """
from src.models.skingpt4.demo import SkinGPT4
model = SkinGPT4(os.environ["LLAMA2_PATH"], os.environ["SKINGPT4_PATH"])
elif cfg.get("name") == 'llava-ov':
""" Extract features from LLaVA-OneVision """
assert cfg.bs == 1, "llava-ov only supports batch size 1"
from src.models.llava_ov.demo import LlavaOV
model = LlavaOV()
elif cfg.get("name") == 'qwen2-vl':
""" Extract features from Qwen2-VL """
assert cfg.bs == 1, "qwen2-vl only supports batch size 1"
from src.models.qwen2_vl.demo import Qwen2VL
model = Qwen2VL()
elif cfg.get("name") == 'minicpm':
""" Extract features from MiniCPM """
from src.models.mini_cpm.demo import miniCPM
model = miniCPM()
elif cfg.get("name") == 'internvl2':
""" Extract features from InternVL2 """
from src.models.internvl.demo import InternVL2
model = InternVL2()
elif cfg.get("name") == 'idefics3':
""" Extract features from Idefics3 """
from src.models.idefics3.demo import Idefics3
model = Idefics3()
elif cfg.get("name") == 'mplug':
""" Extract features from mPLUG-Owl3 """
from src.models.mplug_owl3.demo import mPLUGOwl3
model = mPLUGOwl3()
elif cfg.get("name") == 'clip':
""" Extract features from BiomedCLIP """
from src.models.clip_vitb16 import CLIPViTB16
model = CLIPViTB16()
elif cfg.get("name") == 'biomedclip':
""" Extract features from CLIP """
from src.models.biomedclip import BiomedCLIP
model = BiomedCLIP()
elif cfg.get("name") == 'medimageinsight':
""" Extract features from MedImageInsight """
from src.models.MedImageInsights.medimageinsightmodel import MedImageInsight
model = MedImageInsight(
model_dir="src/models/MedImageInsights/2024.09.27",
vision_model_name="medimageinsigt-v1.0.0.pt",
language_model_name="language_model.pth"
)
model.load_model()
else:
raise ValueError(f"The experiment {cfg.get('name')} has not a valid implementation.")
model.model.eval()
# Create dir if not exists
custom_dir = os.path.join("data", f"{cfg.features}_features", cfg.data.name)
if not os.path.exists(custom_dir):
os.makedirs(custom_dir)
features = {}
for loader, split in zip([train_dataloader, test_dataloader], ["train", "test"]):
if cfg.features == "descriptions":
with open(os.path.join("data", "descriptions", f"{cfg.data.name}", f"{cfg.data.name}_{cfg.description_model}_descriptions_{split}.json"), "r") as f:
desc = json.load(f)
for batch in tqdm(loader):
img_ids = batch["img_id"]
if cfg.features == "image":
if cfg.get("name") == 'medimageinsight':
imgs = [base64.encodebytes(read_image(x)).decode("utf-8") for x in batch["img_path"]]
feats = model.encode(images=imgs)["image_embeddings"]
else:
imgs = [Image.open(x).convert("RGB") for x in batch["img_path"]]
feats = model.extract_image_features(imgs)
elif cfg.features == "descriptions":
inputs = [desc[id] for id in img_ids]
feats = model.extract_text_features(inputs)
for id, ft in zip(img_ids, feats):
features[id] = ft / (np.linalg.norm(ft)) # L2 norm
if cfg.features == "descriptions":
fname = os.path.join(custom_dir, f"{cfg.data.name}_{cfg.name}_{cfg.description_model}_{cfg.features}_features_{split}.pkl")
else:
fname = os.path.join(custom_dir, f"{cfg.data.name}_{cfg.name}_{cfg.features}_features_{split}.pkl")
with open(fname, "wb") as f:
pickle.dump(features, f)
if __name__ == "__main__":
run()