-
Notifications
You must be signed in to change notification settings - Fork 3
/
all.go
466 lines (411 loc) · 13 KB
/
all.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
package math
import (
m "math"
)
// Sin returns the sine of the radian argument x.
//
// Special cases are:
// Sin(±0) = ±0
// Sin(±Inf) = NaN
// Sin(NaN) = NaN
//func Sin(x float32) float32 { return float32(m.Sin(float64(x))) }
// Cos returns the cosine of the radian argument x.
//
// Special cases are:
// Cos(±Inf) = NaN
// Cos(NaN) = NaN
//func Cos(x float32) float32 { return float32(m.Cos(float64(x))) }
// Abs returns the absolute value of x.
//
// Special cases are:
// Abs(±Inf) = +Inf
// Abs(NaN) = NaN
//func Abs(x float32) float32 { return float32(m.Abs(float64(x))) }
// Acos returns the arccosine, in radians, of x.
//
// Special case is:
// Acos(x) = NaN if x < -1 or x > 1
func Acos(x float32) float32 { return float32(m.Acos(float64(x))) }
// Asin returns the arcsine, in radians, of x.
//
// Special cases are:
// Asin(±0) = ±0
// Asin(x) = NaN if x < -1 or x > 1
func Asin(x float32) float32 { return float32(m.Asin(float64(x))) }
// Asinh returns the inverse hyperbolic sine of x.
//
// Special cases are:
// Asinh(±0) = ±0
// Asinh(±Inf) = ±Inf
// Asinh(NaN) = NaN
//func Asinh(x float32) float32 { return float32(m.Asinh(float64(x))) }
// Atan returns the arctangent, in radians, of x.
//
// Special cases are:
// Atan(±0) = ±0
// Atan(±Inf) = ±Pi/2
func Atan(x float32) float32 { return float32(m.Atan(float64(x))) }
// Atan2 returns the arc tangent of y/x, using
// the signs of the two to determine the quadrant
// of the return value.
//
// Special cases are (in order):
// Atan2(y, NaN) = NaN
// Atan2(NaN, x) = NaN
// Atan2(+0, x>=0) = +0
// Atan2(-0, x>=0) = -0
// Atan2(+0, x<=-0) = +Pi
// Atan2(-0, x<=-0) = -Pi
// Atan2(y>0, 0) = +Pi/2
// Atan2(y<0, 0) = -Pi/2
// Atan2(+Inf, +Inf) = +Pi/4
// Atan2(-Inf, +Inf) = -Pi/4
// Atan2(+Inf, -Inf) = 3Pi/4
// Atan2(-Inf, -Inf) = -3Pi/4
// Atan2(y, +Inf) = 0
// Atan2(y>0, -Inf) = +Pi
// Atan2(y<0, -Inf) = -Pi
// Atan2(+Inf, x) = +Pi/2
// Atan2(-Inf, x) = -Pi/2
func Atan2(y, x float32) float32 { return float32(m.Atan2(float64(y), float64(x))) }
// Atanh returns the inverse hyperbolic tangent of x.
//
// Special cases are:
// Atanh(1) = +Inf
// Atanh(±0) = ±0
// Atanh(-1) = -Inf
// Atanh(x) = NaN if x < -1 or x > 1
// Atanh(NaN) = NaN
func Atanh(x float32) float32 { return float32(m.Atanh(float64(x))) }
// Cbrt returns the cube root of x.
//
// Special cases are:
// Cbrt(±0) = ±0
// Cbrt(±Inf) = ±Inf
// Cbrt(NaN) = NaN
func Cbrt(x float32) float32 { return float32(m.Cbrt(float64(x))) }
// Ceil returns the least integer value greater than or equal to x.
//
// Special cases are:
// Ceil(±0) = ±0
// Ceil(±Inf) = ±Inf
// Ceil(NaN) = NaN
func Ceil(x float32) float32 { return float32(m.Ceil(float64(x))) }
// Copysign returns a value with the magnitude
// of x and the sign of y.
func Copysign(x, y float32) float32 { return float32(m.Copysign(float64(x), float64(y))) }
// Cosh returns the hyperbolic cosine of x.
//
// Special cases are:
// Cosh(±0) = 1
// Cosh(±Inf) = +Inf
// Cosh(NaN) = NaN
//func Cosh(x float32) float32 { return float32(m.Cosh(float64(x))) }
// Dim returns the maximum of x-y or 0.
