-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathattention_mapping.py
52 lines (42 loc) · 2.14 KB
/
attention_mapping.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from tensorflow.keras.applications import DenseNet121
from tensorflow.keras.layers import multiply, Lambda, LocallyConnected2D, Input, Conv2D, BatchNormalization, Dense, Dropout, GlobalAveragePooling2D
from tensorflow.keras import models
import numpy as np
def attention_map_model(backbone):
"""
Add attention map branch to CNN
use DenseNet121, MobileNet as backbone
Example:
backbone = DenseNet121(weights='imagenet', include_top=False)
backbone = MobileNet(weights='imagenet', include_top=False)
"""
in_layer = Input((80,80,2)) # ???? dimesnions question ????
reshape_layer = Conv2D(3, (3,3), activation='relu', padding='same', input_shape=(80,80,2))
for layer in backbone.layers:
layer.trainable = True
reshape_ = reshape_layer(in_layer)
pt_depth = backbone.get_output_shape_at(0)[-1]
pt_features = backbone(reshape_)
bn_features = BatchNormalization()(pt_features)
# attention mech to turn pixels in GAP on/ off
attn_layer = Conv2D(64, (1,1), padding='same', activation='relu')(bn_features)
attn_layer = Conv2D(64, (1,1), padding='same', activation='relu')(attn_layer)
attn_layer = LocallyConnected2D(1, (1,1), padding='valid', activation='sigmoid')(attn_layer)
# insert it to backbone branch
# initialize weights
up_c2_w = np.ones((1, 1, 1, pt_depth))
up_c2 = Conv2D(pt_depth, (1,1), padding='same', activation='linear', use_bias=False, weights=[up_c2_w])
up_c2.trainable = False
attn_layer = up_c2(attn_layer)
# get together attn_layer and bn_features branches
mask_features = multiply([attn_layer, bn_features])
gap_features = GlobalAveragePooling2D()(mask_features)
gap_mask = GlobalAveragePooling2D()(attn_layer)
# account for missing values from attention model
gap = Lambda(lambda x: x[0]/x[1], name='RescaleGAP')([gap_features, gap_mask])
gap_dr = Dropout(0.5)(gap)
dr_steps = Dropout(0.25)(Dense(1024, activation='elu')(gap_dr))
# linear 16 bit
out_layer = Dense(1, activation='sigmoid')(dr_steps)
attn_model = models.Model(inputs=[in_layer], outputs=[out_layer])
return attn_model