-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathmodel.py
140 lines (111 loc) · 6.25 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import torch
import torch.nn as nn
from torch.autograd import Variable
import torch.optim as optim
import torch.nn.functional as F
USE_CUDA = torch.cuda.is_available()
class Encoder(nn.Module):
def __init__(self, input_size,embedding_size, hidden_size,batch_size=16 ,n_layers=1):
super(Encoder, self).__init__()
self.input_size = input_size
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.n_layers = n_layers
self.batch_size=batch_size
self.embedding = nn.Embedding(input_size, embedding_size)
self.lstm = nn.LSTM(embedding_size, hidden_size, n_layers, batch_first=True,bidirectional=True)
def init_weights(self):
self.embedding.weight.data.uniform_(-0.1, 0.1)
#self.lstm.weight.data.
def init_hidden(self,input):
hidden = Variable(torch.zeros(self.n_layers*2, input.size(0), self.hidden_size)).cuda() if USE_CUDA else Variable(torch.zeros(self.n_layers*2, input.size(0), self.hidden_size))
context = Variable(torch.zeros(self.n_layers*2, input.size(0), self.hidden_size)).cuda() if USE_CUDA else Variable(torch.zeros(self.n_layers*2, input.size(0), self.hidden_size))
return (hidden,context)
def forward(self, input,input_masking):
"""
input : B,T (LongTensor)
input_masking : B,T (PAD 마스킹한 ByteTensor)
<PAD> 제외한 리얼 Context를 다시 만들어서 아웃풋으로
"""
self.hidden = self.init_hidden(input)
embedded = self.embedding(input)
output, self.hidden = self.lstm(embedded, self.hidden)
real_context=[]
for i,o in enumerate(output): # B,T,D
real_length = input_masking[i].data.tolist().count(0) # 실제 길이
real_context.append(o[real_length-1])
return output, torch.cat(real_context).view(input.size(0),-1).unsqueeze(1)
class Decoder(nn.Module):
def __init__(self,slot_size,intent_size,embedding_size,hidden_size,batch_size=16,n_layers=1,dropout_p=0.1):
super(Decoder, self).__init__()
self.hidden_size = hidden_size
self.slot_size = slot_size
self.intent_size = intent_size
self.n_layers = n_layers
self.dropout_p = dropout_p
self.embedding_size = embedding_size
self.batch_size = batch_size
# Define the layers
self.embedding = nn.Embedding(self.slot_size, self.embedding_size) #TODO encoder와 공유하도록 하고 학습되지 않게..
#self.dropout = nn.Dropout(self.dropout_p)
self.lstm = nn.LSTM(self.embedding_size+self.hidden_size*2, self.hidden_size, self.n_layers, batch_first=True)
self.attn = nn.Linear(self.hidden_size,self.hidden_size) # Attention
self.slot_out = nn.Linear(self.hidden_size*2, self.slot_size)
self.intent_out = nn.Linear(self.hidden_size*2,self.intent_size)
def init_weights(self):
self.embedding.weight.data.uniform_(-0.1, 0.1)
#self.out.bias.data.fill_(0)
#self.out.weight.data.uniform_(-0.1, 0.1)
#self.lstm.weight.data.
def Attention(self, hidden, encoder_outputs, encoder_maskings):
"""
hidden : 1,B,D
encoder_outputs : B,T,D
encoder_maskings : B,T # ByteTensor
"""
hidden = hidden.squeeze(0).unsqueeze(2) # 히든 : (1,배치,차원) -> (배치,차원,1)
batch_size = encoder_outputs.size(0) # B
max_len = encoder_outputs.size(1) # T
energies = self.attn(encoder_outputs.contiguous().view(batch_size*max_len,-1)) # B*T,D -> B*T,D
energies = energies.view(batch_size,max_len,-1) # B,T,D (배치,타임,차원)
attn_energies = energies.bmm(hidden).transpose(1,2) # B,T,D * B,D,1 --> B,1,T
attn_energies = attn_energies.squeeze(1).masked_fill(encoder_maskings,-1e12) # PAD masking
alpha = F.softmax(attn_energies) # B,T
alpha = alpha.unsqueeze(1) # B,1,T
context = alpha.bmm(encoder_outputs) # B,1,T * B,T,D => B,1,D
return context # B,1,D
def init_hidden(self,input):
hidden = Variable(torch.zeros(self.n_layers*1, input.size(0), self.hidden_size)).cuda() if USE_CUDA else Variable(torch.zeros(self.n_layers*2,input.size(0), self.hidden_size))
context = Variable(torch.zeros(self.n_layers*1, input.size(0), self.hidden_size)).cuda() if USE_CUDA else Variable(torch.zeros(self.n_layers*2, input.size(0), self.hidden_size))
return (hidden,context)
def forward(self, input,context,encoder_outputs,encoder_maskings,training=True):
"""
input : B,L(length)
enc_context : B,1,D
"""
# Get the embedding of the current input word
embedded = self.embedding(input)
hidden = self.init_hidden(input)
decode=[]
aligns = encoder_outputs.transpose(0,1)
length = encoder_outputs.size(1)
for i in range(length): # Input_sequence와 Output_sequence의 길이가 같기 때문..
aligned = aligns[i].unsqueeze(1)# B,1,D
_, hidden = self.lstm(torch.cat((embedded,context,aligned),2), hidden) # input, context, aligned encoder hidden, hidden
# for Intent Detection
if i==0:
intent_hidden = hidden[0].clone()
intent_context = self.Attention(intent_hidden, encoder_outputs,encoder_maskings)
concated = torch.cat((intent_hidden,intent_context.transpose(0,1)),2) # 1,B,D
intent_score = self.intent_out(concated.squeeze(0)) # B,D
concated = torch.cat((hidden[0],context.transpose(0,1)),2)
score = self.slot_out(concated.squeeze(0))
softmaxed = F.log_softmax(score)
decode.append(softmaxed)
_,input = torch.max(softmaxed,1)
embedded = self.embedding(input.unsqueeze(1))
# 그 다음 Context Vector를 Attention으로 계산
context = self.Attention(hidden[0], encoder_outputs,encoder_maskings)
# 요고 주의! time-step을 column-wise concat한 후, reshape!!
slot_scores = torch.cat(decode,1)
return slot_scores.view(input.size(0)*length,-1), intent_score