title | author | date | output | ||||
---|---|---|---|---|---|---|---|
Analysis_of_HIV_Drug_Resistance_Data |
Daniel McNulty II |
December 21, 2019 |
|
The scientific goal is to determine which mutations of the Human Immunodeficiency Virus Type 1 (HIV-1) are associated with drug resistance. The data set, publicly available from the Stanford HIV Drug Resistance Database http://hivdb.stanford.edu/pages/published_analysis/genophenoPNAS2006/, was originally analyzed in (Rhee et al. 2006).
The data set consists of measurements for three classes of drugs: protease inhibitors (PIs), nucleoside reverse transcriptase (RT) inhibitors (NRTIs), and nonnucleoside RT inhibitors (NNRTIs). Protease and reverse transcriptase are two enzymes in HIV-1 that are crucial to the function of the virus. This data set seeks associations between mutations in the HIV-1 protease and drug resistance to different PI type drugs, and between mutations in the HIV-1 reverse transcriptase and drug resistance to different NRTI and NNRTI type drugs (The raw data are saved as gene_df
).
In order to evaluate our results, we compare with the treatment-selected mutation panels created by (Rhee et al. 2005), which can be viewed as the ground true. These panels give lists of HIV-1 mutations appearing more frequently in patients who have previously been treated with PI, NRTI, or NNRTI type drugs, than in patients with no previous exposure to that drug type. Increased frequency of a mutation among patients treated with a certain drug type implies that the mutation confers resistance to that drug type (The raw data are saved as tsm_df
).
To simplify the analysis, in this project we will confine our attention to the PI drugs.
drug_class = 'PI' # Possible drug types are 'PI', 'NRTI', and 'NNRTI'.
First, we download the data and read it into data frames.
base_url = 'https://hivdb.stanford.edu/_wrapper/pages/published_analysis/genophenoPNAS2006'
gene_url = paste(base_url, 'DATA', paste0(drug_class, '_DATA.txt'), sep='/')
tsm_url = paste(base_url, 'MUTATIONLISTS', 'NP_TSM', drug_class, sep='/')
gene_df = read.delim(gene_url, na.string = c('NA', ''), stringsAsFactors = FALSE)
tsm_df = read.delim(tsm_url, header = FALSE, stringsAsFactors = FALSE)
names(tsm_df) = c('Position', 'Mutations')
A small sample of the data is shown below.
head(gene_df, n=6)
## IsolateName PseudoName MedlineID APV ATV IDV LPV NFV RTV SQV P1
## 1 CA10676 CA622 10839657 2.3 NA 32.7 NA 23.4 51.6 37.8 -
## 2 CA37880 CA622 15995959 76.0 NA 131.0 200.0 50.0 200.0 156.0 -
## 3 CA9984 CA624 11897594 2.8 NA 12.0 NA 100.0 41.0 145.6 -
## 4 CA17003 CA628 15995959 6.5 9.2 2.1 5.3 5.0 36.0 13.0 -
## 5 CA10670 CA634 10839657 8.3 NA 100.0 NA 161.1 170.2 100.0 -
## 6 CA42683 CA634 15995959 82.0 75.0 400.0 400.0 91.0 400.0 400.0 -
## P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22
## 1 - - - - - - - - I - - - - - - - - - - - -
## 2 - - - - - - - - F L - - - - A - - I - - -
## 3 - - - - - - - - - - - V - - - - - - R - -
## 4 - - - - - - - - I - - - - - - - - - - - -
## 5 - - - - - - - - I - - - - - - - - - R - -
## 6 - - - - - - - - I - - - - - - - - - R - -
## P23 P24 P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 P41
## 1 - - - - - - - - - - - - - - DN - - - K
## 2 - - - - - - - - - - F - - - - - - - K
## 3 - - - - - - - N - - IL - D I - - - - -
## 4 I - - - - - - - - - - - - - - - - - -
## 5 F - - - - - - - - - - - D I D - - - -
## 6 - - - - - - - - - - F T D I D - - - -
## P42 P43 P44 P45 P46 P47 P48 P49 P50 P51 P52 P53 P54 P55 P56 P57 P58 P59 P60
## 1 - - - RK I - - - - - - - - - - - - - -
## 2 - - - - I - - - - - - - V - - - - - -
## 3 - - - - - - - - - - - - V - - - - - -
## 4 - - - - L - - - - - - - - - - - E - E
## 5 - - - - I - V - - - - - T - - - - - -
## 6 - T - - I - V - V - - - S - - - - - -
## P61 P62 P63 P64 P65 P66 P67 P68 P69 P70 P71 P72 P73 P74 P75 P76 P77 P78 P79
## 1 - - P - - - - - - - LV - S - - - I - -
## 2 - - P - - - - - - - V - S - - - - - -
## 3 - - P - - - - - - - TA - - - - - - - -
## 4 EK - P - - - - - - - T T - - - - - - -
## 5 - V P - - - - - - - V X - - - - I - -
## 6 - V P - - - - - - - V V - - - - I - -
## P80 P81 P82 P83 P84 P85 P86 P87 P88 P89 P90 P91 P92 P93 P94 P95 P96 P97 P98
## 1 - - T - V V - - - - M - - L - - - - -
## 2 - - T - V - - - - V M S - L - - - - -
## 3 - - - - - - - - D - M - - - - - - - -
## 4 - - A - V - - - - - M - - - - - - - -
## 5 - - A - - - - - - - - - - L - - - - -
## 6 - - A - - V - - - - - - - L - - - - -
## P99
## 1 -
## 2 -
## 3 .
## 4 -
## 5 -
## 6 -
head(tsm_df, n=6)
## Position Mutations
## 1 10 F R
## 2 11 I
## 3 20 I T V
## 4 23 I
## 5 24 I
## 6 30 N
In tsm_df
, the variable Position
denotes the position of the mutations that are associated with drug-resistance, while Mutations
indicating the mutation type.
The gene data table has some rows with error flags or nonstandard mutation codes. For simplicity, we remove all such rows.
# Returns rows for which every column matches the given regular expression.
grepl_rows <- function(pattern, df) {
cell_matches = apply(df, c(1,2), function(x) grepl(pattern, x))
apply(cell_matches, 1, all)
}
pos_start = which(names(gene_df) == 'P1')
pos_cols = seq.int(pos_start, ncol(gene_df))
valid_rows = grepl_rows('^(\\.|-|[A-Zid]+)$', gene_df[,pos_cols])
gene_df = gene_df[valid_rows,]
We now construct the design matrix
For example, in the sample for PI type drugs, three different mutations (A, C, and D) are observed at position 63 in the protease, and so three columns of
# Flatten a matrix to a vector with names from concatenating row/column names.
flatten_matrix <- function(M, sep='.') {
x <- c(M)
names(x) <- c(outer(rownames(M), colnames(M),
function(...) paste(..., sep=sep)))
x
}
# Construct preliminary design matrix.
muts = c(LETTERS, 'i', 'd')
X = outer(muts, as.matrix(gene_df[,pos_cols]), Vectorize(grepl))
X = aperm(X, c(2,3,1))
dimnames(X)[[3]] <- muts
X = t(apply(X, 1, flatten_matrix))
mode(X) <- 'numeric'
# Remove any mutation/position pairs that never appear in the data.
X = X[,colSums(X) != 0]
# Extract response matrix.
Y = gene_df[,4:(pos_start-1)]
An excerpt of the design matrix is shown below. By construction, every column contains at least one 1, but the matrix is still quite sparse with the relative frequency of 1’s being about 0.025.