//
// Special cases are:
// Dim(+Inf, +Inf) = NaN
// Dim(-Inf, -Inf) = NaN
// Dim(x, NaN) = Dim(NaN, x) = NaN
func Dim(x, y float32) float32 { return float32(m.Dim(float64(x), float64(y))) }
// Erf returns the error function of x.
//
// Special cases are:
// Erf(+Inf) = 1
// Erf(-Inf) = -1
// Erf(NaN) = NaN
func Erf(x float32) float32 { return float32(m.Erf(float64(x))) }
// Erfc returns the complementary error function of x.
//
// Special cases are:
// Erfc(+Inf) = 0
// Erfc(-Inf) = 2
// Erfc(NaN) = NaN
func Erfc(x float32) float32 { return float32(m.Erfc(float64(x))) }
// Exp returns e**x, the base-e exponential of x.
//
// Special cases are:
// Exp(+Inf) = +Inf
// Exp(NaN) = NaN
// Very large values overflow to 0 or +Inf.
// Very small values underflow to 1.
func Exp(x float32) float32 { return float32(m.Exp(float64(x))) }
// Exp2 returns 2**x, the base-2 exponential of x.
//
// Special cases are the same as Exp.
func Exp2(x float32) float32 { return float32(m.Exp2(float64(x))) }
// Expm1 returns e**x - 1, the base-e exponential of x minus 1.
// It is more accurate than Exp(x) - 1 when x is near zero.
//
// Special cases are:
// Expm1(+Inf) = +Inf
// Expm1(-Inf) = -1
// Expm1(NaN) = NaN
// Very large values overflow to -1 or +Inf.
func Expm1(x float32) float32 { return float32(m.Expm1(float64(x))) }
// Float32bits returns the IEEE 754 binary representation of f.
func Float32bits(f float32) uint32 { return m.Float32bits(f) }
// Float32frombits returns the floating point number corresponding
// to the IEEE 754 binary representation b.
func Float32frombits(b uint32) float32 { return m.Float32frombits(b) }
// Float64bits returns the IEEE 754 binary representation of f.
func Float64bits(f float64) uint64 { return m.Float64bits(f) }
// Float64frombits returns the floating point number corresponding
// the IEEE 754 binary representation b.
func Float64frombits(b uint64) float64 { return m.Float64frombits(b) }
// Floor returns the greatest integer value less than or equal to x.
//
// Special cases are:
// Floor(±0) = ±0
// Floor(±Inf) = ±Inf
// Floor(NaN) = NaN
func Floor(x float32) float32 { return float32(m.Floor(float64(x))) }
// Frexp breaks f into a normalized fraction
// and an integral power of two.
// It returns frac and exp satisfying f == frac × 2**exp,
// with the absolute value of frac in the interval [½, 1).
//
// Special cases are:
// Frexp(±0) = ±0, 0
// Frexp(±Inf) = ±Inf, 0
// Frexp(NaN) = NaN, 0
func Frexp(f float32) (frac float32, exp int) {
fr, exp := m.Frexp(float64(f))
return float32(fr), exp
}
// Gamma returns the Gamma function of x.
//
// Special cases are:
// Gamma(+Inf) = +Inf
// Gamma(+0) = +Inf
// Gamma(-0) = -Inf
// Gamma(x) = NaN for integer x < 0
// Gamma(-Inf) = NaN
// Gamma(NaN) = NaN
func Gamma(x float32) float32 { return float32(m.Gamma(float64(x))) }
// Hypot returns Sqrt(p*p + q*q), taking care to avoid
// unnecessary overflow and underflow.
//
// Special cases are:
// Hypot(±Inf, q) = +Inf
// Hypot(p, ±Inf) = +Inf
// Hypot(NaN, q) = NaN
// Hypot(p, NaN) = NaN
func Hypot(p, q float32) float32 { return float32(m.Hypot(float64(p), float64(q))) }
// J0 returns the order-zero Bessel function of the first kind.
//
// Special cases are:
// J0(±Inf) = 0
// J0(0) = 1
// J0(NaN) = NaN
func J0(x float32) float32 { return float32(m.J0(float64(x))) }
// J1 returns the order-one Bessel function of the first kind.
//
// Special cases are:
// J1(±Inf) = 0
// J1(NaN) = NaN
func J1(x float32) float32 { return float32(m.J1(float64(x))) }
// Jn returns the order-n Bessel function of the first kind.
