-
Notifications
You must be signed in to change notification settings - Fork 1
/
parameters.py
60 lines (46 loc) · 1.74 KB
/
parameters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import os
class Parameters():
def __init__(self):
### ENV ####
self.env_name = 'cheetah-run'
self.max_episode_length = 1000
self.bit_depth = 5
### Experience Replay
self.ex_replay_buff_size = 1000000
self.num_init_episodes = 5 #random episodes, usefull to fill the buffer
# Setup
self.results_path = 'placeholder'
self.seed = 3
# Model Parameters
self.belief_size = 200
self.state_size = 30
self.hidden_size = 200
self.embedding_size = 1024
# Planner
self.planning_horizon = 12
self.optimisation_iters = 10
self.candidates = 1000
self.top_candidates = 100
# Learning
self.adam_epsilon = 1e-4
self.learning_rate_schedule = 0 #Linear learning rate schedule (optimisation steps from 0 to final learning rate; 0 to disable)'
self.learning_rate = 1e-3
self.grad_clip_norm = 1000
self.activation_function = 'relu'
self.device = None
self.use_cuda = True
self.gpu_id = 0
self.batch_size = 50
self.chunk_size = 50
# Interactions with the environment
self.free_nats = 3 # mean of the three best value in kl-loss
self.action_noise = 0.3
self.test_episodes = 1
self.flag_render = False
self.training_episodes = 1000
self.collect_interval = 100 #number of samples to be taken from the buffer at each iteration
self.test_interval = 100
self.storing_dataset_interval = 100
# os
self.results_dir = os.path.join(self.results_path)
self.dataset_path = os.path.join(self.results_path,'dataset/')