data.frame(X)[1:10, ]
## P4.A P12.A P13.A P16.A P20.A P22.A P28.A P37.A P51.A P54.A P63.A P71.A P73.A
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 1 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 1 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0
## 7 0 0 0 0 0 0 0 0 0 0 0 0 0
## 8 0 0 0 0 0 0 0 1 0 0 0 0 0
## 9 0 0 0 1 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0
## P74.A P79.A P82.A P84.A P91.A P37.C P63.C P67.C P73.C P82.C P84.C P91.C
## 1 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 1 0 0 0 0 0 0 0 0 0
## 5 0 0 1 0 0 0 0 0 0 0 0 0
## 6 0 0 1 0 0 0 0 0 0 0 0 0
## 7 0 0 1 0 0 0 0 0 0 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0 0 0
## 10 0 0 1 0 0 0 0 0 0 0 0 0
## P95.C P4.D P12.D P25.D P34.D P35.D P37.D P60.D P61.D P63.D P65.D P68.D P69.D
## 1 0 0 0 0 0 0 1 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 1 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 1 1 0 0 0 0 0 0
## 6 0 0 0 0 0 1 1 0 0 0 0 0 0
## 7 0 0 0 0 0 0 1 0 0 0 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0
## P79.D P83.D P88.D P98.D P7.E P12.E P16.E P17.E P18.E P20.E P21.E P34.E P35.E
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 1 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0
## 7 0 0 0 0 0 0 0 1 0 0 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0 0 0 0
## 9 1 0 0 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0
## P37.E P47.E P58.E P60.E P61.E P63.E P65.E P67.E P68.E P70.E P72.E P92.E
## 1 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 1 1 1 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0
## 7 0 0 0 0 0 0 0 0 0 0 0 0
## 8 0 0 0 0 0 0 0 0 0 1 0 0
## 9 0 0 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 1 0 0 0 0 0 0 0 0
## P10.F P19.F P23.F P24.F P33.F P38.F P59.F P63.F P66.F P67.F P82.F P95.F P8.G
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 1 0 0 0 1 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 1 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 1 0 0 0 0 0 0 0 0
## 7 0 0 0 0 0 0 0 0 0 0 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0 0 0 0
## 9 1 0 0 0 1 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0
## P16.G P21.G P35.G P37.G P52.G P57.G P61.G P67.G P77.G P88.G P7.H P10.H P18.H
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0
## 7 0 0 0 0 0 0 0 0 0 0 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0
## P37.H P61.H P63.H P69.H P79.H P92.H P3.I P10.I P11.I P12.I P13.I P14.I P15.I
## 1 0 0 0 0 0 0 0 1 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 1 0 0 0 0 0
## 5 0 0 0 0 0 0 0 1 0 0 0 0 0
## 6 0 0 0 0 0 0 0 1 0 0 0 0 0
## 7 0 0 0 0 0 0 0 1 0 0 0 0 0
## 8 0 0 1 0 0 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 1 0 0 0 0 0
## P18.I P19.I P20.I P23.I P24.I P32.I P33.I P36.I P37.I P38.I P41.I P46.I
## 1 0 0 0 0 0 0 0 0 0 0 0 1
## 2 0 1 0 0 0 0 0 0 0 0 0 1
## 3 0 0 0 0 0 0 1 1 0 0 0 0
## 4 0 0 0 1 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 1 0 0 0 1
## 6 0 0 0 0 0 0 0 1 0 0 0 1
## 7 0 0 0 0 0 0 0 0 0 0 0 0
## 8 0 1 0 0 0 0 0 0 0 0 0 0
## 9 0 1 0 0 1 0 0 0 0 0 0 1
## 10 0 0 1 0 0 0 0 0 0 0 0 0
## P53.I P62.I P64.I P66.I P71.I P72.I P75.I P77.I P82.I P85.I P89.I P93.I
## 1 0 0 0 0 0 0 0 1 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 1 0 0 0 0
## 6 0 0 0 0 0 0 0 1 0 0 0 0
## 7 0 0 0 0 0 0 0 1 0 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0 0 0
## P12.K P14.K P20.K P34.K P41.K P43.K P45.K P55.K P57.K P61.K P69.K P70.K
## 1 0 0 0 0 1 0 1 0 0 0 0 0
## 2 0 0 0 0 1 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 1 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0
## 7 0 0 0 0 0 0 0 0 0 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0 0 0
## 10 0 0 1 0 0 0 0 0 0 0 0 0
## P72.K P74.K P85.K P92.K P6.L P10.L P11.L P13.L P15.L P18.L P19.L P20.L P23.L
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 1 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0
## 7 0 0 0 0 0 0 0 0 0 0 0 0 0
## 8 0 0 0 1 0 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0 1 0 0
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0
## P33.L P36.L P38.L P45.L P46.L P50.L P53.L P54.L P63.L P64.L P66.L P67.L
## 1 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0
## 3 1 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 1 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0
## 7 0 0 0 0 0 0 0 0 0 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 1 0 0 0 0 0 0 0
## P71.L P72.L P76.L P82.L P85.L P89.L P93.L P95.L P10.M P14.M P15.M P19.M
## 1 1 0 0 0 0 0 1 0 0 0 0 0
## 2 0 0 0 0 0 0 1 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 1 0 0 0 0 0
## 6 0 0 0 0 0 0 1 0 0 0 0 0
## 7 0 0 0 0 0 0 1 0 0 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 1 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0 0 0
## P20.M P33.M P36.M P38.M P48.M P54.M P64.M P72.M P77.M P85.M P89.M P90.M
## 1 0 0 0 0 0 0 0 0 0 0 0 1
## 2 0 0 0 0 0 0 0 0 0 0 0 1
## 3 0 0 0 0 0 0 0 0 0 0 0 1
## 4 0 0 0 0 0 0 0 0 0 0 0 1
## 5 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0
## 7 0 0 0 0 0 0 0 0 0 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0 0 1
## P93.M P12.N P20.N P30.N P34.N P35.N P37.N P43.N P45.N P55.N P60.N P61.N
## 1 0 0 0 0 0 0 1 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 1 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0
## 7 0 0 0 0 0 0 0 0 0 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0 0 0
## P66.N P69.N P70.N P79.N P85.N P98.N P4.P P9.P P12.P P19.P P26.P P28.P P37.P
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0
## 7 0 0 0 0 0 0 0 0 0 0 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0
## P39.P P41.P P63.P P69.P P74.P P79.P P89.P P7.Q P8.Q P12.Q P18.Q P19.Q P21.Q
## 1 0 0 1 0 0 0 0 0 0 0 0 0 0
## 2 0 0 1 0 0 0 0 0 0 0 0 0 0
## 3 0 0 1 0 0 0 0 0 0 0 0 0 0
## 4 0 0 1 0 0 0 0 0 0 0 0 0 0
## 5 0 0 1 0 0 0 0 0 0 0 0 0 0
## 6 0 0 1 0 0 0 0 0 0 0 0 0 0
## 7 0 0 1 0 0 0 0 0 0 0 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0 0 0 0
## 9 0 0 1 0 0 0 0 0 0 0 0 0 0
## 10 0 0 1 0 0 0 0 0 0 0 0 0 0
## P34.Q P37.Q P39.Q P45.Q P58.Q P61.Q P63.Q P69.Q P70.Q P92.Q P7.R P8.R P10.R
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0
## 7 0 0 0 0 0 0 0 0 0 0 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0
## P12.R P14.R P18.R P19.R P20.R P41.R P43.R P45.R P55.R P57.R P61.R P63.R
## 1 0 0 0 0 0 0 0 1 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 1 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 1 0 0 0 0 0 0 0
## 6 0 0 0 0 1 0 0 0 0 0 0 0
## 7 0 0 0 0 0 0 0 0 0 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0 0 0
## P69.R P70.R P72.R P74.R P92.R P4.S P9.S P12.S P37.S P39.S P48.S P52.S P54.S
## 1 0 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 1
## 7 0 0 0 0 0 0 0 0 0 0 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0
## P63.S P67.S P69.S P73.S P74.S P79.S P82.S P88.S P91.S P96.S P3.T P4.T P12.T
## 1 0 0 0 1 0 0 0 0 0 0 0 0 0
## 2 0 0 0 1 0 0 0 0 1 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0
## 7 0 1 0 0 0 0 0 0 0 0 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0
## P14.T P19.T P20.T P26.T P34.T P37.T P43.T P54.T P63.T P66.T P70.T P71.T
## 1 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 1
## 4 0 0 0 0 0 0 0 0 0 0 0 1
## 5 0 0 0 0 0 0 0 1 0 0 0 0
## 6 0 0 0 0 1 0 1 0 0 0 0 0
## 7 0 0 0 0 0 0 1 0 0 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0 0 0
## P72.T P73.T P74.T P77.T P82.T P84.T P88.T P89.T P91.T P96.T P2.V P3.V P10.V
## 1 0 0 0 0 1 0 0 0 0 0 0 0 0
## 2 0 0 0 0 1 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 1 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0 0
## 7 0 0 0 0 0 0 0 0 0 0 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0 0 0 0
## 9 0 1 0 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0 0 0 0
## P13.V P15.V P19.V P20.V P22.V P23.V P25.V P33.V P34.V P36.V P38.V P45.V
## 1 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0
## 3 1 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0
## 7 0 0 0 0 0 0 0 0 0 0 0 0
## 8 0 0 1 0 0 0 0 1 0 0 0 0
## 9 1 0 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0 0 0
## P46.V P47.V P48.V P50.V P54.V P62.V P63.V P64.V P66.V P71.V P72.V P75.V
## 1 0 0 0 0 0 0 0 0 0 1 0 0
## 2 0 0 0 0 1 0 0 0 0 1 0 0
## 3 0 0 0 0 1 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 1 0 0 1 0 0 0 1 0 0
## 6 0 0 1 1 0 1 0 0 0 1 1 0
## 7 0 0 1 0 1 0 0 0 0 1 0 0
## 8 0 0 0 0 0 0 0 1 0 0 0 0
## 9 0 0 0 0 1 0 0 0 1 0 1 0
## 10 0 0 0 0 1 1 0 0 0 1 0 0
## P76.V P77.V P84.V P85.V P89.V P6.W P9.X P10.X P14.X P19.X P20.X P35.X P37.X
## 1 0 0 1 1 0 0 0 0 0 0 0 0 0
## 2 0 0 1 0 1 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 1 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 1 0 0 0 0 0 0 0 0 0
## 7 0 0 1 0 0 0 0 0 0 0 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0 0 0 0
## 9 0 0 1 0 0 0 0 0 0 0 0 0 0
## 10 0 0 1 0 0 0 0 0 0 0 0 0 0
## P61.X P63.X P65.X P71.X P72.X P86.X P10.Y P37.Y P59.Y P67.Y P69.Y P12.Z
## 1 0 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 1 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0 0
## 7 0 0 0 0 0 0 0 0 0 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0 0 0
## P14.Z P16.Z P18.Z P19.Z P34.Z P37.Z P61.Z P72.Z P79.Z P83.Z P92.Z
## 1 0 0 0 0 0 0 0 0 0 0 0
## 2 0 0 0 0 0 0 0 0 0 0 0
## 3 0 0 0 0 0 0 0 0 0 0 0
## 4 0 0 0 0 0 0 0 0 0 0 0
## 5 0 0 0 0 0 0 0 0 0 0 0
## 6 0 0 0 0 0 0 0 0 0 0 0
## 7 0 0 0 0 0 0 0 0 0 0 0
## 8 0 0 0 0 0 0 0 0 0 0 0
## 9 0 0 0 0 0 0 0 0 0 0 0
## 10 0 0 0 0 0 0 0 0 0 0 0
The response matrix looks like:
head(Y, n=6)
## APV ATV IDV LPV NFV RTV SQV
## 1 2.3 NA 32.7 NA 23.4 51.6 37.8
## 2 76.0 NA 131.0 200.0 50.0 200.0 156.0
## 3 2.8 NA 12.0 NA 100.0 41.0 145.6
## 4 6.5 9.2 2.1 5.3 5.0 36.0 13.0
## 5 8.3 NA 100.0 NA 161.1 170.2 100.0
## 6 82.0 75.0 400.0 400.0 91.0 400.0 400.0
There are 7 PI-type drugs: APV, ATV, IDV, LPV, NFV, RTV, and SQV.