//
// Special cases are:
// Jn(n, ±Inf) = 0
// Jn(n, NaN) = NaN
func Jn(n int, x float32) float32 { return float32(m.Jn(n, float64(x))) }
// Ldexp is the inverse of Frexp.
// It returns frac × 2**exp.
//
// Special cases are:
// Ldexp(±0, exp) = ±0
// Ldexp(±Inf, exp) = ±Inf
// Ldexp(NaN, exp) = NaN
func Ldexp(frac float32, exp int) float32 { return float32(m.Ldexp(float64(frac), exp)) }
// Lgamma returns the natural logarithm and sign (-1 or +1) of Gamma(x).
//
// Special cases are:
// Lgamma(+Inf) = +Inf
// Lgamma(0) = +Inf
// Lgamma(-integer) = +Inf
// Lgamma(-Inf) = -Inf
// Lgamma(NaN) = NaN
func Lgamma(x float32) (lgamma float32, sign int) {
l, sign := m.Lgamma(float64(x))
return float32(l), sign
}
// Log returns the natural logarithm of x.
//
// Special cases are:
// Log(+Inf) = +Inf
// Log(0) = -Inf
// Log(x < 0) = NaN
// Log(NaN) = NaN
func Log(x float32) float32 { return float32(m.Log(float64(x))) }
// Log10 returns the decimal logarithm of x.
// The special cases are the same as for Log.
func Log10(x float32) float32 { return float32(m.Log10(float64(x))) }
// Log1p returns the natural logarithm of 1 plus its argument x.
// It is more accurate than Log(1 + x) when x is near zero.
//
// Special cases are:
// Log1p(+Inf) = +Inf
// Log1p(±0) = ±0
// Log1p(-1) = -Inf
// Log1p(x < -1) = NaN
// Log1p(NaN) = NaN
func Log1p(x float32) float32 { return float32(m.Log1p(float64(x))) }
// Log2 returns the binary logarithm of x.
// The special cases are the same as for Log.
func Log2(x float32) float32 { return float32(m.Log2(float64(x))) }
// Max returns the larger of x or y.
//
// Special cases are:
// Max(x, +Inf) = Max(+Inf, x) = +Inf
// Max(x, NaN) = Max(NaN, x) = NaN
// Max(+0, ±0) = Max(±0, +0) = +0
// Max(-0, -0) = -0
func Max(x, y float32) float32 { return float32(m.Max(float64(x), float64(y))) }
// Min returns the smaller of x or y.
//
// Special cases are:
// Min(x, -Inf) = Min(-Inf, x) = -Inf
// Min(x, NaN) = Min(NaN, x) = NaN
// Min(-0, ±0) = Min(±0, -0) = -0
func Min(x, y float32) float32 { return float32(m.Min(float64(x), float64(y))) }
// Mod returns the floating-point remainder of x/y.
// The magnitude of the result is less than y and its
// sign agrees with that of x.
//
// Special cases are:
// Mod(±Inf, y) = NaN
// Mod(NaN, y) = NaN
// Mod(x, 0) = NaN
// Mod(x, ±Inf) = x
// Mod(x, NaN) = NaN
func Mod(x, y float32) float32 { return float32(m.Mod(float64(x), float64(y))) }
// Modf returns integer and fractional floating-point numbers
// that sum to f. Both values have the same sign as f.
//
// Special cases are:
// Modf(±Inf) = ±Inf, NaN
// Modf(NaN) = NaN, NaN
func Modf(f float32) (int float32, frac float32) {
i, fr := m.Modf(float64(f))
return float32(i), float32(fr)
}
// Nextafter64 returns the next representable float64 value after x towards y.
//
// Special cases are:
// Nextafter(x, x) = x
// Nextafter(NaN, y) = NaN
// Nextafter(x, NaN) = NaN
//func Nextafter64(x, y float64) (r float64) { return m.Nextafter(x, y) }
// Nextafter returns the next representable float32 value after x towards y.
//
// Special cases are:
// Nextafter32(x, x) = x
// Nextafter32(NaN, y) = NaN
// Nextafter32(x, NaN) = NaN
//func Nextafter(x, y float32) (r float32) { return m.Nextafter32(x, y) }
// Pow returns x**y, the base-x exponential of y.