In this step, you need to build an appropriate linear regression model, and use the method we discussed in lecture to select mutations that may associated with drug-resistance. For 7 PI-type drugs, you need to run a seperate analysis for each drug.
Notice that there are some missing values.
Before building the model, we need to perform some final pre-processing steps. We remove rows with missing values (which vary from drug to drug) and we then further reduce the design matrix by removing predictor columns for mutations that do not appear at least three times in the sample. Finally, for identifiability, we remove any columns that are duplicates (i.e. two mutations that appear only in tandem, and therefore we cannot distinguish between their effects on the response).
Initially, predictors were chosen from regression of the actual, unmodified y vector on the design matrix X using the regsubsets() function to perform a backward stepwise selection. Models which produced the lowest BIC and Mallow's
# Load the leaps library and tidyverse set of libraries
library(leaps)
library(tidyverse)
# Initialize empty lists to hold
# - regsub: The result of using regsub on the linear regression of
# resistance response vector against the design matrix
# for each drug
# - regsub_mdl_cp: The model selected by regsubsets() with the lowest
# Mallow's Cp for each drug
# - regsub_mdl_bic: The model selected by regsubsets() with the BIC
# value for each drug
# - opt_mdl_pos_bic: Hold the list of positions deemed significant
# in the linear regression of resistance against
# the positions indicated in regsub_mdl_cp
# - opt_mdl_pos_cp: Hold the list of positions deemed significant
# in the linear regression of resistance against
# the positions indicated in regsub_mdl_bic
regsub = list()
regsub_mdl_cp = list()
regsub_mdl_bic = list()
opt_mdl_pos_bic = list()
opt_mdl_pos_cp = list()
# Loop over all drugs in the response matrix Y
for(drug in names(Y)){
# Deal with the response vector corresponding to the current drug
y = Y[[drug]]
# Remove patients with missing measurements.
missing = is.na(y)
y = y[!missing]
x = X[!missing,]
# Remove predictors that appear less than 3 times.
x = x[,colSums(x) >= 3]
# Remove duplicate predictors.
x = x[,colSums(abs(cor(x)-1) < 1e-4) == 1]
# Select the position-mutation pairs associated with drug-resistance using regsubsets() and the backward
# stepwise method
regsub[[drug]] = summary(regsubsets(y~., data=data.frame(x), method='backward', nvmax=ncol(x), really.big=TRUE))
# Select the entry in outmat with the lowest BIC value from the output of summary(regsubsets()) above
regsub_mdl_bic[[drug]] = regsub[[drug]]$outmat[which.min(regsub[[drug]]$bic),]
# Obtain the position-mutation pairs selected by regsubsets() for the entry in outmat with the lowest BIC value
regsub_mdl_pos_bic = names(regsub_mdl_bic[[drug]][regsub_mdl_bic[[drug]] == '*'])
# From the coefficient vector extracted above, remove the mutation from the position mutation pair, make all
# the resulting positions numeric values, and finally only keep the unique values of the resulting vector
opt_mdl_pos_bic[[drug]] = regsub_mdl_pos_bic %>%
substring(2,3) %>%
as.numeric() %>%
unique()
# Remove NA values from the vector of positions
opt_mdl_pos_bic[[drug]] = opt_mdl_pos_bic[[drug]][!is.na(opt_mdl_pos_bic[[drug]])]
# Select the entry in outmat with the lowest Mallows Cp value from the output of summary(regsubsets()) above
regsub_mdl_cp[[drug]] = regsub[[drug]]$outmat[which.min(regsub[[drug]]$cp),]
# Obtain the position-mutation pairs selected by regsubsets() for the entry in outmat with the lowest Mallows
# Cp value
regsub_mdl_pos_cp = names(regsub_mdl_cp[[drug]][regsub_mdl_cp[[drug]] == '*'])
# From the coefficient vector extracted above, remove the mutation from the position mutation pair, make all
# the resulting positions numeric values, and finally only keep the unique values of the resulting vector
opt_mdl_pos_cp[[drug]] <- regsub_mdl_pos_cp %>%
substring(2,3) %>%
as.numeric() %>%
unique()
# Remove NA values from the vector of positions
opt_mdl_pos_cp[[drug]] = opt_mdl_pos_cp[[drug]][!is.na(opt_mdl_pos_cp[[drug]])]
}
In this case, using minimum BIC as our criterion for model selection yields the following significant positions for each PI drug
opt_mdl_pos_bic
## $APV
## [1] 84 58 60 61 70 33 37 11 15 32 66 54 71 48 19 74 34 20 43 10 47 50 76 89
##
## $ATV
## [1] 79 82 37 58 67 70 10 11 32 46 71 50 72 48 19 74 34 20 43 22 54 76
##
## $IDV
## [1] 22 54 84 83 67 69 20 24 32 85 92 48 90 19 57 73 12 43 50 72 76 89
##
## $LPV
## [1] 54 61 10 33 82 88 23 57 11 34 55 69 73 91 43 47 48 50 76
##
## $NFV
## [1] 54 82 84 88 58 63 10 69 24 32 33 90 30 12 20 36 76 67
##
## $RTV
## [1] 54 84 88 58 67 68 33 82 95 24 32 72 36 53 90 19 34 20 69 91 43 47 50 76
##
## $SQV
## [1] 22 54 73 82 84 88 67 71 53 66 48 90 20 91 43 76 72
while using minimum Mallow's
opt_mdl_pos_cp
## $APV
## [1] 71 84 58 60 61 70 33 82 37 11 15 19 32 36 66 77 69 54 93 48 74 34 20 43 63
## [26] 73 10 47 50 64 76 85 89
##
## $ATV
## [1] 63 79 82 37 58 60 67 70 10 11 32 36 46 62 66 71 20 45 50 72 48 89 19 74 34
## [26] 43 22 47 54 76 84 85
##
## $IDV
## [1] 22 54 84 67 73 60 61 65 83 72 33 88 69 15 20 24 32 46 71 85 89 14 92 10 36
## [26] 66 48 90 12 19 63 57 37 91 43 82 50 76 77
##
## $LPV
## [1] 16 22 54 79 58 61 67 10 33 82 88 69 23 36 46 77 85 57 92 11 50 53 64 66 20
## [26] 48 30 19 34 55 73 91 43 47 72 76 89
##
## $NFV
## [1] 22 54 71 82 84 61 88 58 63 70 10 67 69 19 24 32 36 46 66 57 53 93 20 33 48
## [26] 90 30 37 12 73 50 72 76
##
## $RTV
## [1] 22 54 84 73 37 61 88 58 60 67 68 33 82 95 69 11 19 23 24 32 66 20 57 72 10
## [26] 36 53 89 90 79 12 34 74 91 43 47 48 50 76
##
## $SQV
## [1] 22 54 73 82 84 83 88 67 70 10 57 61 63 69 24 32 36 66 71 85 19 53 48 89 90
## [26] 74 20 91 43 72 64 76
Before moving onto evaluating these results, it is necessary to look at the residual plots generated from producing a linear regression of the resistance response vector y of each drug to our design matrix of position-mutation pairs.
# Load the cowplot library
library(cowplot)
# Initialize lists to hold
# - drug_lm: The linear regressions between the resistance response vector
# and design matrix for each drug
# - drug_lm_plt_arr: The diagnostic plots for each linear regression created
drug_lm = list()
drug_lm_plt_arr = list()
# Loop over all drugs in the response matrix Y
for(drug in names(Y)){
# Deal with the response vector corresponding to the current drug
y = Y[[drug]]
# Remove patients with missing measurements.
missing = is.na(y)
y = y[!missing]
x = X[!missing,]
# Remove predictors that appear less than 3 times.
x = x[,colSums(x) >= 3]
# Remove duplicate predictors.
x = x[,colSums(abs(cor(x)-1) < 1e-4) == 1]
# Find the linear regression of the resistance response vector y against the design matrix
drug_lm[[drug]] <- lm(y~., data=data.frame(x))
# Create the studentized deleted residuals qq plot for the linear regression
p1 <- ggplot(data.frame('studentized_deleted_residuals'=rstudent(drug_lm[[drug]])), aes(sample=studentized_deleted_residuals)) +
stat_qq() +
stat_qq_line(color='red') +
labs(title='QQ Plot of Studentized Deleted\nResiduals',
x='Theoretical Quantiles',
y='Sample Quantiles') +
theme_light()
# Create the studentized deleted residuals histogram for the linear regression
p2 <- ggplot(data.frame('resistance'=y**0.06060606,
'studentized_deleted_residuals'=rstudent(drug_lm[[drug]])), aes(x=studentized_deleted_residuals)) +
geom_histogram(aes(y=..density..), binwidth=sd(rstudent(drug_lm[[drug]])), color='black') +
stat_function(fun=dnorm, args=list(mean=mean(rstudent(drug_lm[[drug]])),
sd=sd(rstudent(drug_lm[[drug]]))), color='red', size=1) +
labs(title='Histogram of Studentized Deleted\nResiduals',
subtitle='With Normal PDF Curve Overlaid in Red',
x='Studentized Deleted Residuals',
y='Frequency') +
theme_light()
# Create the studentized deleted residuals vs predicted values for the linear regression
p3 <- ggplot(data.frame('predicted'=drug_lm[[drug]]$fitted.values,
'studentized_deleted_residuals'=rstudent(drug_lm[[drug]])),
aes(x=predicted, y=studentized_deleted_residuals)) +
geom_point() +
geom_hline(aes(yintercept=0), color='red') +
labs(title='Studentized Deleted Residuals\nvs Predicted Resistance',
x='Predicted Resistance',
y='Studentized Deleted\nResiduals') +
theme_light()
# Create the studentized deleted residuals line plot for the linear regression
p4 <- ggplot(data.frame('studentized_deleted_residuals'=rstudent(drug_lm[[drug]])),
aes(x=1:length(studentized_deleted_residuals), y=studentized_deleted_residuals)) +
geom_point(pch=21, cex=3) +
geom_line(color='red') +
geom_hline(aes(yintercept=0)) +
labs(title='Line Plot of Studentized Deleted\nResiduals',
y='Studentized Deleted\nResiduals',
x='') +
theme_light()
# Arrange all 4 diagnostic plots created above in a 2x2 grid and store it in list drug_lm_plt_arr
drug_lm_plt_arr[[drug]] <- plot_grid(p1, p2, p3, p4, nrow=2, ncol=2) +
draw_figure_label(paste(c(drug, '\n'), collapse=''), position = "top", size=12, fontface='bold')
}
drug_lm_plt_arr[1]
## $APV
drug_lm_plt_arr[2]
## $ATV
drug_lm_plt_arr[3]
## $IDV
drug_lm_plt_arr[4]
## $LPV
drug_lm_plt_arr[5]
## $NFV
drug_lm_plt_arr[6]
## $RTV
drug_lm_plt_arr[7]
## $SQV
It is clear from the residual plots that our residuals, and hence our dependent variable resistance values, are not normally distributed. Specifically, it can be seen from the
-
QQ Plot of Studentized Deleted Residuals and Histogram of Studentized Deleted Residuals
- Residuals are over-dispersed relative to a normal distribution
- Residuals appear to be right skewed
-
Studentized Deleted Residuals vs Predicted Resistance
- Points do not scatter randomly around the 0 line, so we cannot assume the relationship is linear
- Residuals do not form a horizontal band around the 0 line, suggesting the variances of the error terms aren’t equal, and thus the presence of heteroscedasticity
The Line Plot of Studentized Deleted Residuals shows that there is not a bias in the order in which the data was taken.