//
// Special cases are (in order):
// Pow(x, ±0) = 1 for any x
// Pow(1, y) = 1 for any y
// Pow(x, 1) = x for any x
// Pow(NaN, y) = NaN
// Pow(x, NaN) = NaN
// Pow(±0, y) = ±Inf for y an odd integer < 0
// Pow(±0, -Inf) = +Inf
// Pow(±0, +Inf) = +0
// Pow(±0, y) = +Inf for finite y < 0 and not an odd integer
// Pow(±0, y) = ±0 for y an odd integer > 0
// Pow(±0, y) = +0 for finite y > 0 and not an odd integer
// Pow(-1, ±Inf) = 1
// Pow(x, +Inf) = +Inf for |x| > 1
// Pow(x, -Inf) = +0 for |x| > 1
// Pow(x, +Inf) = +0 for |x| < 1
// Pow(x, -Inf) = +Inf for |x| < 1
// Pow(+Inf, y) = +Inf for y > 0
// Pow(+Inf, y) = +0 for y < 0
// Pow(-Inf, y) = Pow(-0, -y)
// Pow(x, y) = NaN for finite x < 0 and finite non-integer y
//func Pow(x, y float32) float32 { return float32(m.Pow(float64(x), float64(y))) }
// Pow10 returns 10**e, the base-10 exponential of e.
//
// Special cases are:
// Pow10(e) = +Inf for e > 309
// Pow10(e) = 0 for e < -324
//func Pow10(e int) float32 { return float32(m.Pow10(e)) }
// Remainder returns the IEEE 754 floating-point remainder of x/y.
//
// Special cases are:
// Remainder(±Inf, y) = NaN
// Remainder(NaN, y) = NaN
// Remainder(x, 0) = NaN
// Remainder(x, ±Inf) = x
// Remainder(x, NaN) = NaN
func Remainder(x, y float32) float32 { return float32(m.Remainder(float64(x), float64(y))) }
// Signbit returns true if x is negative or negative zero.
//func Signbit(x float32) bool { return m.Signbit(float64(x)) }
// Sincos returns Sin(x), Cos(x).
//
// Special cases are:
// Sincos(±0) = ±0, 1
// Sincos(±Inf) = NaN, NaN
// Sincos(NaN) = NaN, NaN
func Sincos(x float32) (sin, cos float32) {
s, c := m.Sincos(float64(x))
return float32(s), float32(c)
}
// Sinh returns the hyperbolic sine of x.
//
// Special cases are:
// Sinh(±0) = ±0
// Sinh(±Inf) = ±Inf
// Sinh(NaN) = NaN
//func Sinh(x float32) float32 { return float32(m.Sinh(float64(x))) }
// Tan returns the tangent of the radian argument x.
//
// Special cases are:
// Tan(±0) = ±0
// Tan(±Inf) = NaN
// Tan(NaN) = NaN
func Tan(x float32) float32 { return float32(m.Tan(float64(x))) }
// Tanh returns the hyperbolic tangent of x.
//
// Special cases are:
// Tanh(±0) = ±0
// Tanh(±Inf) = ±1
// Tanh(NaN) = NaN
//func Tanh(x float32) float32 { return float32(m.Tanh(float64(x))) }
// Trunc returns the integer value of x.
//
// Special cases are:
// Trunc(±0) = ±0
// Trunc(±Inf) = ±Inf
// Trunc(NaN) = NaN
func Trunc(x float32) float32 { return float32(m.Trunc(float64(x))) }
// Y0 returns the order-zero Bessel function of the second kind.
//
// Special cases are:
// Y0(+Inf) = 0
// Y0(0) = -Inf
// Y0(x < 0) = NaN
// Y0(NaN) = NaN
func Y0(x float32) float32 { return float32(m.Y0(float64(x))) }
// Y1 returns the order-one Bessel function of the second kind.
//
// Special cases are:
// Y1(+Inf) = 0
// Y1(0) = -Inf
// Y1(x < 0) = NaN
// Y1(NaN) = NaN
func Y1(x float32) float32 { return float32(m.Y1(float64(x))) }
// Yn returns the order-n Bessel function of the second kind.
//
// Special cases are:
// Yn(n, +Inf) = 0
// Yn(n > 0, 0) = -Inf
// Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even
// Y1(n, x < 0) = NaN
// Y1(n, NaN) = NaN
func Yn(n int, x float32) float32 { return float32(m.Yn(n, float64(x))) }