Box Cox Transforming the Linear Regressions of the Resistance Response Vectors against the Design Matrix of Position-Mutation Pairs
In order to make the dependent variable resistances linear, a Box Cox transformation was determined for each resistance response vector and the linear regression model based on this transform was created for each resistance response vector. The residual plots for these Box Cox transformed linear regressions were then created.
# Load the MASS library
library(MASS)
# Initialize lists to hold
# - bac.cox: The result of using boxcox on the linear regression of the
# resistance response vector gainst the design matrix for each drug
# - bac.lambda: The optimal lambda found for each linear regression of the
# resistance response vector against the design matrix for each drug
# - bc_drug_lm: The linear regressions between the Box Cox transformed resistance
# response vector and design matrix for each drug
# - bc_drug_lm_plt_arr: The diagnostic plots for each linear regression created
bac.box = list()
bac.lambda=list()
bc_drug_lm = list()
bc_drug_lm_plt_arr = list()
# Loop through all drugs in response matrix Y
for(drug in names(Y)){
# Deal with the response vector corresponding to the current drug
y = Y[[drug]]
# Remove patients with missing measurements.
missing = is.na(y)
y = y[!missing]
x = X[!missing,]
# Remove predictors that appear less than 3 times.
x = x[,colSums(x) >= 3]
# Remove duplicate predictors.
x = x[,colSums(abs(cor(x)-1) < 1e-4) == 1]
# Use the function boxcox on the linear regression of the resistance response vector y
# against the design matrix for each drug
bac.box[[drug]] = boxcox(lm(y~., data=data.frame(x)), plotit=FALSE)
# Find the optimal lambda to transform the resistance response vector
bac.lambda[[drug]] = bac.box[[drug]]$x[which(bac.box[[drug]]$y==max(bac.box[[drug]]$y))]
# If the optimal lambda is 0, then perform a linear regression of the natural log of the resistance response
# vector against the design matrix for each drug. Otherwise, perform a linear regression of the
# resistance response vector to the power of lambda against the design matrix for each drug.
if(bac.lambda[[drug]] == 0){
bc_drug_lm[[drug]] <- lm(log(y)~., data=data.frame(x))
} else {
bc_drug_lm[[drug]] <- lm((y**bac.lambda[[drug]])~., data=data.frame(x))
}
# Create the studentized deleted residuals qq plot for the transformed linear regression
p1 <- ggplot(data.frame('studentized_deleted_residuals'=rstudent(bc_drug_lm[[drug]])), aes(sample=studentized_deleted_residuals)) +
stat_qq() +
stat_qq_line(color='red') +
labs(title='QQ Plot of Studentized Deleted\nResiduals',
x='Theoretical Quantiles',
y='Sample Quantiles') +
theme_light()
# Create the studentized deleted residuals histogram for the transformed linear regression
p2 <- ggplot(data.frame('resistance'=y**0.06060606,
'studentized_deleted_residuals'=rstudent(bc_drug_lm[[drug]])), aes(x=studentized_deleted_residuals)) +
geom_histogram(aes(y=..density..), binwidth=sd(rstudent(bc_drug_lm[[drug]])), color='black') +
stat_function(fun=dnorm, args=list(mean=mean(rstudent(bc_drug_lm[[drug]])),
sd=sd(rstudent(bc_drug_lm[[drug]]))), color='red', size=1) +
labs(title='Histogram of Studentized Deleted\nResiduals',
subtitle='With Normal PDF Curve Overlaid in Red',
x='Studentized Deleted Residuals',
y='Frequency') +
theme_light()
# Create the studentized deleted residuals vs predicted values for the transformed linear regression
p3 <- ggplot(data.frame('predicted'=bc_drug_lm[[drug]]$fitted.values,
'studentized_deleted_residuals'=rstudent(bc_drug_lm[[drug]])),
aes(x=predicted, y=studentized_deleted_residuals)) +
geom_point() +
geom_hline(aes(yintercept=0), color='red') +
labs(title='Studentized Deleted Residuals\nvs Predicted Resistance',
x='Predicted Resistance',
y='Studentized Deleted\nResiduals') +
theme_light()
# Create the studentized deleted residuals line plot for the transformed linear regression
p4 <- ggplot(data.frame('studentized_deleted_residuals'=rstudent(bc_drug_lm[[drug]])),
aes(x=1:length(studentized_deleted_residuals), y=studentized_deleted_residuals)) +
geom_point(pch=21, cex=3) +
geom_line(color='red') +
geom_hline(aes(yintercept=0)) +
labs(title='Line Plot of Studentized Deleted\nResiduals',
y='Studentized Deleted\nResiduals',
x='') +
theme_light()
# Arrange all 4 diagnostic plots created above in a 2x2 grid and store it in list bc_drug_lm_plt_arr
bc_drug_lm_plt_arr[[drug]] <- plot_grid(p1, p2, p3, p4, nrow=2, ncol=2) +
draw_figure_label(paste(c(drug, '\n'), collapse=''), position = "top", size=12, fontface='bold')
}
bc_drug_lm_plt_arr[1]
## $APV
bc_drug_lm_plt_arr[2]
## $ATV
bc_drug_lm_plt_arr[3]
## $IDV
bc_drug_lm_plt_arr[4]
## $LPV
bc_drug_lm_plt_arr[5]
## $NFV
bc_drug_lm_plt_arr[6]
## $RTV
bc_drug_lm_plt_arr[7]
## $SQV
These residual plots more closely align with what would be expected for normally distributed residuals, and hence normally distributed response vectors of the linear regression. Specifically,
-
QQ Plot of Studentized Deleted Residuals and Histogram of Studentized Deleted Residuals
- Residuals more closely fall into the quantiles expected for a normal distribution on the QQ plot
- The histogram of residuals follows the bell-shaped curve expected of a normal distribution more closely, with less dispersion
-
Studentized Deleted Residuals vs Predicted Resistance
- Points scatter randomly around the 0 line, so we can reasonably assume the relationship is linear
- Residuals form a horizontal band around the 0 line, suggesting the variances of the error terms are equal, and hence the presence of homoscedasticity
The Line Plot of Studentized Deleted Residuals shows that there is not a bias in the order in which the data was taken.
Here, predictors were chosen from regression of the Box Cox transformed y vector on the design matrix X using the regsubsets() function to perform a backward stepwise selection. Models which produced the lowest BIC and Mallow's
# Initialize empty lists to hold
# - bc_regsub: The result of using regsub on the Box Cox transformed
# linear regression of resistance response vector against
# the design matrix for each drug
# - bc_regsub_mdl_cp: The model selected by regsubsets() with the lowest
# Mallow's Cp for each drug
# - bc_regsub_mdl_bic: The model selected by regsubsets() with the BIC
# value for each drug
# - bc_opt_mdl_pos_bic: Hold the list of positions deemed significant
# in the linear regression of resistance against
# the positions indicated in bc_regsub_mdl_cp
# - bc_opt_mdl_pos_cp: Hold the list of positions deemed significant
# in the linear regression of resistance against
# the positions indicated in bc_regsub_mdl_bic
bc_regsub = list()
bc_regsub_mdl_cp = list()
bc_regsub_mdl_bic = list()
bc_opt_mdl_pos_bic = list()
bc_opt_mdl_pos_cp = list()
# Loop through all drugs in response matrix Y
for(drug in names(Y)){
# Deal with the response vector corresponding to the current drug
y = Y[[drug]]
# Remove patients with missing measurements.
missing = is.na(y)
y = y[!missing]
x = X[!missing,]
# Remove predictors that appear less than 3 times.
x = x[,colSums(x) >= 3]
# Remove duplicate predictors.
x = x[,colSums(abs(cor(x)-1) < 1e-4) == 1]
# If the optimal lambda is 0, then use regsubsets() on the linear regression of the natural log of the
# resistance response vector against the design matrix for each drug. Otherwise, use regsubsets() on
# the linear regression of the resistance response vector to the power of lambda against the design
# matrix for each drug.
if(bac.lambda[[drug]] == 0){
bc_regsub[[drug]] = summary(regsubsets(log(y)~., data=data.frame(x), method='backward', nvmax=ncol(x), really.big=TRUE))
} else {
bc_regsub[[drug]] = summary(regsubsets((y**bac.lambda[[drug]])~., data=data.frame(x), method='backward', nvmax=ncol(x), really.big=TRUE))
}
# Select the entry in outmat with the lowest BIC value from the output of summary(regsubsets()) above
bc_regsub_mdl_bic[[drug]] = bc_regsub[[drug]]$outmat[which.min(bc_regsub[[drug]]$bic),]
# Obtain the position-mutation pairs selected by regsubsets() for the entry in outmat with the lowest BIC value
bc_regsub_mdl_pos_bic = names(bc_regsub_mdl_bic[[drug]][bc_regsub_mdl_bic[[drug]] == '*'])
# From the coefficient vector extracted above, remove the mutation from the position mutation pair, make all the
# resulting positions numeric values, and finally only keep the unique values of the resulting vector
bc_opt_mdl_pos_bic[[drug]] <- bc_regsub_mdl_pos_bic %>%
substring(2,3) %>%
as.numeric() %>%
unique()
# Remove NA values from the vector of positions
bc_opt_mdl_pos_bic[[drug]] = bc_opt_mdl_pos_bic[[drug]][!is.na(bc_opt_mdl_pos_bic[[drug]])]
# Select the entry in outmat with the lowest Mallows Cp value from the output of summary(regsubsets()) above
bc_regsub_mdl_cp[[drug]] = bc_regsub[[drug]]$outmat[which.min(bc_regsub[[drug]]$cp),]
# Obtain the position-mutation pairs selected by regsubsets() for the entry in outmat with the lowest Mallows
# Cp value
bc_regsub_mdl_pos_cp = names(bc_regsub_mdl_cp[[drug]][bc_regsub_mdl_cp[[drug]] == '*'])
# From the coefficient vector extracted above, remove the mutation from the position mutation pair, make all
# the resulting positions numeric values, and finally only keep the unique values of the resulting vector
bc_opt_mdl_pos_cp[[drug]] <- bc_regsub_mdl_pos_cp %>%
substring(2,3) %>%
as.numeric() %>%
unique()
# Remove NA values from the vector of positions
bc_opt_mdl_pos_cp[[drug]] = bc_opt_mdl_pos_cp[[drug]][!is.na(bc_opt_mdl_pos_cp[[drug]])]
}
In this case, using minimum BIC as our criterion for model selection yields the following significant positions for each PI drug
bc_opt_mdl_pos_bic
## $APV
## [1] 12 82 84 58 10 33 24 32 46 66 50 54 71 48 90 88 20 43 47 76 67 14
##
## $ATV
## [1] 16 82 79 88 58 10 66 20 24 32 46 36 50 54 48 90 37 19 14 73 91 13 64 71 76
## [26] 84
##
## $IDV
## [1] 54 82 84 10 66 61 20 24 32 33 46 85 69 36 50 48 90 63 37 73 74 88 71 15 76
## [26] 67 14 72
##
## $LPV
## [1] 16 54 82 84 88 10 33 35 61 11 20 24 46 45 36 50 48 90 30 72 73 47 76 67
##
## $NFV
## [1] 54 82 84 79 88 58 63 67 10 20 24 36 46 50 48 90 30 74 55 73 71 22 76 14
##
## $RTV
## [1] 54 82 84 88 58 67 33 10 24 36 46 64 89 50 53 93 90 30 63 73 20 71 47 48 14
## [26] 19
##
## $SQV
## [1] 54 73 82 84 88 58 67 10 57 61 20 24 50 53 48 90 63 74 55 15 71 76
while using minimum Mallow's
bc_opt_mdl_pos_cp
## $APV
## [1] 12 63 82 84 37 35 58 10 33 67 24 32 46 64 66 77 89 93 55 36 50 54 71 48 90
## [26] 39 79 19 69 14 43 70 74 88 91 20 15 47 72 76
##
## $ATV
## [1] 12 16 71 82 79 88 58 67 70 10 33 66 18 15 20 24 32 46 62 72 77 36 50 54 48
## [26] 90 37 61 74 19 14 57 39 73 91 13 64 76 84 89
##
## $IDV
## [1] 22 37 54 71 82 84 73 61 88 16 67 72 10 33 66 35 57 18 20 23 24 32 46 64 85
## [26] 55 69 92 36 50 48 90 63 74 43 70 39 15 76 14 19
##
## $LPV
## [1] 16 22 54 79 82 84 60 88 61 10 33 66 35 18 63 11 20 23 24 36 46 85 45 55 69
## [26] 72 50 53 93 48 90 30 37 19 41 39 73 91 43 71 47 62 76 89 67
##
## $NFV
## [1] 54 71 82 84 37 35 60 61 65 79 83 88 16 58 63 67 72 10 66 57 20 23 24 32 33
## [26] 36 46 64 77 89 12 69 38 50 48 90 30 74 19 14 55 39 73 13 22 76 85
##
## $RTV
## [1] 37 54 82 84 73 83 88 16 58 67 33 57 10 19 24 32 36 46 64 89 61 72 18 50 53
## [26] 71 93 90 12 30 39 63 74 79 20 15 47 48 14
##
## $SQV
## [1] 12 22 54 71 73 82 84 83 88 37 58 60 67 72 10 35 57 61 63 13 20 24 36 85 89
## [26] 41 43 69 18 50 53 64 93 48 90 74 19 14 55 70 39 91 15 62 76
Below are the results of testing for colinearity within the Box Cox transformed linear regression of the resistance response vector and design matrix for each drug using the variance inflation factor (VIF). The values are the same for both the linear regressions that were not and were transformed using Box Cox transformation.
# Load the car library
library(car)
# Initialize lists to hold:
# - init_vif: The result of calling vif() on the Box Cox transformed
# linear regressions for each drug
# - init_max_vif: Hold the max vif value from init_vif
# - init_mean_vif: Hold the mean vif value from init_vif
# - bc_vif: The result of calling vif() on the Box Cox transformed
# linear regressions for each drug
# - bc_max_vif: Hold the max vif value from bc_vif
# - bc_mean_vif: Hold the mean vif value from bc_vif
init_vif = list()
init_max_vif = list()
init_mean_vif = list()
bc_vif = list()
bc_max_vif = list()
bc_mean_vif = list()
# Loop through all drugs in the response matrix Y
for(drug in names(Y)){
# Deal with the response vector corresponding to the current drug
y = Y[[drug]]
# Remove patients with missing measurements.
missing = is.na(y)
y = y[!missing]
x = X[!missing,]
# Remove predictors that appear less than 3 times.
x = x[,colSums(x) >= 3]
# Remove duplicate predictors.
x = x[,colSums(abs(cor(x)-1) < 1e-4) == 1]
# Use vif() on the linear regression of the resistance response vector against the design matrix for each drug
init_vif[[drug]] = vif(lm(y~., data.frame(x)))
# Determine the maximum VIF for the Box Cox transformed linear regression of the current drug
init_max_vif[[drug]] = round(max(init_vif[[drug]]),2)
# Determine the mean of the VIFs for the Box Cox transformed linear regression of the current drug
init_mean_vif[[drug]] = round(mean(init_vif[[drug]]),2)
# If the optimal lambda is 0, then use vif() on the linear regression of the natural log of the resistance
# response vector against the design matrix for each drug. Otherwise, use vif() on the linear regression
# of the resistance response vector to the power of lambda against the design matrix for each drug.
if(bac.lambda[[drug]]==0){
bc_vif[[drug]] = vif(lm(log(y)~., data=data.frame(x)))
} else {
bc_vif[[drug]] = vif(lm((y**bac.lambda[[drug]])~., data=data.frame(x)))
}
# Determine the maximum VIF for the Box Cox transformed linear regression of the current drug
bc_max_vif[[drug]] = round(max(bc_vif[[drug]]),2)
# Determine the mean of the VIFs for the Box Cox transformed linear regression of the current drug
bc_mean_vif[[drug]] = round(mean(bc_vif[[drug]]),2)
}
# Create a dataframe for the max and mean of the init_vif values for each drug
init_vif_res = tibble('Drug'=names(Y),
'Sample Max VIF'=unlist(init_max_vif),
'Sample Mean VIF'=unlist(init_mean_vif))
# Create a dataframe for the max and mean of the bc_vif values for each drug
bc_vif_res = tibble('Drug'=names(Y),
'Sample Max VIF'=unlist(bc_max_vif),
'Sample Mean VIF'=unlist(bc_mean_vif))
init_vif_res
## # A tibble: 7 × 3
## Drug `Sample Max VIF` `Sample Mean VIF`
## <chr> <dbl> <dbl>
## 1 APV 5.15 1.97
## 2 ATV 6.87 2.75
## 3 IDV 4.8 1.95
## 4 LPV 4.81 2.37
## 5 NFV 4.77 1.92
## 6 RTV 5.34 1.96
## 7 SQV 4.68 1.93
bc_vif_res
## # A tibble: 7 × 3
## Drug `Sample Max VIF` `Sample Mean VIF`
## <chr> <dbl> <dbl>
## 1 APV 5.15 1.97
## 2 ATV 6.87 2.75
## 3 IDV 4.8 1.95
## 4 LPV 4.81 2.37
## 5 NFV 4.77 1.92
## 6 RTV 5.34 1.96
## 7 SQV 4.68 1.93
Determining multicolinearity from VIF using the following standards:
or
indicate multicolinearity, it was deemed that the covariates in each drug's non Box Cox transformed and Box Cox transformed linear regressions did not show multicolinearity and no adjustment for it was made.
In this case, we are fortunate enough to have a “ground truth” obtained by another experiment (data saved as tsm_df
). Using this, we can evaluate the selected results. Note that we only need to compare the position of the mutations, not the mutation type. This is because it is known that multiple mutations at the same protease or RT position can often be associated with related drug-resistance outcomes.
The code below generates a dataframe containing the total positions selected by regsubsets() before and after the Box Cox transform, as well as a dataframe containing the positions selected by regsubsets() before and after the Box Cox transform for each drug. The total positions selected by regsubsets() before and after the Box Cox transform consists of all the unique positions indicated by each drug combined into one vector of positions for each Criterion (Mallow's Cp and BIC) and each of the before and after Box Cox transformation linear regressions.
The results for the total positions selected are shown and visualized in the next subsection, while the results for the positions selected for each drug are in the appendix.
# Initialize lists to hold
# - init_total_cp_pred_pos: All positions selected by the regsubsets() subset with the
# lowest Mallows Cp value before Box Cox transform
# - init_total_BIC_pred_pos: All positions selected by the regsubsets() subset with the
# lowest BIC value before Box Cox transform
# - bc_total_cp_pred_pos: All positions selected by the regsubsets() subset with the
# lowest Mallows Cp value after Box Cox transform
# - bc_total_BIC_pred_pos: All positions selected by the regsubsets() subset with the
# lowest BIC value after Box Cox transform
# - init_regsubs_res: Holds lists of the number of correct and incorrect position selections
# before Box Cox transformation
# - bc_regsubs_res: Holds lists of the number of correct and incorrect position selections
# after Box Cox transformation
init_total_cp_pred_pos = c()
init_total_bic_pred_pos = c()
bc_total_cp_pred_pos = c()
bc_total_bic_pred_pos = c()
init_regsubs_res = list()
bc_regsubs_res = list()
# Loop through all drugs in response matrix Y
for(drug in names(Y)){
# Check which positions selected by the regsubsets() subset with the lowest Mallows
# Cp value before Box Cox transform are in the list of ground true positions
opt_mdl_pos_cp_chk = opt_mdl_pos_cp[[drug]] %in% tsm_df$Position
cp_correct = sum(opt_mdl_pos_cp_chk)
cp_incorrect = length(opt_mdl_pos_cp_chk) - cp_correct
# Add the positions deemed significant for this drug from the lowest Mallow's Cp value
# subset after Box Cox transform to the list of all positions deemed significant from
# the lowest Mallow's Cp value subsets
init_total_cp_pred_pos = c(init_total_cp_pred_pos, opt_mdl_pos_cp[[drug]])
# Check which positions selected by the regsubsets() subset with the lowest BIC
# value before Box Cox transform are in the list of ground true positions
opt_mdl_pos_bic_chk = opt_mdl_pos_bic[[drug]] %in% tsm_df$Position
bic_correct = sum(opt_mdl_pos_bic_chk)
bic_incorrect = length(opt_mdl_pos_bic_chk) - bic_correct
# Add the positions deemed significant for this drug from the lowest BIC value
# value subset before Box Cox transform to the list of all positions deemed
# significant from the lowest BIC value subsets
init_total_bic_pred_pos = c(init_total_bic_pred_pos, opt_mdl_pos_bic[[drug]])
# Create a vector holding the number of correct and incorrect selections for each criterion
# before Box Cox transform and store it in the init_regsub_res list
init_regsubs_res[[drug]] = c('Mallows_Cp|Correct'=cp_correct, 'Mallows_Cp|Incorrect'=cp_incorrect,
'BIC|Correct'=bic_correct, 'BIC|Incorrect'=bic_incorrect)
# Check which positions selected by the regsubsets() subset with the lowest Mallows
# Cp value after Box Cox transform are in the list of ground true positions
bc_opt_mdl_pos_cp_chk = bc_opt_mdl_pos_cp[[drug]] %in% tsm_df$Position
bc_cp_correct = sum(bc_opt_mdl_pos_cp_chk)
bc_cp_incorrect = length(bc_opt_mdl_pos_cp_chk) - bc_cp_correct
# Add the positions deemed significant for this drug from the lowest Mallow's Cp value
# value subset after Box Cox transform to the list of all positions deemed significant
# from the lowest Mallow's Cp value subsets
bc_total_cp_pred_pos = c(bc_total_cp_pred_pos, bc_opt_mdl_pos_cp[[drug]])
# Check which positions selected by the regsubsets() subset with the lowest BIC
# value before Box Cox transform are in the list of ground true positions
bc_opt_mdl_pos_bic_chk = bc_opt_mdl_pos_bic[[drug]] %in% tsm_df$Position
bc_bic_correct = sum(bc_opt_mdl_pos_bic_chk)
bc_bic_incorrect = length(bc_opt_mdl_pos_bic_chk) - bc_bic_correct
# Add the positions deemed significant for this drug from the lowest BIC value
# value subset after Box Cox transform to the list of all positions deemed
# significant from the lowest BIC value subsets
bc_total_bic_pred_pos = c(bc_total_bic_pred_pos, bc_opt_mdl_pos_bic[[drug]])
# Create a vector holding the number of correct and incorrect selections for each criterion
# after Box Cox transform and store it in the init_regsub_res list
bc_regsubs_res[[drug]] = c('Mallows_Cp|Correct'=bc_cp_correct, 'Mallows_Cp|Incorrect'=bc_cp_incorrect,
'BIC|Correct'=bc_bic_correct, 'BIC|Incorrect'=bc_bic_incorrect)
}
# Check which positions selected by the regsubsets() subsets selection with the lowest
# Mallow's Cp values before Box Cox transform are in the list of ground true positions.
init_total_cp_pred_pos_chk = unique(init_total_cp_pred_pos) %in% tsm_df$Position
init_total_cp_correct = sum(init_total_cp_pred_pos_chk)
init_total_cp_incorrect = length(init_total_cp_pred_pos_chk) - init_total_cp_correct
# Check which positions selected by the regsubsets() subsets selection with the lowest
# BIC values before Box Cox transform are in the list of ground true positions.
init_total_bic_pred_pos_chk = unique(init_total_bic_pred_pos) %in% tsm_df$Position
init_total_bic_correct = sum(init_total_bic_pred_pos_chk)
init_total_bic_incorrect = length(init_total_bic_pred_pos_chk) - init_total_bic_correct
# Check which positions selected by the regsubsets() subsets selection with the lowest
# Mallow's Cp values after Box Cox transform are in the list of ground true positions.
bc_total_cp_pred_pos_chk = unique(bc_total_cp_pred_pos) %in% tsm_df$Position
bc_total_cp_correct = sum(bc_total_cp_pred_pos_chk)
bc_total_cp_incorrect = length(bc_total_cp_pred_pos_chk) - bc_total_cp_correct
# Check which positions selected by the regsubsets() subsets selection with the lowest
# BIC values after Box Cox transform are in the list of ground true positions.
bc_total_bic_pred_pos_chk = unique(bc_total_bic_pred_pos) %in% tsm_df$Position
bc_total_bic_correct = sum(bc_total_bic_pred_pos_chk)
bc_total_bic_incorrect = length(bc_total_bic_pred_pos_chk) - bc_total_bic_correct
# Create a tibble with the number of correct and incorrect selections before or after
# Box Cox and Criterion (BIC or Mallow's Cp). Then add the ratio of correct selections to total
# selections.
tot_preds <- tibble('Model'=c('Before_Box_Cox','Before_Box_Cox','Before_Box_Cox','Before_Box_Cox',
'After_Box_Cox', 'After_Box_Cox', 'After_Box_Cox', 'After_Box_Cox'),
'Criterion'=c('BIC', 'BIC', 'Mallows_Cp', 'Mallows_Cp',
'BIC', 'BIC', 'Mallows_Cp', 'Mallows_Cp'),
'Selection'=c('Correct', 'Incorrect','Correct', 'Incorrect',
'Correct', 'Incorrect','Correct', 'Incorrect'),
'Total'=c(init_total_bic_correct, init_total_bic_incorrect,
init_total_cp_correct, init_total_cp_incorrect,
bc_total_bic_correct, bc_total_bic_incorrect,
bc_total_cp_correct, bc_total_cp_incorrect)) %>%
mutate(Model=factor(Model, levels=c('Before_Box_Cox', 'After_Box_Cox')),
Selection=factor(Selection, levels=c('Incorrect', 'Correct')))
# Reformat the tibble created above to be put in a datatable object later
tot_res_dt <- tot_preds %>%
group_by(Model) %>%
mutate(Crit_Pred = paste0(Criterion, '_', Selection)) %>%
pivot_wider(id_cols=c(Model), names_from=Crit_Pred, values_from=Total) %>%
mutate(Mallows_Cp_Precision = round(Mallows_Cp_Correct/sum(Mallows_Cp_Correct, Mallows_Cp_Incorrect), 2),
BIC_Precision = round(BIC_Correct/sum(BIC_Correct, BIC_Incorrect), 2)) %>%
dplyr::select(Model, BIC_Correct, BIC_Incorrect, BIC_Precision,
Mallows_Cp_Correct, Mallows_Cp_Incorrect, Mallows_Cp_Precision)
# Create a dataframe with the number of correct and incorrect selections before Box Cox by drug
# and Criterion (BIC or Mallow's Cp). Then add the ratio of correct selections to total
# selections.
init_regsub_res_df = data.frame(matrix(unlist(init_regsubs_res), ncol=2, byrow=TRUE)) %>%
rename('Correct'=X1, 'Incorrect'=X2)
init_regsub_res_df$Criterion = c("Mallows_Cp", "BIC")
init_regsub_res_df$Drug = c('APV', 'APV', 'ATV', 'ATV', 'IDV', 'IDV', 'LPV', 'LPV', 'NFV', 'NFV', 'RTV', 'RTV', 'SQV', 'SQV')
init_regsub_res_df = init_regsub_res_df %>%
pivot_longer(c(-Drug, -Criterion), names_to='Selection', values_to='Total') %>%
mutate(Selection=factor(Selection, levels=c('Incorrect', 'Correct')))
# Reformat the dataframe created above to be put in a datatable object later
init_regsub_res_dt <- init_regsub_res_df %>%
group_by(Drug) %>%
mutate(Crit_Pred = paste0(Criterion, '_', Selection)) %>%
pivot_wider(id_cols=c(Drug), names_from=Crit_Pred, values_from=Total) %>%
mutate(Mallows_Cp_Precision = round(Mallows_Cp_Correct/sum(Mallows_Cp_Correct, Mallows_Cp_Incorrect), 2),
BIC_Precision = round(BIC_Correct/sum(BIC_Correct, BIC_Incorrect), 2)) %>%
dplyr::select(Drug, BIC_Correct, BIC_Incorrect, BIC_Precision,
Mallows_Cp_Correct, Mallows_Cp_Incorrect, Mallows_Cp_Precision)
# Create a dataframe with the number of correct and incorrect selections after Box Cox by drug
# and Criterion (BIC or Mallow's Cp). Then add the ratio of correct selections to total
# selections.
bc_regsub_res_df = data.frame(matrix(unlist(bc_regsubs_res), ncol=2, byrow=TRUE)) %>%
rename('Correct'=X1, 'Incorrect'=X2)
bc_regsub_res_df$Criterion = c("Mallows_Cp", "BIC")
bc_regsub_res_df$Drug = c('APV', 'APV', 'ATV', 'ATV', 'IDV', 'IDV', 'LPV', 'LPV', 'NFV', 'NFV', 'RTV', 'RTV', 'SQV', 'SQV')
bc_regsub_res_df = bc_regsub_res_df %>%
pivot_longer(c(-Drug, -Criterion), names_to='Selection', values_to='Total') %>%
mutate(Selection=factor(Selection, levels=c('Incorrect', 'Correct')))
# Reformat the dataframe created above to be put in a datatable object later
bc_regsub_res_dt <- bc_regsub_res_df %>%
group_by(Drug) %>%
mutate(Crit_Pred = paste0(Criterion, '_', Selection)) %>%
pivot_wider(id_cols=c(Drug), names_from=Crit_Pred, values_from=Total) %>%
mutate(Mallows_Cp_Precision = round(Mallows_Cp_Correct/sum(Mallows_Cp_Correct, Mallows_Cp_Incorrect), 2),
BIC_Precision = round(BIC_Correct/sum(BIC_Correct, BIC_Incorrect), 2)) %>%
dplyr::select(Drug, BIC_Correct, BIC_Incorrect, BIC_Precision,
Mallows_Cp_Correct, Mallows_Cp_Incorrect, Mallows_Cp_Precision)
First, stacked bar plots were created to visualize the overall results of the linear models created above.
# Generate a stacked bar plot to visualize the correct and incorrect Selections by
# criterion per model (Before or After Box Cox transform)
ggplot(tot_preds, aes(x=Criterion, y=Total, fill=Selection)) +
geom_bar(stat='identity', position='stack', width=.75) +
scale_fill_manual('Selection',
values = c('firebrick3', 'forestgreen'),
labels = c('Incorrect', 'Correct')) +
geom_hline(aes(yintercept=length(tsm_df$Position))) +
scale_y_continuous(breaks = sort(c(seq(0,60,by=10),length(tsm_df$Position)))) +
geom_text(aes('BIC',length(tsm_df$Position),
label = paste('Ground True Positions =',length(tsm_df$Position)),
vjust = -1), size=2.5) +
labs(title='Total Correct and Incorrect Significant Position Selections',
subtitle='Before and After Box Cox Transformation',
x='Criterion',
y='Number of Selected Significant Positions') +
facet_wrap(~Model) +
theme_light()
# Show the total results
tot_res_dt
## # A tibble: 2 × 7
## # Groups: Model [2]
## Model BIC_Correct BIC_Incorrect BIC_Precision Mallows_Cp_Correct
## <fct> <int> <int> <dbl> <int>
## 1 Before_Box_Cox 33 16 0.67 33
## 2 After_Box_Cox 30 18 0.62 32
## # ℹ 2 more variables: Mallows_Cp_Incorrect <int>, Mallows_Cp_Precision <dbl>
It is known from there being non-normality and heteroscedasticity in the residuals that there are problems obtaining p values from the linear regressions obtained prior to the Box Cox transformation. Specifically, the error in the models produced before the Box Cox transformation is not consistent across the entire range of data used for each model, leading to the amount of predictive ability any covariate has being inconsistent across the entire range of data as well. As a result, position covariates that in reality could have very little predictive ability could still have low p values and be seen as significant in the model.
From both plots, it is shown that BIC is more selective in which covariates it deems significant than Mallow's
where
Ultimately, this project showed the result of using the stepwise backward in conjunction with variable selection criterion to determine the positions significant towards protease inhibitor drug resistance. While this method was able to select a large majority of the positions within the ground true list of positions, it was highly susceptible to false positives both before and after transforming the data using Box Cox transformation.
In the future, an inference-oriented approach such as applying Bonferroni correction to p-values of t-tests to control family-wise error rate (FWER) would be recommended. The foundation of typical statistical hypothesis tests is the rejection of a null hypothesis if the likelihood of observed data is under a certain threshold under the null hypothesis; however, when testing multiple hypotheses the probability of a rare event rises and so the likelihood of rejecting the null hypothesis rises accordingly. Bonferroni correction accounts for this rise by testing each individual hypothesis at a significance level of
Another method which allows for control over the false discovery rate is the Benjamini-Hochberg procedure. This procedure first sorts and ranks the p-values of each position, with the smallest p-value getting rank
These methods are explored in Appendices 2 and 3.
Rhee, Soo-Yon, W Jeffrey Fessel, Andrew R Zolopa, Leo Hurley, Tommy Liu, Jonathan Taylor, Dong Phuong Nguyen, et al. 2005. “HIV-1 Protease and Reverse-Transcriptase Mutations: correlations with Antiretroviral Therapy in Subtype B Isolates and Implications for Drug-Resistance Surveillance.” Journal of Infectious Diseases 192 (3). Oxford University Press: 456–65.
Rhee, Soo-Yon, Jonathan Taylor, Gauhar Wadhera, Asa Ben-Hur, Douglas L Brutlag, and Robert W Shafer. 2006. “Genotypic Selectors of Human Immunodeficiency Virus Type 1 Drug Resistance.” Proceedings of the National Academy of Sciences 103 (46). National Academy of Sciences: 17355–60.
# Generate a stacked bar plot to visualize the correct and incorrect Selections by
# criterion per drug from before the Box Cox Transform
g0 <- ggplot(init_regsub_res_df, aes(x=Criterion, y=Total, fill=Selection)) +
geom_bar(stat='identity', position='stack', width=.75) +
scale_fill_manual('Selection',
values = c('firebrick3', 'forestgreen'),
labels = c('Incorrect', 'Correct')) +
ylim(0, 50) +
labs(title='Initial\nSelection',
x='',
y='Number of Selected Significant Positions') +
facet_wrap(~Drug, ncol=1) +
theme_light()
# Generate a stacked bar plot to visualize the correct and incorrect Selections by
# criterion per drug from after the Box Cox Transform
g2 <- ggplot(bc_regsub_res_df, aes(x=Criterion, y=Total, fill=Selection)) +
geom_bar(stat='identity', position='stack', width=.75) +
scale_fill_manual('Selection',
values = c('firebrick3', 'forestgreen'),
labels = c('Incorrect', 'Correct')) +
ylim(0, 40) +
labs(title='Selection After Box Cox\nTransformation',
x='',
y='') +
facet_wrap(~Drug, ncol=1) +
theme_light()
# Show the two plots created above side-by-side
plot_grid(g0, g2, nrow=1) +
draw_figure_label('Criterion', position = 'bottom')
init_regsub_res_dt[,2:ncol(init_regsub_res_dt)]
## # A tibble: 7 × 6
## BIC_Correct BIC_Incorrect BIC_Precision Mallows_Cp_Correct
## <int> <int> <dbl> <int>
## 1 18 6 0.75 21
## 2 17 5 0.77 22
## 3 15 7 0.68 22
## 4 15 4 0.79 26
## 5 14 4 0.78 21
## 6 18 6 0.75 27
## 7 14 3 0.82 20
## # ℹ 2 more variables: Mallows_Cp_Incorrect <int>, Mallows_Cp_Precision <dbl>
bc_regsub_res_dt[,2:ncol(bc_regsub_res_dt)]
## # A tibble: 7 × 6
## BIC_Correct BIC_Incorrect BIC_Precision Mallows_Cp_Correct
## <int> <int> <dbl> <int>
## 1 20 2 0.91 25
## 2 18 8 0.69 22
## 3 20 8 0.71 25
## 4 19 5 0.79 28
## 5 20 4 0.83 27
## 6 20 6 0.77 23
## 7 18 4 0.82 22
## # ℹ 2 more variables: Mallows_Cp_Incorrect <int>, Mallows_Cp_Precision <dbl>
The code below first genertates the Box Cox transformed linear regressions of the drug resistance respose vector to the design matrix of position-mutation pairs for each drug, takes the p-values for each position-mutation pair coefficient from the summary() of each linear regression made, performs the Bonferroni correction to these p-Values, and then records all the position-mutation pairs with Bonferroni corrected p-values that are less than
# Initialize empty lists to hold
# - bc_regsub_bf: The result of using regsub on the Box Cox transformed
# linear regression of resistance response vector against
# the design matrix for each drug
# - bf_sel_raw: The position-mutation pair p-values vectors for each
# linear regression in bc_regsub_bf
# - bf_sel_pos: Vectors of the positions deemed significant by p-value
# after the Bonferroni correction was performed
bc_regsub_bf = list()
bf_sel_raw = list()
bf_sel_pos = list()
# Set significance level alpha to 0.05
alpha = 0.05
# Loop through all drugs in response matrix Y
for(drug in names(Y)){
# Deal with the response vector corresponding to the current drug
y = Y[[drug]]
# Remove patients with missing measurements.
missing = is.na(y)
y = y[!missing]
x = X[!missing,]
# Remove predictors that appear less than 3 times.
x = x[,colSums(x) >= 3]
# Remove duplicate predictors.
x = x[,colSums(abs(cor(x)-1) < 1e-4) == 1]
# If the optimal lambda is 0, then generate the linear regression of the natural log of the resistance response
# vector against the design matrix for each drug. Otherwise, generate the linear regression of the
# resistance response vector to the power of lambda against the design matrix for each drug.
if(bac.lambda[[drug]] == 0){
bc_regsub_bf[[drug]] = summary(lm(log(y)~., data=data.frame(x)))
} else {
bc_regsub_bf[[drug]] = summary(lm((y**bac.lambda[[drug]])~., data=data.frame(x)))
}
# Perform the Bonferroni correction on the p-values generated by the linear regression for the coefficients
bf_p = p.adjust(bc_regsub_bf[[drug]]$coefficients[,4], 'bonferroni')
# Remove p-values greater than alpha from the rsulting vector
bf_sel_raw[[drug]] = bf_p[bf_p <= alpha]
# From the coefficient vector extracted above, remove the mutation from the position mutation pair, make all
# the resulting positions numeric values, and finally only keep the unique values of the resulting vector
bf_sel_pos[[drug]] <- names(bf_sel_raw[[drug]]) %>%
substring(2,3) %>%
as.numeric() %>%
unique() %>%
sort()
# Remove NA values from the vector of positions
bf_sel_pos[[drug]] = bf_sel_pos[[drug]][!is.na(bf_sel_pos[[drug]])]
}
bf_sel_pos
## $APV
## [1] 10 33 46 50 54 76 82 84 88 90
##
## $ATV
## [1] 20 48 50 54 73 76 84 88 90
##
## $IDV
## [1] 10 20 24 46 48 50 54 71 73 76 82 84 88 90
##
## $LPV
## [1] 10 33 46 47 48 50 54 76 82 84
##
## $NFV
## [1] 10 20 24 30 46 48 50 54 63 71 73 74 82 84 88 90
##
## $RTV
## [1] 20 24 33 46 48 50 54 63 82 84 90
##
## $SQV
## [1] 10 20 24 48 50 53 54 71 73 76 82 84 88 90
The below code checks to see how many of the positions selected above are in the ground true list of significant positions and then plots the result.
# Combine all unique selected positions into one vector
all_bf_pos = unlist(bf_sel_pos) %>%
unname() %>%
unique()
# Check which positions deemed significant are in the list of ground true positions
bf_chk = all_bf_pos %in% tsm_df$Position
bf_correct = sum(bf_chk)
bf_incorrect = length(bf_chk) - bf_correct
bf_df = tibble('Method'= c('Bonferroni Correction', 'Bonferroni Correction'),
'Selection'=c('Correct', 'Incorrect'),
'Total'=c(bf_correct, bf_incorrect)) %>%
mutate(Selection=factor(Selection, levels=c('Incorrect', 'Correct')))
# Generate a stacked bar plot to visualize the correct and incorrect selections
ggplot(bf_df, aes(x=Method, y=Total, fill=Selection)) +
geom_bar(stat='identity', position='stack', width=.75) +
scale_fill_manual('Selection',
values = c('firebrick3', 'forestgreen'),
labels = c('Incorrect', 'Correct')) +
geom_hline(aes(yintercept=length(tsm_df$Position))) +
scale_y_continuous(breaks = sort(c(seq(0,60,by=10),length(tsm_df$Position)))) +
geom_text(aes('Bonferroni Correction',length(tsm_df$Position),
label = paste('Ground True Positions =',length(tsm_df$Position)),
vjust = -1), size=2.5) +
labs(title='Total Correct and Incorrect Significant Position Selections',
x='Method',
y='Number of Selected Significant Positions') +
theme_light()
The ability of the Boneferri correction to limit false positives is immediately apparent by looking at the plot, as the number of incorrect position selections is significantly less than the number of correct position selections. Further, the number of incorrect position selections after the Bonferroni correction are significantly less than those from the stepwise selection using either criterion (Mallows Cp or BIC) before or after Box Cox transform. At the same time, the number of false negatives also clearly increases as the Bonferroni correction number of correct position selections is less than those from the stepwise selection using either criterion (Mallows Cp or BIC) before or after Box Cox transform. Both these results were to be expected, as the threshold to reject the null hypothesis and declare a position significant is lowered using the Bonferroni correction.
The code below first genertates the Box Cox transformed linear regressions of the drug resistance respose vector to the design matrix of position-mutation pairs for each drug, takes the p-values for each position-mutation pair coefficient from the summary() of each linear regression made, performs the Benjamini-Hochberg procedure adjustment on these p-Values, and then records all the position-mutation pairs with Benjamini-Hochberg adjusted p-values that are less than
# Initialize empty lists to hold
# - bc_regsub_bh: The result of using regsub on the Box Cox transformed
# linear regression of resistance response vector against
# the design matrix for each drug
# - bh_sel_raw: The position-mutation pair p-values vectors for each
# linear regression in bc_regsub_bh
# - bh_sel_pos: Vectors of the positions deemed significant by p-value
# after the Benjamini-Hochberg procedure was performed
bc_regsub_bh = list()
bh_sel_raw = list()
bh_sel_pos = list()
# Set significance level alpha to 0.05
alpha = 0.05
# Loop through all drugs in response matrix Y
for(drug in names(Y)){
# Deal with the response vector corresponding to the current drug
y = Y[[drug]]
# Remove patients with missing measurements.
missing = is.na(y)
y = y[!missing]
x = X[!missing,]
# Remove predictors that appear less than 3 times.
x = x[,colSums(x) >= 3]
# Remove duplicate predictors.
x = x[,colSums(abs(cor(x)-1) < 1e-4) == 1]
# If the optimal lambda is 0, then generate the linear regression of the natural log of the resistance response
# vector against the design matrix for each drug. Otherwise, generate the linear regression of the
# resistance response vector to the power of lambda against the design matrix for each drug.
if(bac.lambda[[drug]] == 0){
bc_regsub_bh[[drug]] = summary(lm(log(y)~., data=data.frame(x)))
} else {
bc_regsub_bh[[drug]] = summary(lm((y**bac.lambda[[drug]])~., data=data.frame(x)))
}
# Perform the Benjamini-Hochberg procedure on the p-values generated by the linear regression for the coefficients
bh_p = p.adjust(bc_regsub_bh[[drug]]$coefficients[,4], 'BH')
# Remove p-values greater than alpha from the rsulting vector
bh_sel_raw[[drug]] = bh_p[bh_p <= alpha]
# From the coefficient vector extracted above, remove the mutation from the position mutation pair, make all
# the resulting positions numeric values, and finally only keep the unique values of the resulting vector
bh_sel_pos[[drug]] <- names(bh_sel_raw[[drug]]) %>%
substring(2,3) %>%
as.numeric() %>%
unique() %>%
sort()
# Remove NA values from the vector of positions
bh_sel_pos[[drug]] = bh_sel_pos[[drug]][!is.na(bh_sel_pos[[drug]])]
}
bh_sel_pos
## $APV
## [1] 10 24 33 37 46 47 48 50 54 58 63 76 82 84 88 90
##
## $ATV
## [1] 10 20 24 48 50 54 58 73 76 82 84 88 90
##
## $IDV
## [1] 10 20 24 32 33 36 37 46 48 50 54 63 67 71 72 73 76 82 84 88 90
##
## $LPV
## [1] 10 20 33 46 47 48 50 54 66 76 82 84 88 90
##
## $NFV
## [1] 10 20 24 30 33 36 37 46 48 50 54 63 67 71 73 74 76 82 84 88 90
##
## $RTV
## [1] 10 20 24 30 33 36 37 46 48 50 54 58 63 64 73 82 84 88 90 93
##
## $SQV
## [1] 10 15 20 24 48 50 53 54 57 61 63 67 71 73 74 76 82 84 88 90 91
The below code checks to see how many of the positions selected above are in the ground true list of significant positions and then plots the result.
# Combine all unique selected positions into one vector
all_bh_pos = unlist(bh_sel_pos) %>%
unname() %>%
unique()
# Check which positions deemed significant are in the list of ground true positions
bh_chk = all_bh_pos %in% tsm_df$Position
bh_correct = sum(bh_chk)
bh_incorrect = length(bh_chk) - bh_correct
bh_df = tibble('Method'= c('Benjamini-Hochberg Procedure', 'Benjamini-Hochberg Procedure'),
'Selection'=c('Correct', 'Incorrect'),
'Total'=c(bh_correct, bh_incorrect)) %>%
mutate(Selection=factor(Selection, levels=c('Incorrect', 'Correct')))
# Generate a stacked bar plot to visualize the correct and incorrect selections
ggplot(bh_df, aes(x=Method, y=Total, fill=Selection)) +
geom_bar(stat='identity', position='stack', width=.75) +
scale_fill_manual('Selection',
values = c('firebrick3', 'forestgreen'),
labels = c('Incorrect', 'Correct')) +
geom_hline(aes(yintercept=length(tsm_df$Position))) +
scale_y_continuous(breaks = sort(c(seq(0,60,by=10),length(tsm_df$Position)))) +
geom_text(aes('Benjamini-Hochberg Procedure',length(tsm_df$Position),
label = paste('Ground True Positions =',length(tsm_df$Position)),
vjust = -1), size=2.5) +
labs(title='Total Correct and Incorrect Significant Position Selections',
x='Method',
y='Number of Selected Significant Positions') +
theme_light()
The ability of the Benjamini-Hochberg procedure to limit false positives is immediately apparent by looking at the plot, as the number of incorrect position selections is significantly less than the number of correct position selections. Further, the number of incorrect position selections after the Bonferroni correction are significantly less than those from the stepwise selection using either criterion (Mallows Cp or BIC) before or after Box Cox transform. However, the number of false positives is greater than that of the Bonferroni correction. Where the Benjamini-Hochberg procedure excels over the Bonferroni correction in this case is the number of false negatives, as the Benjamini-Hochberg procedure number of correct position selections is greater than that of the Bonferroni correction. Yet, the number of correct position selections is still less than those from the stepwise selection using either criterion (Mallows Cp or BIC) before or after Box Cox transform, though this is expected as a consequence of the Benjamini-Hochberg procedure attempting to control false discovery rate.